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ABSTRACT

Distance metric learning plays a very crucial role in many
data mining algorithms because the performance of an al-
gorithm relies heavily on choosing a good metric. However,
the labeled data available in many applications is scarce and
hence the metrics learned are often unsatisfactory. In this
paper, we consider a transfer learning setting in which some
related source tasks with labeled data are available to help
the learning of the target task. We first propose a convex
formulation for multi-task metric learning by modeling the
task relationships in the form of a task covariance matrix.
Then we regard transfer learning as a special case of multi-
task learning and adapt the formulation of multi-task met-
ric learning to the transfer learning setting for our method,
called transfer metric learning (TML). In TML, we learn the
metric and the task covariances between the source tasks
and the target task under a unified convex formulation. To
solve the convex optimization problem, we use an alternat-
ing method in which each subproblem has an efficient solu-
tion. Experimental results on some commonly used transfer
learning applications demonstrate the effectiveness of our
method.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database
Management]: Database Applications—Data mining

General Terms

Algorithms

Keywords

Metric Learning, Transfer Learning, Multi-Task Learning

1. INTRODUCTION
Many data mining algorithms, e.g., k-means clustering

algorithm and k-nearest neighbor classifier, work by relying
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on a distance metric. In order to deliver satisfactory results,
finding a good distance metric for the problem at hand often
plays a very crucial role. As such, metric learning [25] has
received much attention in the research community [12, 25,
5, 22, 8, 26, 6, 7, 27, 29, 13]. Many metric learning methods
have been proposed. From the perspective of the underly-
ing learning paradigm, these methods can be grouped into
three categories, namely, supervised metric learning, unsu-
pervised metric learning, and semi-supervised metric learn-
ing. Supervised metric learning learns a metric for some
supervised learning task, such as classification, so that data
points from the same class are kept close while those from
different classes are far apart [12, 22, 8, 7, 29, 13]. It has also
been used for regression by exploiting the manifold struc-
ture contained in the labeled data [24]. Unsupervised metric
learning utilizes some information contained in the data to
learn a metric for some unsupervised learning task, such as
clustering [6]. Semi-supervised metric learning, which can be
viewed as a combination of the supervised and unsupervised
paradigms, utilizes both label information from the labeled
data and geometric information from the unlabeled data to
learn a good metric for classification or clustering. The need
for semi-supervised metric learning arises from the fact that
the labeled data available in a number of real-life applica-
tions is scarce because labeling data is very laborious and
costly. With only limited labeled data, the metrics learned
are often unsatisfactory. Semi-supervised metric learning
tries to exploit additional information from the unlabeled
data to alleviate this problem which is known as labeled
data deficiency problem here.

The focus of this work is on supervised metric learning
for classification applications. However, we consider situa-
tions similar to those for semi-supervised metric learning in
which there is deficiency in labeled data. While the amount
of labeled data available in one learning task is limited, it is
not uncommon that there exist other related learning tasks
with labeled data available. Unlike semi-supervised learning
which exploits unlabeled data, multi-task learning [4, 12, 20]
and transfer learning [18] seek to alleviate the labeled data
deficiency problem by utilizing some related learning tasks to
help improve the learning performance. In some sense, they
mimic human learning activities in that people may learn
faster when several related tasks are learned simultaneously,
e.g., playing different games. In essence, people often apply
the knowledge gained from some previous learning tasks to
help learn a new task. Even though both multi-task learning
and transfer learning utilize information from other related
learning tasks, there exist some differences between them
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in both the problem setting and the objective. In transfer
learning, the learning tasks are usually classified into two
types: source task and target task. It is assumed that there
is enough data in the source tasks but not in the target task.
The objective of transfer learning is to utilize the informa-
tion in the source tasks to help learn the target task with
no need for improving the performance of the source tasks.
On the other hand, there is no distinction between the tasks
in multi-task learning and the objective is to improve the
performance of all tasks simultaneously.

