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Abstract

Sliced inverse regression (SIR) is an important method for reducing the dimensionality
of input variables. Its goal is to estimate the effective dimension reduction directions. In
classification settings, SIR is closely related to Fisher discriminant analysis. Motivated by
reproducing kernel theory, we propose a notion of nonlinear effective dimension reduction
and develop a nonlinear extension of SIR called kernel SIR (KSIR). Both SIR and KSIR
are based on principal component analysis. Alternatively, based on principal coordinate
analysis, we propose the dual versions of SIR and KSIR, which we refer to as sliced coor-
dinate analysis (SCA) and kernel sliced coordinate analysis (KSCA), respectively. In the
classification setting, we also call them discriminant coordinate analysis and kernel dis-
criminant coordinate analysis. The computational complexities of SIR and KSIR rely on
the dimensionality of the input vector and the number of input vectors, respectively, while
those of SCA and KSCA both rely on the number of slices in the output. Thus, SCA and
KSCA are very efficient dimension reduction methods.

1. Introduction

The notion of effective dimension reduction (e.d.r.) (Li, 1991) plays a central role in di-
mension reduction under a regression model. The desire behind this notion is that one
can reduce the dimensionality of input variables without losing any information that is
essential for predicting the corresponding output. Li (1991) developed a notable sliced in-
verse regression (SIR) method for estimating the e.d.r. space. Unlike principal component
regression, which first applies principal component analysis (PCA) (Jolliffe, 2002) on the
input variables and then models the relationship between the first few principal components
and the output, SIR uses the idea of inverse regression. Roughly speaking, it reduces the
dimensionality of an input vector by regressing the input vector against the corresponding
output to form an e.d.r. space, and then projects an input vector onto this space. Based on
the inverse regression, many other methods have been proposed to estimate the e.d.r. space,
such as sliced average-variance estimate (SAVE) (Cook and Weisberg, 1991) and principal
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Hessian direction (PHD) (Li, 1992, Cook, 1998). Methods based on the e.d.r. space have
also been extended to the classification problem (Cook and Lee, 1999, Cook and Yin, 2001).
In fact, except for a scaling factor, SIR is equivalent to Fisher discriminant analysis (FDA),
which seeks to find a linear transformation by maximizing the ratio of the between-class
scatter to the within-class scatter (Mardia et al., 1979). For this reason, we will use the
terms SIR and FDA interchangeably in this paper to refer to essentially the same method.

SIR estimates the e.d.r. directions by solving a generalized eigenvalue problem (Golub
and Loan, 1996) that involves the between-slice covariance matrix and the sample covariance
matrix of the input vectors. Thus, its computational complexity depends on the dimen-
sionality of the input space. To solve the generalized eigenvalue problem, SIR requires
the sample covariance matrix to be nonsingular. This can become problematic when the
dimensionality is high. On the one hand, the computational cost of SIR becomes high.
On the other hand, the sample covariance matrix is likely to be singular. For example,
if the number of input vectors is less than the dimensionality of the input space, the co-
variance matrix is singular. As a result, the generalized eigenvalue problem for standard
SIR becomes intractable. However, thanks to the equivalence between SIR and FDA, we
can resort to the existing approaches developed for FDA. For example, the regularization
approach (Hastie et al., 2001) is commonly used. Recently, Howland et al. (2003) applied
the generalized singular value decomposition (GSVD) method (Paige and Saunders, 1981)
to solve the generalized eigenvalue problem so that the non-singularity requirement on the
sample covariance matrix is no longer necessary.

In this paper, we propose a new approach to e.d.r. under the inverse regression scheme.
Instead of estimating the e.d.r. directions, our basic idea is to directly estimate the coor-
dinates of the projections of the input vectors in the e.d.r. space. Accordingly, we develop
a new method called sliced coordinate analysis (SCA). Specifically, we first calculate the
projection coordinates of the means within each slice on the e.d.r. space by applying prin-
cipal coordinate analysis (PCO) (Gower, 1966, Mardia et al., 1979) on the distance matrix
between the means. Utilizing these coordinates, we then interpolate the projection of an
input vector onto the e.d.r. space. Since SCA is derived from the notion of e.d.r., it in-
herits the theoretical framework developed for SIR. It is worth noting that SCA is similar
to the analysis of distance proposed by Gower and Krzanowski (1999), whose aim is to
estimate the coordinates of a set of observations when only a distance function between any
two such observations is available. The main computational cost of SCA comes from the
eigen-decomposition of the between-slice distance matrix. Since the size of the between-slice
distance matrix is equal to the number of slices, which is typically far less than the number
of input vectors, our proposed SCA is very efficient, especially in the case that the data set
is high-dimensional. Moreover, SCA does not explicitly use the sample covariance matrix.
Therefore, it does not matter whether the sample covariance matrix is singular or not.

Both SIR and SCA rely on the assumption of linearity of the data at hand. A sufficient
condition for satisfying this assumption is that the data follow some elliptically symmetric
distributions, e.g., the normal distribution. In recent years, kernel methods (Schölkopf and
Smola, 2002, Shawe-Taylor and Cristianini, 2004) have been increasingly popular for data
and information processing due to their benefits from conceptual simplicity and theoretical
potentiality. Kernel methods work by nonlinearly mapping vectors in the input space to
a higher-dimensional feature space, and then implementing traditional linear algorithms
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(Duda et al., 2001) in the feature space. They are attractive since the vectors in the feature
space are more likely to be linearly separable than those in the input space. Moreover, kernel
methods can alleviate the linearity assumption of the original input vectors. Motivated by
these, we present a notion of nonlinear effective dimension reduction. Subsequently, we
develop nonlinear extensions of SIR and SCA, which are referred to as kernel SIR (KSIR)
and kernel SCA (KSCA). In order to contrast with FDA and kernel FDA (KFDA), we also
refer to SCA and KSCA as discriminant coordinate analysis (DCA) and kernel discriminant
coordinate analysis (KDCA) in the classification setting.

In the existing literature on the kernel extension of FDA, many different approaches
have been developed. For example, Baudat and Anouar (2000) and others (Mika et al.,
2000, Roth and Steinhage, 2000) extended FDA to KFDA. Recently, Park and Park (2005)
proposed a GSVD-based KFDA method. Although there exists an equivalence between
FDA and SIR, we present a simple derivation of KSIR using GSVD. From the classification
point of view, KSIR and KSCA are able to extract the most discriminating features in the
feature space. This is equivalent to extracting the most discriminating nonlinear features in
the original input space because KSIR and KSCA utilize high-order statistics of the input
space. The computational complexity of GSVD-based KSIR is dependent on the sum of
the number of input vectors and the number of slices, while the complexity of KSCA is
dependent on the number of slices only. Thus, if the number of input vectors is too large,
KSIR becomes computationally infeasible but KSCA is still efficient. There also exist other
kernel dimension reduction methods, such as kernel PCA (KPCA) (Schölkopf et al., 1998).
KPCA is based on an unsupervised scheme, and its computational complexity is dependent
on the number of input vectors. Thus, KPCA becomes computationally expensive as the
number of input vectors increases.

The rest of this paper is organized as follows. In Section 2, we present a brief discussion
on e.d.r. and the SIR algorithm. In Section 3, we give the detailed procedure of implementing
the SCA algorithm. In Section 4, we propose the notion of nonlinear e.d.r. and then derive
the kernel SIR and kernel SCA algorithms. In Section 5, we illustrate the applications of
SCA and KSCA to classification based on some real-world datasets. The last section gives
some concluding remarks.

2. Effective Dimension Reduction and Sliced Inverse Regression

Consider the regression model

y = f(η′1x, η′2x, . . . ,η′qx, ε), (1)

where x is a p-dimensional input vector, y is a univariate output variable, η’s are unknown
p-dimensional vectors, ε is independent of x but its distribution is unknown, and f is an
arbitrary unknown function. The (•)′ is used to denote vector or matrix transpose. We
refer to any linear combination of η’s as an effective dimension reduction (e.d.r.) direction,
and the linear space spanned by η’s as the e.d.r. space. Based on these, Li (1991) presented
the following Theorem:

Theorem 1 Under the regression model (1) and the linear design condition, the centered
inverse regression curve E(x|y) − E(x) is contained in the linear space spanned by Σtηj

(j = 1, . . . , q), where Σt is the covariance matrix of x.
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Here, the so-called linear design condition says that, for any β ∈ Rp, the conditional
expectation E(β′x|η′1x, . . . , η′qx) is linear in η′1x, . . . ,η′qx. This condition is satisfied when
the distribution of x is elliptically symmetric, e.g., the normal distribution. We now use
(η′1x, . . . ,η′qx)′ as a new feature vector for x. When q is small, we may achieve the goal of
reducing the dimensionality of x from p to q. Given the data points (xi, yi) (i = 1, . . . , n),
the SIR algorithm seeks to estimate η via the procedure as given below in Algorithm 1.

Algorithm 1 SIR algorithm
1: procedure SIR({xi, yi}n

i=1, m, x)
2: Divide equally the range of yi’s into m slices, I1, . . . , Im. Let nc be the cardinality

of Ic.
3: Calculate the sample mean u = 1

n

∑n
i=1 xi, and each sliced mean uc = 1

nc

∑
yi∈Ic

xi

for c = 1, . . . , m.
4: Calculate Σ̂t = 1

n

∑n
i=1(xi − u)(xi − u)′, and Σ̂b = 1

n

∑m
c=1 nc(uc − u)(uc − u)′.

5: Solve the generalized eigenvalue problem as

Σ̂bµi = λiΣ̂tµi, λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 (2)

and refer to µi as the ith SIR direction.
6: Project x along the SIR directions to form a q-dimensional new vector a = (µ′1(x−

u), . . . , µ′q(x− u))′ with q ≤ min{p, m−1}.
7: Return a as the low-dimensional representation of x.
8: end procedure

Although the SIR algorithm was originally designed for the regression problem, the
inverse scheme behind it has also been applied to the classification problem (Cook and Yin,
2001). Alternatively, we consider a classification problem with J classes. In this case, y
is the class label for x and it only takes one value from {1, 2, . . . , J}. Furthermore, we
let m = J , uc be the mean of the cth class, Σ̂b be the between-class covariance matrix,
and Σ̂w be the within-class covariance matrix. Then FDA solves the following generalized
eigenvalue problem:

Σ̂bv = γΣ̂wv. (3)

Since Σ̂t = Σ̂b + Σ̂w, we can rewrite (3) as

Σ̂bv =
γ

1 + γ
Σ̂tv. (4)

By Eqns. (2) and (4), the SIR variates are the same as the canonical variates except for a
scaling factor. In other words, SIR is equivalent to FDA. It is also well-known that FDA
relies on the assumption of normality of the input vectors.