Even though there exist differences between multi-task
learning and transfer learning, a central issue common to
both is to accurately characterize the relationships between
tasks. Given the training data for multiple tasks, there
are two important aspects that distinguish between differ-
ent methods for characterizing the task relationships. The
first aspect is on how to obtain the relationships, either from
the model assumption or automatically learned from data.
Many multi-task and transfer learning methods make some
prior assumptions. For example, the latent data representa-
tion is shared by different tasks [4, 1] or the learning mod-
els in different tasks have similar model parameters [9, 14].
Obviously, learning the task relationships from data auto-
matically is the more favorable option because the model
assumption adopted may be incorrect and, worse still, it
is not easy to verify the correctness of the assumption from
data. The second aspect is on what task relationships can be
represented by a method. Generally speaking there are three
types of task relationship: positive task correlation, negative
task correlation, and task unrelatedness.1 Positive task cor-
relation is a useful task relationship to characterize because
similar tasks are likely to have similar model parameters.
For negative task correlation, knowing the model parame-
ters of one task will reduce the search space for the model
parameters of a negatively correlated task. As for task un-
relatedness, identifying outlier tasks can prevent them from
impairing the performance of other tasks since outlier tasks
are unrelated to other tasks.

In this paper, we study metric learning under the trans-
fer learning setting in which some source tasks are available
in addition to the target task. Based on a method called
regularized distance metric learning (RDML) [13], we pro-
pose an extension for transfer learning called transfer metric
learning (TML). Different from conventional transfer learn-
ing methods, we first propose a convex formulation for multi-
task metric learning by modeling the task relationships in
the form of a task covariance matrix which can model pos-
itive, negative and zero task correlations. Then we regard
transfer learning as a special case of multi-task learning in
that the source tasks are equally important and indepen-
dent, and adapt the formulation of multi-task metric learn-
ing to the transfer learning setting for the formulation of
TML. In TML, we learn the metric and the task covariances
between the source tasks and the target task under a uni-
fied convex formulation. As in multi-task metric learning,
the task covariance matrix can also model positive, negative
and zero task correlations. To solve the convex optimization
problem, we use an alternating method in which each sub-
problem has an efficient solution. Experimental results on
some commonly used transfer learning applications demon-
strate the effectiveness of our method.

1Task unrelatedness corresponds to zero or close to zero
task correlation.

The remainder of this paper is organized as follows. We
first briefly introduce some background for metric learning
and the related work in Section 2. We then present our
multi-task metric learning and TML algorithms in Sections 3
and 4, respectively. Section 5 reports experimental results
on some transfer learning applications. Finally, some con-
cluding remarks are given in the last section.

2. BACKGROUND AND RELATED WORK
Suppose we are given a labeled training set {(xi, yi)}ni=1

where the ith data point xi ∈ ℝ
d and its class label yi ∈

{1, . . . , C}. In RDML [13], the learning problem is formu-
lated as follows:

min
Σ

2

n(n− 1)

∑

j<k

g
(

yj,k
[

1− ∥xj − xk∥2Σ
]

)

+
�

2
∥Σ∥2F

s.t. Σ ર 0, (1)

where � is the regularization parameter which balances the
empirical loss and the regularization term, ∥ ⋅ ∥F denotes
the Frobenius norm of a matrix, yj,k is equal to 1 when yj
and yk are identical and −1 otherwise, Σ ર 0 means that
Σ is a positive semidefinite (PSD) matrix, ∥xj − xk∥2Σ =
(xj −xk)

TΣ(xj −xk), g(z) = max(0, b− z) which is similar
to the hinge loss used in the support vector machine (SVM).
Here b is a constant, satisfying 0 ≤ b ≤ 1, which denotes the
classification margin. In [13], b is set to 0.

In [13], an online method is used to learn the optimal
Σ and some properties of RDML, such as the generalization
error, are studied. Moreover, theoretical analysis shows that
RDML is robust against the number of feature dimensions.