3. Sliced Coordinate Analysis

Given the regression model (1), we let {b1, . . . ,bq} be an orthonormal basis of the space
spanned by the Σtηj ’s. This implies that bj ’s form a q-dimensional e.d.r. space. We start
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with approximating each input vector x by its projection onto this e.d.r. space. That is,

x ≈
q∑

j=1

ajbj + u, (5)

where the weights aj form a vector a = (a1, . . . , aq)′ that describes the contribution of each
vector in the basis for representing x. The weight vector and weight space are just the
feature vector and feature space that we want to obtain. To avoid possible confusion with
the same terms used in the kernel literature (Shawe-Taylor and Cristianini, 2004), we still
refer to them as weight vector and weight space here. This procedure can also be called
feature transformation.

SIR is an efficient algorithm for estimating the weight vector. Essentially, SIR first
estimates the bases bj ’s using uc’s and then calculates the weight vector a for input x.
Specifically, from (5), we have

aj = b′j(x− u), j = 1, . . . , q.

For the mean uc of the input within the cth slice, it follows from (5) that

uc =
q∑

j=1

wcjbj + u, c = 1, . . . , m, (6)

where wc = (wc1, . . . , wcq)′ is the weight vector associated with uc. Based on (6), SIR
attempts to perform PCA on the covariance matrix for uc’s to estimate bj ’s.

In this section, we introduce an alternative to computing weight vectors through per-
forming PCO on the distance matrix for uc’s. We call this algorithm sliced coordinate
analysis (SCA). Unlike SIR, SCA directly estimates the weight vector wc associated with
uc and then calculates the weight vector a associated with any input x. Computationally,
it is similar to the analysis of distance proposed by Gower and Krzanowski (1999), whose
aim is to estimate the coordinates of a set of observations when only a distance function
between any two such observations is available. In the following, we first obtain the weight
vectors for the means uc’s (Section 3.1) and then that of any input x (Section 3.2).

3.1 Representation of Means in Weight Space

Let U = [u1, . . . ,um]′ (m×p) and W = [w1, . . . ,wm]′ (m×q). From (6), we have

‖uc − uh‖2 = ‖wc −wh‖2, c, h = 1, . . . , m.

As a result, we can obtain an m×q matrix D with d2
ch, the squared distance between wc

and wh, as the (c, h)th entry. It can be seen readily that

d2
ch = w′

cwc + w′
hwh − 2w′

cwh.

This can be expressed in matrix form as:

D = z1′m + 1mz′ − 2WW′, (7)
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where z is an m×1 vector containing the diagonal elements of WW′ and 1m is the m×1
vector of ones. Here and later, we denote Hw = Im− 1mn′

n with Im being the m×m identity
matrix and n = (n1, . . . , nm)′. Pre- and post-multiplying (7) by Hw, we have

−1
2
HwDHw

′ = −1
2
Hwz1′mHw

′ − 1
2
Hw1mz′H′

w + HwWW′H′
w

= HwWW′H′
w = WW′. (8)

The first two terms on the right-hand side of the first line are zero because Hw1m = 0 and
1′mH′

w = 0, and the second line can be obtained since we assume that the origin of the axes
in the weight space is at the weighted centroid of the m weight vectors.

Recall that d2
ch is also the squared distance between uc and uh. Hence we have

d2
ch = u′cuc + u′huh − 2u′cuh. (9)

Thus, in matrix form,

−1
2
HwDH′

w = HwUU′H′
w , Ψ. (10)

Hence, W can be obtained by performing an eigen-decomposition on either −1
2HwDH′

w

or HwUU′H′
w, say Ψ = QΛQ′ = (QΛ1/2)(QΛ1/2)′. Recall that the rank of Ψ is q ≤ m.

Thus, we can express matrices Q and Λ as Q = [Q1,Q2] and

Λ =
(

Λ1 0
0 0

)
,

where Q1 and Q2 are m×q and m×(m−q) matrices, respectively, and Λ1 is a q×q diagonal
matrix with positive elements. Consequently, we can write Ψ = Q1Λ1Q′

1. Moreover, except
for an orthonormal matrix, we have

W = Q1Λ1
1/2. (11)

and hence (W′W)−1 = Λ−1
1 .

3.2 Interpolation of Inputs in Weight Space

We now consider the problem of calculating the disposition of the associated weight vector
a for an input vector x. Having obtained the weight vectors of the means, the weight
vector a can be added to the diagram by using the technique developed by Gower (1968).
Specifically, let d0 be the m-dimensional vector whose elements are the squared distances
from wc to the origin of the axes in the weight space, and let d be the m-dimensional vector
whose elements are the squared distances from weight vector a to each of the weight vectors
wc’s. Then, from (Gower, 1968), the weight vector a is given by

a = −1
2
(W′W)−1W′Hw(d− d0) = −1

2
Λ−1

1 W′Hw(d− d0). (12)

Our current problem is to compute d = (d1, . . . , dm)′ and d0 = (d01, . . . , d0m)′. From
(5) and (6), we have

‖x− uc‖2 ≈
q∑

j=1

(aj − wcj)2 = ‖a−wc‖2 = dc,
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which motivates us to approximate dc by ‖x − uc‖2 for c = 1, . . . ,m. Thus, d is the m-
dimensional vector whose cth element dc is the squared distance from the input x to the
mean uc. Consequently, we can obtain d0 and d as

d0c = ‖wc‖2 and dc = ‖x− uc‖2, c = 1, . . . , m. (13)

The SCA algorithm is summarized in Algorithm 2. We can see that the main computa-
tional cost of SCA comes from the eigen-decomposition of Ψ, which is of size m×m. Thus,
the computational cost is low. Moreover, the computational procedure is stable, even when
Ψ is singular. It is worth noting that the issue of determining the number of slices has
been addressed in the context of SIR and PHD (Schott, 1994, Cook and Yin, 2001). These
discussions are also relevant to SCA. In general, it is reasonable for the user to specify the
number of slices to be between 10 to 20 for a data set with n = 300 observations. In the
classification scenario, we also refer to SCA as DCA and set the number of slices as the
number of classes. If the number of classes is too small, we can employ multiple sub-means
for each class and then apply our algorithm on these sub-means separately. In the following
experiments, we concentrate our attention on classification problems where the number of
slices is specified as the number of classes.

SCA is based on the notion of effective dimension reduction and the inverse regression
setting. Similar to the dual relationship between PCA and PCO, there also exists such a
relationship between SIR and SCA. Thus, Theorem 1 also justifies our methods as well as
SIR. Moreover, Vempala and Wang (2002) have recently proven that in the expectation, if
having m classes, the subspace spanned by the top m singular vectors of the observation
matrix is equivalent to the subspace spanned by the m mean vectors.

Algorithm 2 SCA algorithm
1: procedure SCA({xi, yi}n

i=1, m, x)
2: Divide equally the range of yi’s into m slices, I1, . . . , Im. Let nc be the cardinality

of Ic.
3: Calculate each sliced mean uc = 1

nc

∑
yi∈Ic

xi for c = 1, . . . ,m, and Ψ = HwUU′H′
w.

4: Perform eigen-decomposition on Ψ as Ψ = Q1Λ1Q′
1 and let W = Q1Λ

1/2
1 .

5: Calculate d0 and d from (13), and then a from (12) for given x.
6: Return a as the low-dimensional representation of x.
7: end procedure

4. Nonlinear Effective Dimension Reduction

Kernel methods (Shawe-Taylor and Cristianini, 2004) work in a feature space F , which is
related to the original input space I ⊂ Rp by a mapping,

ϕ : I → F .

That is, ϕ is a vector-valued function which gives a vector ϕ(s), called a feature vector,
corresponding to an input s ∈ I. In many kernel methods, we are usually given only a
Mercer kernel or reproducing kernel K : I × I → R such that K(s, t) = ϕ(s)′ϕ(t) for
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s, t ∈ I. The mapping ϕ(·) itself is typically not given explicitly. Rather, there exist
only inner products between feature vectors in F . In order to implement a kernel method
without referring to ϕ(·) explicitly, one resorts to the so-called kernel trick.

Let L2(I) be the square integrable Hilbert space of functions whose elements are func-
tions defined on I. It is a well-known result that if K is a reproducing kernel for the Hilbert
space L2(I), then {K(·, t)} spans L2(I). Here K(·, t) represents a function that is defined
on I with values at s ∈ I equal to K(s, t). There are some common kernel functions:

(a) Linear kernel: K
(
s, t) = s′t,

(b) Gaussian kernel: K
(
s, t) = exp(−∑p

j=1(sj−tj)2/βj

)
with βj > 0,

(c) Laplacian kernel: K
(
s, t) = exp(−∑p

j=1 |sj−tj |/βj

)
with βj > 0,

(d) Polynomial kernel: K(s, t) = (s′t + 1)k of degree k.

Motivated by the idea behind kernel methods, we consider the following regression model
instead of that given in (1):

y = f(η̃′1x̃, η̃′2x̃, . . . , η̃′qx̃, ε), (14)

where x̃ is the shorthand for ϕ(x) and η̃’s are vectors of the same dimension as x̃. In the
sequel, we use the tilde notation˜ to denote configurations in the feature space. Thus, for our
input data X = {x1,x2, . . . ,xn} ⊂ I, the corresponding feature vectors in the feature space
are denoted as X̃ = {x̃1, x̃2, . . . , x̃n} ⊂ F . Since there exists a nonlinear mapping between
x and x̃, we call any linear combination of η̃’s a nonlinear effective dimension reduction
(e.d.r.) direction, and the space spanned by η’s a nonlinear e.d.r. space. For model (14),
the linear design condition is currently required to hold on x̃. Thus, it is not necessary
to satisfy the condition for x. We now perform SIR and SCA over {(x̃1, y1), . . . , (x̃n, yn)}
giving rise to their nonlinear extensions. We refer to these extensions as kernel SIR (KSIR)
and kernel SCA (KSCA), respectively.