To the best of our knowledge, [28] is the only previous
work on transfer metric learning. In [28], it is assumed that
there exist labeled data points for the target task as well as
some prior information from the source tasks in the form of
a metric matrix learned from each source task. The authors
extended information-theoretic metric learning (ITML) [8]
to transfer metric learning by treating the metric matrices
learned from the source tasks as prior information to reg-
ularize the learning of the target task. The optimization
problem for transfer metric learning in [28], which is called
L-DML, is formulated as follows:

min
M

K
∑

k=1

�ktr(M
−1
k M)− log ∣M∣+ �str(SM)− �dtr(DM)

+∥�∥22
s.t. M ર 0

K
∑

k=1

�k = 1, �k ≥ 0, (2)

where tr(⋅) denotes the trace of a square matrix and ∥ ⋅ ∥2
denotes the 2-norm of a vector. Here S =

∑

yi=yj
(xi −

xj)(xi−xj)
T , D =

∑

yi ∕=yj
(xi−xj)(xi−xj)

T , and Mk (k =

1, . . . ,K) is the available metric matrix for the kth source
task. The first and second terms in the objective function of
problem (2) are derived from the log-determinant regulariza-
tion function as used in [8] and �k is the weight that reflects
the utility of the metric of the kth source task. The third
term is to keep the data points in the same class as close
as possible and the fourth term is to keep the data points
from different classes far apart. The last term is to penal-
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ize the complexity of �. Here � plays an important role in
this formulation since there may exist outlier tasks in real
applications and by learning � L-DML can identity them.
However, each element of the vector � is non-negative and so
it cannot model the negative transfer situation [19]. More-

over, the constraint
∑K

k=1 �k = 1 is not very reasonable.
Consider a special case in which there is only one source
task. Then �1 = 1 even if this source task is an outlier
task. When there are multiple source tasks and all of them
are outlier tasks, we should set all �i to zero but then the
constraint

∑K

k=1 �k = 1 cannot be satisfied. Furthermore,
problem (2) is not convex, making it easy to get trapped in
(bad) local minima during the optimization procedure.

There exist some methods for transfer dimensionality re-
duction [21, 16, 17], where dimensionality reduction can be
viewed as a special case of metric learning in that the metric
learned is not of full rank. However, transfer dimensionality
reduction is different from transfer metric learning and these
methods are not applicable here. For example, [21] used a
transformation matrix for dimensionality reduction in the
source tasks for subspace clustering in the target task and
so the target task is an unsupervised learning task. Also,
[16, 17] proposed dimensionality reduction methods for do-
main adaption in which the target task has no labeled data,
and so it is different from the setting here where we utilize
the metric matrices learned from the source tasks to help
the learning of the target task from labeled data.

3. MULTI-TASK METRIC LEARNING
In this section, we propose a multi-task metric learning

method which can learn the task relationships between all
pairs of tasks.

Suppose we are given m learning tasks {Ti}mi=1. For the
ith task Ti, the training set Di consists of ni data points
represented in the form of (xi

j , y
i
j), j = 1, . . . , ni, with xi

j ∈
ℝ

d and its corresponding class label yi
j ∈ {1, . . . , Ci}. Here

the superscript denotes the task index and the subscript
denotes the instance index in each task.

The optimization problem for multi-task metric learning
is formulated as follows:

min
{Σi},Ω

m
∑

i=1

2

ni(ni − 1)

∑

j<k

g
(

y
i
j,k

[

1− ∥xi
j − xi

k∥2Σi

] )

+
�1

2

m
∑

i=1

∥Σi∥2F +
�2

2
tr(Σ̃Ω−1Σ̃

T
)

s.t. Σi ર 0 ∀i
Σ̃ = (vec(Σ1), . . . , vec(Σm))

Ω ર 0

tr(Ω) = 1, (3)

where yi
j,k is equal to 1 when yi

j = yi
k and −1 otherwise,

vec(⋅) denotes the operator which converts a matrix into a
vector in a columnwise manner, and �1 and �2 are the regu-
larization parameters. Ω is a task covariance matrix which
describes the relationships between tasks and so it is a PSD
matrix. The first term in the objective function of prob-
lem (3) measures the empirical loss for the training sets of
the m tasks, the second term penalizes the complexity of
each Σi, and the last term measures the task relationships
between all pairs of tasks based on each Σi. The last con-

straint in (3) is to restrict the scale of Ω to prevent it from
reaching a degenerate solution.

From a probabilistic viewpoint, RDML can be seen as
obtaining the maximum a posteriori (MAP) solution of a
probabilistic model where the likelihood corresponds to the
first term in the objective function of problem (1) and the
prior on the metric is Gaussian prior corresponding to the
second term. Similar to RDML, our multi-task metric learn-
ing is also a MAP solution of a probabilistic model where
the likelihood is the same as that in RDML for each task
and the prior on the metrics of all tasks is matrix-variate
normal distribution [11].

We will prove below that problem (3) is a convex opti-
mization problem by proving that each term in the objective
function is convex and each constraint is also convex.

Theorem 1. Problem (3) is convex with respect to W, b
and Ω.

Proof
It is easy to see that the first two terms in the objective func-
tion are convex with respect to (w.r.t.) all variables and the
constraints in (3) are also convex. We rewrite the third term
as tr(WΩ−1WT ) =

∑

t W(t, :)Ω−1W(t, :)T where W(t, :)

is the tth row of W. Since W(t, :)Ω−1W(t, :)T is a ma-
trix fractional function as in Example 3.4 on page 76 of [3],
it is convex w.r.t. W(t, :) and Ω when Ω is a PSD ma-
trix (which is satisfied by the first constraint of (3)). Since
W(t, :) is a row of W, W(t, :)Ω−1W(t, :)T is also convex
w.r.t. W and Ω. Because the summation operation can pre-
serve convexity according to the analysis on page 79 of [3],
tr(WΩ−1WT ) =

∑

t
W(t, :)Ω−1W(t, :)T is convex w.r.t.

W, b and Ω. So the objective function and the constraints
in problem (3) are convex w.r.t. all variables and hence prob-
lem (3) is jointly convex. □

Even though problem (3) is convex with respect to {Σi}
and Ω jointly, it is not easy to optimize it with respect to all
the variables simultaneously. Here we propose an alternating
method to solve the problem more efficiently. Specifically,
we first optimize the objective function with respect to Σi

when Ω and {Σ}−i
def
= {Σ1, . . . ,Σi−1,Σi+1, . . . ,Σm} are

fixed, and then optimize it with respect to Ω when {Σi} are
fixed. This procedure is repeated until convergence. Since
the original optimization problem is convex, the solution
found by this alternating procedure is guaranteed to be the
globally optimal solution [2].

Because multi-task metric learning is not the focus of this
paper, we leave the detailed optimization procedure to Ap-
pendix A.

4. TRANSFER METRIC LEARNING
Based on the multi-task metric learning problem formu-

lated in the previous section, we propose a transfer metric
learning formulation as a special case which can learn the
task relationships between all source tasks and the target
task.

Suppose we are given m−1 source tasks {Ti}m−1
i=1 and one

target task Tm, for m > 1. In the target task, the training
set contains nm labeled data points {(xm

j , ym
j )}nm

j=1. In trans-
fer learning, it is assumed that each source task has enough
labeled data and can learn an accurate model with no need
to seek help from the other source tasks. So the source tasks
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are considered to be independent since each source task does
not need help from other source tasks. So, similar to the set-
ting in [28], we assume that the metric matrix Σi for the ith
source task has been learned independently. We hope to use
the metric matrices learned to help the learning of the target
task because the labeled data there is scarce.

4.1 Optimization Problem
Based on problem (3), we formulate the optimization prob-

lem for TML as follows:

min
Σm,Ω

2

nm(nm − 1)

∑

j<k

g
(

y
m
j,k

[

1− ∥xm
j − xm

k ∥2Σm

]

)

+
�1

2
∥Σm∥2F +

�2

2
tr(Σ̃Ω−1Σ̃

T
)

s.t. Σm ર 0

Σ̃ = (vec(Σ1), . . . , vec(Σm−1), vec(Σm))

Ω ર 0

tr(Ω) = 1. (4)

Since we assume that the source tasks are independent and
each source is of equal importance, we can express Ω as

Ω =

(

�Im−1 !m

!
T
m !

)

,

where Ia denotes the a × a identity matrix, !m denotes
the task covariances between the target task and the source
tasks, and ! denotes the variance of the target task. Ac-
cording to the last constraint in problem (4), we can get

� =
1− !

m− 1
.

From Theorem 1, it is easy to show that problem (4) is also
jointly convex with respect to all variables. Moreover, from
the block matrix inversion formula, we can get

Ω−1

=

(

1−!
m−1

Im−1 !m

!
T
m !