4.1 Kernel Sliced Inverse Regression

KSIR seeks to solve the following generalized eigenvalue problem:

C̃bµ̃ = λ̃C̃tµ̃, (15)

where C̃t and C̃b are the total covariance matrix and the between-slice covariance matrix
in F , respectively, i.e.,

C̃t =
1
n

n∑

i=1

(x̃i − ũ)(x̃i − ũ)′,

C̃b =
1
n

m∑

c=1

nc(ũc − ũ)(ũc − ũ)′,

with ũ = 1
n

∑n
i=1 x̃i and ũc = 1

nc

∑
yi∈Ic

x̃i. Let X̃ = [x̃1, . . . , x̃n]′ and Ũ = [ũ1, . . . , ũm]′.
Then we have the kernel matrix K = X̃X̃′. To solve (15), we now resort to the kernel

8



trick to find an equivalent problem that works on K without involving X̃. Notice that since
there exists an equivalence relationship between SIR and FDA, we can immediately make
use of existing methods in the KFDA literature to derive a KSIR method. However, the
KFDA method in (Mika et al., 2000) was developed for two-class problems only. The more
general method, called generalized discriminant analysis (GDA) (Baudat and Anouar, 2000),
requires that the kernel matrix be nonsingular. Unfortunately, centering in the feature
space will violate this requirement. Park and Park (2005) argued that this breaks down the
theoretical justification for devising GDA and thus proposed the generalized SVD (GSVD)
method (Paige and Saunders, 1981) to avoid this requirement for non-singularity. In this
paper, along the same line as in Park and Park (2005), we present a simple formulation of
KSIR.

Let G be an n×m indicator matrix with gic = 1 if input xi is in slice c and gic = 0 other-
wise. Denote N = diag(n1, n2, . . . , nm), n = (n1, n2, . . . , nm)′,

√
N = diag(

√
n1,

√
n2, . . . ,

√
nm),√

n = (
√

n1,
√

n2, . . . ,
√

nm)′ and Hn = In− 1
n1n1′n. It thus follows that 1′nG = 1′mN = n′,

G1m = 1n, 1′mn = n, G′G = N, N−1n = 1m and

Ũ = N−1G′X̃. (16)

We rewrite C̃t and C̃b as

C̃t =
1
n
X̃′HnHnX̃ =

1
n
X̃′HnX̃

and

C̃b =
1
n
Ũ′

[√
N− 1

n
n
√

n′
] [√

N− 1
n

√
nn′

]
Ũ

=
1
n
X̃′GN−1

[√
N− 1

n
n
√

n′
] [√

N− 1
n

√
nn′

]
N−1G′X̃

=
1
n
X̃′HnGN−1G′HnX̃.

Here we use the fact that GN−1
[√

N− 1
nn
√

n′
]

= G
√

N
−1 − 1

n1n
√

n′, HnG
√

N
−1

=

G
√

N
−1− 1

n1n
√

n′ and
√

N
−1√

N
−1

= N−1. Now, we can reformulate the problem (15) as

X̃′HnGN−1G′HnX̃µ̃ = λ̃X̃′HnHnX̃µ̃. (17)

On the other hand, since the eigenvectors are in the space spanned by x̃1, . . . , x̃n (refer to
(Mika et al., 2000, Park and Park, 2005) for more detailed explanation), we express µ̃ as

µ̃ =
n∑

i=1

βi(x̃i − ũ) = X̃′Hnβ, (18)

where β = (β1, . . . , βn)′ is an n×1 coefficient vector. Hence, (17) is equivalent to

X̃′HnGN−1G′HnX̃X̃′Hnβ = λ̃X̃′HnHnX̃X̃′Hnβ.
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Pre-multiplying the equation by HnX̃, we have a new generalized eigenvalue problem

HnKHnGN−1G′HnKHnβ = λ̃HnKHnHnKHnβ, (19)

which involves the kernel matrix K rather than X̃. Moreover, given a new input vector x,
we can compute the projection of its feature vector x̃ onto µ̃ through

(x̃− ũ)′µ̃ =
(
x̃− 1

n
X̃′1n

)′
X̃′Hnβ =

(
kx − 1

n
K1n

)′
Hnβ, (20)

where kx =
(
K(x,x1), . . . , K(x,xn)

)′. This shows that the kernel trick can be used for
KSIR. Our current concern is to solve the problem (19). Although K is assumed to be
non-singular, HnKHnHnKHn is positive semi-definite but not positive definite because
the centering matrix Hn is singular. In fact, the rank of HnKHnHnKHn is not larger
than n−1 because the rank of Hn is n−1. In this case, the method devised in (Baudat and
Anouar, 2000) cannot be used for the problem (19). Alternatively, we resort to GSVD to
solve this problem, with the detailed procedure given in Algorithm 3. Detailed derivation
for the implementation of GSVD can be found in (Howland et al., 2003). Since the rank
of GN−1G′ is m−1, the rank of HnKHnGN−1G′HnKHn is not larger than m−1. This
implies that we can at most obtain the q = m−1 e.d.r. directions, giving q β’s. For our
problem given in (19), running GSVD requires the complete orthogonal decomposition of
matrix Z = [HnKHnG

√
N
−1

,HnKHn]′, which is of size (n+m)×n. Thus, when n is large,
the computational cost is expected to be expensive.