)−1

=

(

Im−1 a
0T
m−1 1

)

(

(m−1)Im−1

1−!
0m−1

0T
m−1

1
c

)

(

Im−1 0m−1

aT 1

)

,

where 0d denotes the d× 1 zero vector, a = − (m−1)!m

1−!
and

c = ! − (m−1)!T
m!m

1−!
.

Let Σ̃s = (vec(Σ1), . . . , vec(Σm−1)), which is a constant
matrix here, denote the parameter matrix of the source

tasks. Then we can get

tr(Σ̃Ω
−1

Σ̃
T
)

=tr
((

Σ̃s, vec(Σm)
)

Ω
−1

(

Σ̃
T

s

vec(Σm)T

)

)

=tr
(

⎛

⎝

Σ̃
T

s

vec(Σm)T − (m−1)
1−!

!
T
mΣ̃

T

s

⎞

⎠

T (
(m−1)Im−1

1−!
0m−1

0T
m−1

1
c

)−1

⎛

⎝

Σ̃
T

s

vec(Σm)T − (m−1)
1−!

!
T
mΣ̃

T

s

⎞

⎠

)

=
m− 1

1− !
tr(Σ̃

T

s Σ̃s) +
1

c
∥vec(Σm)−

(m − 1)

1− !
Σ̃s!m∥22

=
(1− !)∥Σm∥2F − 2(m − 1)vec(Σm)T Σ̃s!m + (m− 1)!tr(Σ̃

T

s Σ̃s)

!(1− !)− (m− 1)!T
m!m

.

(5)

Moreover, according to the Schur complement [3], we have

Ω ર 0 ⇐⇒ ! ≥ m− 1

1− !
!

T
m!m and

(m− 1)Im−1

1− !
ર 0,

which is equivalent to

Ω ર 0 ⇐⇒ !(1− !) ≥ (m− 1)!T
m!m.

Then problem (4) can be simplified to

min
Σm,!m,!,Ω

2

nm(nm − 1)

∑

j<k

g
(

y
m
j,k

[

1− ∥xm
j − xm

k ∥2Σm

]

)

+
�1

2
∥Σm∥2F +

�2

2
tr(Σ̃Ω−1Σ̃

T
)

s.t. Σm ર 0

Ω =

(

1−!
m−1

Im−1 !m

!
T
m !

)

Σ̃ = (Σ̃s, vec(Σm))

!(1− !) ≥ (m− 1)!T
m!m, (6)

where the last term in the objective function can be simpli-
fied as in Eq. (5).

Compared with the L-DML method in [28], our method
has some advantages. First, the formulation of TML is con-
vex and so there is guarantee to find the globally optimal
solution. Second, similar to multi-task metric learning pro-
posed in the previous section, TML can model positive, neg-
ative and zero task correlations in a unified formulation but
L-DML cannot model negative task correlation. As an ex-
treme case, we can deal with the situation in which all source
tasks are outlier tasks, but L-DML cannot handle it due to
the constraint

∑K

k=1 �k = 1 in problem (2).
Moreover, compared with problem (4), there is no PSD

constraint on Ω in problem (6) making it simpler than prob-
lem (4). In the next section, we will discuss how to solve
problem (6).

4.2 Optimization Procedure
As in multi-task metric learning, problem (6) is a convex

problem and we still use an alternating method to solve it.
Specifically, we first optimize the objective function with
respect toΣm when !m and ! are fixed, and then optimize it
with respect to !m and ! when Σm is fixed. This procedure
is repeated until convergence. As before, the solution found
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Table 1: Online Learning Algorithm for Problem (7)
Input: labeled data (xm

j , ym
j ) (j = 1, . . . , nm), matrix M, �′

1, �
′
2 and predefined learning rate �

Initialize Σ
(0)
m =

�′

2
�′

1
M;

for t = 1, . . . , Tmax do
Receive a pair of training data points {(xm

j , ym
j ), (xm

k , ym
k )};

Compute y: y = 1 if ym
j = ym

k , and y = −1 otherwise;
if the training pair (xm

j ,xm
k ), y is classified correctly, i.e., y(1− ∥xm

j − xm
k ∥2

Σ
(t−1)
m

) > 0 then

Σ
(t)
m = Σ

(t−1)
m ;

else if y == −1

Σ
(t)
m = Σ

(t−1)
m + �(xm

j − xm
k )(xm

j − xm
k )T ;

else

Σ
(t)
m = �S+

(

Σ
(t−1)
m − �(xm

j − xm
k )(xm

j − xm
k )T

)

where �S+(A) projects matrix A into the positive

semidefinite cone;
end if

end for

Output: metric Σ
(Tmax)
m

by this alternating procedure is globally optimal [2]. In what
follows, we will present the two subproblems separately.