Algorithm 3 GSVD-based KSIR algorithm
1: procedure KSIR({xi, yi}n

i=1, m, x, “kernel function”)
2: Divide equally the range of yi’s into m slices, I1, . . . , Im, and assign the indicator

matrix G (n×m). Let nc be the cardinality of Ic and N = diag(n1, . . . , nm).
3: Calculate K = [K(xi,xj)]ni,j=1 and kx =

(
K(x,x1), . . . ,K(x,xn)

)′.
4: Calculate Z = [HnKHnG

√
N
−1

,HnKHn]′ ((n+m)×n).
5: Compute the orthogonal-triangular decomposition of Z, which is

P′ZQ =
( t n−t

t R 0
n+m−t 0 0

)
with R = [rij ] and |r11| ≥ |r22| ≥ |rtt| > 0.

6: Perform SVD of P(1 : m, 1 : t) as P(1 : m, 1 : t) = ESV′.

7: Compute B = Q
(

R−1V 0
0 In−t

)
and set F = B(:, 1 : m−1).

8: Return ã = F′Hn

(
kx− 1

nK1n

)
as the low-dimensional representation of x.

9: end procedure

4.2 Kernel Sliced Coordinate Analysis

In Section 3, SCA was developed over the input space. Similar to KSIR, we propose KSCA
in this subsection. As in other kernel methods, the idea is to first map the input space into
a feature space and then apply SCA in this feature space.
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Let W̃ be the weight matrix associated with Ũ = [ũ1, . . . , ũm]′ and assume that the
column of W̃ is centered. It is straightforward to extend (12) in Section 3 to the feature
space. That is, we can calculate the associated weight vector ã of x by

ã = −1
2
(W̃′W̃)−1W̃′Hw(d̃− d̃0). (21)

Here d̃− d̃0 = (d̃1 − d̃01, . . . , d̃m − d̃0m)′ where d̃c is approximated by the squared distance
between x̃ and ũc, and d̃0c is the squared distance between the origin of the axes in the
weight space and w̃c, for c = 1, . . . ,m.

In order to calculate ã, we seek to calculate W̃, d̃ and d̃0 first. First, similar to (8) and
(10), we have

W̃W̃′ = HwŨŨ′H′
w.

It follows from (16) that

ŨŨ′ = N−1G′X̃X̃′GN−1 = N−1G′KGN−1,

which leads to
W̃W̃′ = HwN−1G′KGN−1H′

w.

Second, with the kernel trick, for c = 1, . . . , m, we have

d̃c = ‖x̃− ũc‖2 = x̃′x̃− 2x̃′ũc + ũ′cũc

= x̃′x̃− 2
nc

∑

yi∈Ic

x̃′x̃i +
1
n2

c

∑

yi,yj∈Ic

x̃j
′x̃i

= K(x,x)− 2
nc

∑

yi∈Ic

K(x,xj) +
1
n2

c

∑

yi,yj∈Ic

K(xi,xj),

and hence,
d̃c − d̃0c = d̃c − w̃′

cw̃c, c = 1, . . . , m. (22)

We now summarize the KSCA procedure in Algorithm 4. We can see that W̃, d̃ and d̃0

are computed by using K instead of X̃. Moreover, in order to obtain W̃, we are only required
to perform SVD on the m×m matrix HwN−1G′KGN−1H′

w. The computational complexity
is O(m3). However, the complexity of KSIR (or KFDA) is larger than O(n2(m + 2n/3))
because it needs to perform QR decomposition on the (n+m)×n matrix Z.

It is worth noting that there exists a one-to-one relationship between an observation in
the original input space Rp and a weight vector in the weight space Rq. Accordingly, the
weight vector ai (or ãi) may then be used as a new feature for xi. More specifically, we
form a new set of training data {ai,yi}n

i=1 or {ãi,yi}n
i=1. In the regression setting, the new

training set is subsequently used to train any suitable regression model. In the classification
setting, one commonly uses a nearest mean classifier to assign a label to x, namely,

y = arg min
j
{‖a− ωj‖, j = 1, . . . , m}

where ωj is the jth column of A′GN−1 with A = [a1, . . . ,an]′. Alternatively, we may also
use {ai,yi}n

i=1 or {ãi,yi}n
i=1 to train other kernel-based classifiers such as a support vector

machine (SVM). Figure 1 illustrates the whole procedure for classification purpose.
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Algorithm 4 KSCA algorithm
1: procedure KSCA({xi, yi}n

i=1, m, x, “kernel function”)
2: Divide equally the range of yi’s into m slices, I1, . . . , Im, and assign the indicator

matrix G (n×m). Let nc be the cardinality of Ic and N = diag(n1, . . . , nm).
3: Calculate K = [K(xi,xj)]ni,j=1, kx =

(
K(x,x1), . . . , K(x,xn)

)′ and Ψ̃ =
HwN−1G′KGN−1H′

w.
4: Perform eigen-decomposition on Ψ̃ as Ψ̃ = Q̃1Λ̃1Q̃′

1 and let W̃ = Q̃1Λ̃
1/2
1 .

5: Compute d̃− d̃0 from (22), and then ã from (21) for given x.
6: Return ã as the low-dimensional representation of x.
7: end procedure

Input Space

p
Rx∈

Feature Space

F∈x̂

Weight Space

q
Ra∈

Class Label

{ }mt ,,2,1 L∈

Nearest Mean  or  SVM Classifiers

Kernel Approach

SIR or SCA

Figure 1: Schematic diagram of using weight vectors in classification.
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Table 1: Summary of the Datasets: n—the size of the training set; k—the size of the test
set; p—the dimension of the input vector; m—the number of slices (or classes);
q—the dimensionality after reduction.

Datasets n k p m q

AT&T 200 200 112×92 40 39
Yale face 90 75 128×128 15 14
2K-image 1328 569 144 14 13
USPS 4649 4649 256 10 9

5. Experiments

In this section, we illustrate the applications of SCA and KSCA for classification, and
compare them with PCA and KPCA as well as SIR and KSIR. For the kernel methods,
we adopt the Gaussian RBF kernel K(xi,xj) = exp

(− ‖xi−xj‖2
β2

)
and the Laplacian kernel

K(xi,xj) = exp
(−∑p

l=1
|xil−xjl|

β

)
where β is taken as the product of a positive coefficient

ε and the average distance between slice means in the training data. We find that if the
value of ε is taken from the interval [0.5, 1.5], there is little influence on the algorithms. In
the following experiments, we set β = 0.9 and m, the number of slices, as the number of
classes. Table 1 gives a summary of the datasets that will be used.

5.1 Application to Face Recognition

Using the publicly available AT&T and Yale face image data sets, we compared SCA
(KSCA) with PCA (KPCA) and FDA (KFDA). We first used these methods for feature
transformation to generate a set of low-dimensional weight vectors. After that, the weight
vectors, acting as new feature vectors, were given to both a nearest mean (NM) classi-
fier and an SVM for training and testing. The AT&T data set contains 400 images of 40
subjects, with variations mainly due to the scale and pose of the subjects. Each image
consists of 112×92 pixels, i.e., p = 112×92. The Yale data set contains 165 images of 15
subjects, with variations mainly due to facial expression and lighting. Each image consists
of 128×128 pixels, i.e., p = 128×128. Each subject is considered as a class (or slice). Now
we let the number of classes equal to the number of slices, i.e., m = 40 for the AT&T data
set and m = 15 for the Yale data set. Notice that the SIR and PCA methods were not
directly performed, because p is too high. Instead, we regard PCA and FDA as special
cases of KPCA and KFDA, respectively, with the linear kernel. In this case, PCA and FDA
are called Eigenface (Turk and Pentland, 1991) and Fisherface (Belhumeur et al., 1997),
respectively, in the face recognition literature.

We randomly split the images for each subject into two subsets, one for training and
the other for testing. The classification accuracies, based on NM and SVM, were estimated
from 50 random splits. For the AT&T data set, 200 of the 400 images were used for training
and the remaining 200 for testing. For the Yale data set, 90 of the 165 images were used
for training and the remaining 75 for testing. The split was randomly repeated 50 times
and the classification accuracies were then averaged. All the experiments were performed
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Table 2: Recognition results for the AT&T database using nearest mean classifier.

Method
Linear Kernel Gaussian Kernel

Accuracy (%) CPU time (s) Accuracy (%) CPU time (s)
KSCA 90.90 (±2.36) 0.0107 92.96 (±2.00) 0.0140
KFDA 88.64 (±2.80) 0.1324 93.38 (±2.69) 0.1502
KPCA 89.39 (±2.61) 0.1088 85.65 (±2.68) 0.4676

Table 3: Recognition results for the Yale database using nearest mean classifier.

Method
Linear Kernel Gaussian Kernel

Accuracy (%) CPU time (s) Accuracy (%) CPU time (s)
KSCA 82.91 (±3.25) 0.0032 85.56 (±3.80) 0.0040
KFDA 94.75 (±2.45) 0.0168 95.79 (±3.65) 0.0206
KPCA 78.13 (±3.44) 0.0158 78.49 (±3.75) 0.0187

in Matlab on a Pentium 4 PC with 2.66GHz CPU and 1.50GB of RAM. We used the SVM-
light (http://www.kernel-machines.org/) package with one-per-class (OPC) ensemble
strategy for SVM and set the parameter C = 1000.