Optimizing w.r.t. Σm when !m and ! are fixed

Utilizing Eq. (5), the optimization problem with respect
to Σm is formulated as

min
Σm

2

nm(nm − 1)

∑

j<k

g
(

y
m
j,k

[

1− ∥xm
j − xm

k ∥2Σm

]

)

+
�′
1

2
∥Σm∥2F − �

′
2tr(Σ

T
mM)

s.t. Σm ર 0, (7)

where

�
′
1 = �1 +

�2(1− !)

!(1− !)− (m− 1)!T
m!m

,

�
′
2 =

�2(m− 1)

!(1− !)− (m− 1)!T
m!m

,

M is a matrix such that vec(M) = Σ̃s!m. It is easy to
show that M is a combination of Σi (i = 1, . . . ,m − 1) as
M =

∑m−1
i=1 !miΣi where !mi is the ith element of !m.

Similar to [13], we can use an online learning method to
solve problem (7) and the algorithm is depicted in Table 1.
This algorithm is similar to that in [13] except the initial

step for Σ
(0)
m . In [13], the initial value for Σ

(0)
m is a zero

matrix but here it is
�′

2
�′

1
M. Note that M is a combination of

the metrics learned from the source tasks where each com-
bination weight is the task covariance between a source task
and the target task. This agrees with our intuition that a
positively correlated source task will have a large weight on
the initial value for Σm, an outlier task has negligle contri-
bution and a negatively correlated task even has opposite
effect.

Optimizing w.r.t. !m and ! when Σm is fixed

Utilizing Eq. (5), the optimization problem with respect

to !m and ! is formulated as

min
!m,!,Ω

tr(Σ̃Ω−1Σ̃
T
)

s.t. Ω =

(

1−!
m−1

Im−1 !m

!
T
m !

)

!(1− !) ≥ (m− 1)!T
m!m. (8)

We impose a constraint as Σ̃Ω−1Σ̃
T ⪯ 1

t
Id2 and the objec-

tive function becomes min 1
t
. Using the Schur complement,

we can get

Σ̃Ω−1Σ̃
T ⪯ 1

t
Id2 ⇐⇒

(

Ω Σ̃
T

Σ̃ 1
t
Id2

)

ર 0.

By using the Schur complement again, we get
(

Ω Σ̃
T

Σ̃ 1
t
Id2

)

ર 0 ⇐⇒ Ω− tΣ̃
T
Σ̃ ર 0.

We write Σ̃
T
Σ̃ =

(

Ψ11 Ψ12

ΨT
12 Ψ22

)

whereΨ11 ∈ ℝ
(m−1)×(m−1),

Ψ12 ∈ ℝ
(m−1)×1 and Ψ22 ∈ ℝ. Then Ω − tΣ̃

T
Σ̃ ર 0 is

equivalent to

1− !

m− 1
Im−1 − tΨ11 ર 0

! − tΨ22 ≥ (!m − tΨ12)
T

(

1− !

m− 1
Im−1 − tΨ11

)−1

(!m − tΨ12).

Let U and �1, . . . , �m−1 denote the eigenvector matrix and
eigenvalues of Ψ11 with �1 ≥ . . . ≥ �m−1 ≥ 0. Then

1− !

m− 1
Im−1 − tΨ11 ર 0 ⇐⇒ 1− !

m− 1
≥ �1t

and
(

1− !

m− 1
Im−1 − tΨ11

)−1

= Udiag(
1− !

m− 1
− t�1, . . . ,

1− !

m− 1
− t�m−1)U

T
.
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Combining the above results, problem (8) is formulated as

min
!m,!,f,t

−t

s.t.
1− !