The computational complexities of both (K)PCA and (K)FDA are O(n3), i.e., O(2003)
for AT&T and O(903) for Yale. On the other hand, the complexity of (K)SCA is O(m3),
i.e., O(403) for AT&T and O(153) for Yale. Therefore, (K)SCA is more efficient than
(K)PCA and (K)SIR. Tables 2 and 3 show the CPU time of different dimension reduction
(DR) methods for the AT&T and Yale data sets. Since these methods all take the same
amount of time to compute the kernel matrix, we do not include the time of computing
the kernel matrix in our results. After obtaining the new features with (K)PCA, (K)FDA
and (K)SCA, we used NM and SVM for the classification target. When a DR method with
the linear kernel was used, we performed a Gaussian-kernel SVM. Otherwise, we performed
a linear-kernel SVM because the Gaussian kernel was already used in KPCA, KFDA and
KSCA. At the same time, we implemented a Gaussian-kernel SVM on the original face data
sets for baseline comparison. Tables 2, 3 and 4 list the classification accuracies and the
corresponding standard deviations. From the results, the KFDA classifier often achieves
the lowest recognition error rate. However, it takes a long time. The KSCA classifier ranks
second in terms of the error rate, but it requires much less processing time. KSCA and
KFDA utilize the class label information during training, whereas KPCA does not. This is
the main reason why KSCA and KFDA outperform KPCA.

5.2 Application to Image Classification

We applied our methods to two relatively large image data sets: 2K-image data set and
USPS data set. The 2K-image data set was collected from the Corel Image CDs. This data
set contains 2K, or exactly 1897, representative images from fourteen categories (m=14):
architecture, bears, clouds, elephants, fabrics, fireworks, flowers, food, landscape, people,
textures, tigers, tools and waves. Each image is represented by a vector of 144 dimensions
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Table 4: Classification accuracies for both the AT&T and Yale data sets. “RBF” (“LIN”)
means that the Gaussian (linear) kernel is used in DR or SVM.

DR method + Classifier AT&T Yale
Original Data + RBF-SVM 96.27 (±1.78) 94.49 (±2.42)

LIN-KPCA + RBF-SVM 96.07 (±1.71) 81.42 (±3.90)
LIN-KFDA + RBF-SVM 88.03 (±2.78) 95.29 (±2.50)
LIN-KSCA + RBF-SVM 96.50 (±1.38) 86.31 (±3.11)
RBF-KPCA + LIN-SVM 93.27 (±1.84) 83.87 (±4.15)
RBF-KFDA + LIN-SVM 93.45 (±2.08) 96.27 (±2.70)
RBF-KSCA + LIN-SVM 95.25 (±)1.54 87.24 (±3.55)

including color, texture, and shape features (Tong and Chang, 2001). The experimental
results were evaluated over 30 random splits of the data set, with 70% for training and 30%
for testing. The USPS data set contains 9298 handwritten digits from 0 to 9. Each digit
consists of 16×16 pixels. We treat each digit as a class. In this case, m = 10 and p = 256.
The experimental results were also evaluated over 30 random splits of the data set, with
50% for training and 50% for testing.

We first performed PCA, FDA (SIR) and DCA (SCA) to reduce the dimensionality of
the image from 144 (256) to 13 (9) due to q = m−1. Second, we applied the NM and SVM
classifiers to the reduced images. In SVM, we used the Laplacian kernel for the 2K image
data and the Gaussian kernel for the USPS data. Tables 5 and 6 show the CPU time of
running these methods for dimension reduction, and the classification accuracies for NM and
SVM. The computational time that DCA needs is the lowest. For the 2K image data, we
used GSVD to solve the generalized eigenvalue problem (2) because the sample covariance
matrix Σ̂t is singular. The FDA-based SVM classifier achieves the highest classification
accuracy, while the performance of the SCA-based SVM is comparatively better. We also
applied KPCA, KFDA and KDCA to USPS with the Laplacian kernel for the 2K image
data and the RBF kernel for the USPS data. For the USPS data set, since n is too large, we
instead ran these methods in Matlab on an 8 × Sun Microsystems Ultra-SPARC III 900MHz
CPU, each with 8MB E-Cache and 8GB RAM. It took 6.1982×103 and 1.0632×104 seconds
to run KFDA and KPCA, respectively, one time. However, it only took about 4 seconds to
implement KDCA one time.

6. Conclusion

In this paper, we proposed the sliced coordinate analysis method and its kernel version
to reduce the dimension of the input vector in regression and classification problems. For
many image and video applications, FDA and kernel FDA are computationally infeasible
if the size of the image set is large and/or the resolution of the image is high. However,
our proposed SCA and KSCA methods can still proceed because the number of classes is
typically much smaller than the size of the image set or the resolution of the image. For
unsupervised learning problems, we can first cluster the data into several classes so that our
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Table 5: Experimental results for the 2K image data set. “LAP-SVM” means that the
Laplacian kernel is used in SVM.

Method CPU time (s)
Accuracy (%)

NM LAP-SVM

PCA 0.6813 57.78 (±0.43) 63.87 (±0.30)
FDA 4.0062 71.80 (±0.81) 72.82 (±0.35)
DCA 0.0344 62.89 (±0.42) 67.32 (±0.32)

Table 6: Experimental results for the USPS data set. “RBF-SVM” means that the RBF
kernel is used in SVM.

Method CPU time (s)
Accuracy (%)

NM RBF-SVM

PCA 8.2901 78.50 (±0.43) 91.41 (±0.30)
FDA 22.5109 89.90 (±0.81) 92.02 (±0.35)
DCA 0.2276 84.08 (±0.42) 92.64 (±0.32)

methods can still work well. Therefore, we expect our methods to have many applications
in machine learning and pattern recognition, especially for kernel methods applied to data
sets of large sizes.
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