m− 1
≥ t�1

f = UT (!m − tΨ12)
m−1
∑

j=1

f2
j

1−!
m−1

− t�j

≤ ! − tΨ22

!(1− !) ≥ (m− 1)!T
m!m, (9)

where fj is the jth element of f . By introducing new vari-
ables ℎj and rj (j = 1, . . . ,m− 1), (9) is reformulated as

min
!m,!,f,t,{ℎj},{rj}

−t

s.t.
1− !

m− 1
≥ t�1

f = UT (!m − tΨ12)
m−1
∑

j=1

ℎj ≤ ! − tΨ22

rj =
1− !

m− 1
− t�j ∀j

f2
j

rj
≤ ℎj ∀j

!(1− !) ≥ (m− 1)!T
m!m. (10)

Since

f2
j

rj
≤ ℎj ⇐⇒

∥

∥

∥

∥

∥

(

fj
rj−ℎj

2

)∥

∥

∥

∥

∥

2

≤ rj + ℎj

2

and

!(1−!) ≥ (m−1)!T
m!m ⇐⇒

∥

∥

∥

∥

∥

∥

⎛

⎝

√
m− 1!m

!−1
2
!

⎞

⎠

∥

∥

∥

∥

∥

∥

2

≤ ! + 1

2
,

problem (10) is a second-order cone programming (SOCP)
problem [15] with O(m) variables and O(m) constraints. In
many applications, m is very small and we can use a stan-
dard solver to solve problem (10) very efficiently.

We set the initial value of ! to 1
m

and that of !m to a
zero vector which corresponds to the assumption that the
target task is unrelated to the source tasks.

After learning the optimal values of Σm, we can make
prediction for a new data point. Given a test data point
xm
★ for the target task Tm, we first calculate the distances

between xm
★ and all training data points in Tm based on

the learned metric Σm and then use the k-nearest neighbor
classifier to classify xm

★ , where we choose k = 1 for simplicity
in our experiments.

5. EXPERIMENTS
We study TML empirically in this section by compar-

ing it with two metric learning methods, ITML2 [8] and
RDML [13], and another metric learning method for trans-
fer learning, L-DML [28]. We use the CVX solver [10]3 to

2The implementation of ITML can be found in
http://www.cs.utexas.edu/users/pjain/itml/.

3http://stanford.edu/∼boyd/cvx

solve problem (10). We set the learning rate � in Table 1 to
0.01. For ITML, RDML and L-DML, the best parameters
reported in [8, 13, 28] are used.

5.1 Wine Quality Classification
The wine dataset4 is about wine quality including red and

white wine samples. The features include objective tests
(e.g., PH values) and the output is based on sensory data.
The labels are given by experts with grades between 0 (very
bad) and 10 (very excellent). There are 1599 records for the
red wine and 4898 for the white wine and so there are two
tasks, one for red wine classification and the other for white
wine classification. Each task is treated as the target task
and the other task as the source task. To see the effect of
varying the size of the training set, we vary the percentage of
the training data used from 5% to 20%. Each configuration
is repeated 10 times. The mean and standard deviation of
the classification accuracy are reported in Fig. 1(a) and 1(b).
From the results, we can see that the performance of L-DML
is comparable with that of ITML and RDML and TML is
always the best one for both tasks.

5.2 Handwritten Letter Classification
The handwritten letter classification applicaton5 consists

of seven tasks where each task is a binary classification prob-
lem. The corresponding letters for each task are: c/e, g/y,
m/n, a/g, a/o, f/t and h/n. Each data point has 128 fea-
tures corresponding to the pixel values of the handwritten
letter images. For each task, there are about 1000 positive
and 1000 negative data points. The experimental settings
are the same as those for wine quality classification above.
The results are plotted in Fig. 2(a) to 2(g). From the results,
we find that the performance of L-MDL is worse than that
of ITML and RDML on some tasks (4th, 6th and 7th tasks).
This may be due to the fact that the objective function of
L-MDL is non-convex and hence it is easy to get trapped
in bad local minima. TML shows the best performance on
almost every task.

5.3 USPS Digit Classification
The USPS digit dataset5 contains 7291 examples each of

255 features. There are nine classification tasks, each cor-
responding to the classification of two digits. The experi-
mental settings are the same as those for handwritten letter
classification. The results are reported in Fig. 3(a) to 3(i).
Similar to handwritten digit classification, L-MDL is worse
than ITML and RDML on some tasks and TML is better
than other methods on almost all tasks.

6. CONCLUSION
In this paper, we have proposed a transfer metric learn-

ing method to alleviate the labeled data deficiency problem
in the target learning task by exploiting useful information
from some source tasks. The learning of the distance met-
rics from the source tasks and the relationships between the
source tasks and the target task is formulated as a convex
optimization problem which can be solved efficiently. In our
future research, we will extend TML to the semi-supervised
setting by exploiting useful information contained in the un-
labeled data as well.

4http://archive.ics.uci.edu/ml/datasets/Wine+Quality
5http://multitask.cs.berkeley.edu/
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(a) 1st task (b) 2nd task

Figure 1: Overall performance on wine quality classification application.

(a) 1st task (b) 2nd task (c) 3rd task (d) 4th task

(e) 5th task (f) 6th task (g) 7th task

Figure 2: Overall performance on handwritten letter classification application when one task is the target
and the others are source tasks.
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APPENDIX

A. OPTIMIZATION PROCEDURE FOR

PROBLEM (3)
We present here the optimization procedure for solving

problem (3). We use an alternating method with two sub-
problems to be presented separately below.

Optimizing w.r.t. Σi when Ω and {Σ}−i are fixed

We first define Σ̃ and Ω−1 as

Σ̃ =
(

vec(Σi), Σ̃−i

)

Ω−1 =

(

ii 
T
i

i Γ−i

)

.

Then the third term in the objective function of problem (3)

can be rewritten as

�2

2
tr(Σ̃Ω−1Σ̃

T
)

=
�2

2
tr
(

(vec(Σi), Σ̃−i)

(

ii 
T
i

i Γ−i

)

(

vec(Σi)
T

Σ̃
T

−i

)

)

=
�2

2

(

ii∥vec(Σi)∥22 + 2T
i Σ̃

T

−ivec(Σi) + tr(Σ̃−iΓ−iΣ̃
T

−i)
)

=
�2

2

(

ii∥Σi∥2F + 2tr(MΣi) + tr(Σ̃−iΓ−iΣ̃
T

−i)
)

,

where ∥⋅∥2 denotes the 2-norm of a vector and M is a matrix

such that vec(M) = Σ̃−ii. Note that the third term in the
last equation above is independent of Σi. It is easy to show
that M is a symmetric matrix. The optimization problem
with respect to Σi becomes

min
Σi

2

ni(ni − 1)

∑

j<k

g
(

y
i
j,k

[

1− ∥xi
j − xi

k∥2Σi

] )

+
�1 + �2ii

2
∥Σi∥2F + �2tr(MΣi)

s.t. Σi ર 0. (11)

It is easy to see that this problem is a convex semidefinite
programming (SDP) problem since the objective function
is convex with respect to Σi and the constraint is a PSD
constraint on Σi. Even though solving an SDP problem
is computationally demanding with poor scalability, we can
adopt the technique in [23] and use gradient projection to
solve it.

Optimizing w.r.t. Ω when {Σi} are fixed

When {Σi} are fixed, the optimization problem for finding
Ω becomes

min
Ω

tr(Ω−1Σ̃
T
Σ̃)

s.t. Ω ર 0

tr(Ω) = 1. (12)

Then we have

tr(Ω−1A) = tr(Ω−1A)tr(Ω)

= tr((Ω− 1
2A

1

2 )(A
1

2Ω− 1
2 ))tr(Ω

1
2Ω

1
2 )

≥ (tr(Ω− 1
2A

1
2Ω

1
2 ))2 = (tr(A

1
2 ))2,

where A = Σ̃
T
Σ̃. The first equality holds because of the

last constraint in problem (12) and the last inequality holds
because of the Cauchy-Schwarz inequality for the Frobe-
nius norm. Moreover, tr(Ω−1A) attains its minimum value

(tr(A
1
2 ))2 if and only if

Ω− 1
2A

1
2 = aΩ

1
2

for some constant a and tr(Ω) = 1. So we can get the
following analytical solution:

Ω =

(

Σ̃
T
Σ̃
) 1

2

tr

(

(

Σ̃
T
Σ̃
) 1

2

) .
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