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Abstract

For a specific set of features chosen for representing images, the performance of a content-based image retrieval (CBIR) system
depends critically on the similarity or dissimilarity measure used. Instead of manually choosing a distance function in advance, a more
promising approach is to learn a good distance function from data automatically. In this paper, we propose a kernel approach to
improve the retrieval performance of CBIR systems by learning a distance metric based on pairwise constraints between images as super-
visory information. Unlike most existing metric learning methods which learn a Mahalanobis metric corresponding to performing linear
transformation in the original image space, we define the transformation in the kernel-induced feature space which is nonlinearly related
to the image space. Experiments performed on two real-world image databases show that our method not only improves the retrieval
performance of Euclidean distance without distance learning, but it also outperforms other distance learning methods significantly
due to its higher flexibility in metric learning.
� 2006 Elsevier B.V. All rights reserved.
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E1. Introduction

1.1. Content-based image retrieval

With the emergence and increased popularity of the
World Wide Web (WWW) over the past decade, retrieval
of images based on content, often referred to as content-

based image retrieval (CBIR), has gained a lot of research
interests [1]. On the WWW where many images can be
found, it is convenient to search for the target images in
possibly very large image databases by presenting query
images as examples. Thus, more and more Web search
engines (e.g., Yahoo) are now equipped with CBIR facili-
ties for retrieving images on a query-by-image-example
basis.

The two determining factors for image retrieval perfor-
mance are the features used to represent the images and
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the distance function used to measure the similarity
between a query image and the images in the database.
For a specific feature representation chosen, the retrieval
performance depends critically on the similarity measure

used. Let f i ¼ ðf i
1; f

i
2; . . . ; f i

nÞ denote a feature vector repre-
senting image i, where n is the number of features. For
example, fi represents a color histogram with n being the
number of histogram bins. There exist many methods for
measuring the distance between feature vectors. Swain
and Ballard [2] proposed the intersection distance measure

d\ ¼
Pn

k¼1 minðf i
k ; f

j
k Þ, which has the same ordinal proper-

ties as the L1 norm (distance). In [3], the distance between
two histograms is defined as the weighted form

dWðf i; fjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf i � fjÞTWðf i � fjÞ

q
, where each weight wij

in W denotes the similarity between features i and j. Note
that this distance measure includes the Mahalanobis dis-
tance as a special case. Other commonly used distance
functions for color histograms include the Minkowski dis-

tance drðf i; fjÞ ¼ ð
Pn

k¼1jf i
k � f j

k j
rÞ1=r. However, this distance

metric may lead to high false negative rate [4].
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Unfortunately, the effectiveness of these distance func-
tions is rather limited. Instead of choosing a distance func-
tion in advance, a more promising approach is to learn a
good distance function from data automatically. Recently,
this challenging new direction has aroused great interest in
the research community.

1.2. Related work

Relevance feedback has been used in the traditional
information retrieval community to improve the perfor-
mance of information retrieval systems based on user
feedback. This interactive approach has also emerged
as a popular approach in CBIR [5]. The user is provided
with the option of labeling (some of the) previously
retrieved images as either relevant or irrelevant. Based
on this feedback information, the CBIR system can iter-
atively refine the retrieval results by learning a more
appropriate (dis)similarity measure. For example, rele-
vance feedback can be used to modify the weights in
the weighted Euclidean distance [5] or the generalized
Euclidean distance [6]. The same approach has also been
applied to a correlation-based metric [7,8], which usually
outperforms Euclidean-based measures. In [9], the
authors presented an approach to generate an adaptive
quasiconformal kernel distance metric based on relevance
feedback. Dong and Bhanu [10] proposed a new semi-su-
pervised expectation-maximization (EM) algorithm for
image retrieval tasks, with the image distribution in the
feature space modeled as Gaussian mixtures. Pseudo-
feedback strategy based on peer indexing was proposed
recently to optimize the similarity metric and the initial
query vectors [11], where the global and personal image
peer indexes are learned interactively and incrementally
from user feedback information. Some recent work
makes use of the manifold structure of image data in
the feature space for image retrieval [12,13]. Other meth-
ods include biased discriminant analysis [14], support
vector machine (SVM) active learning [15–17], boosting
methods [18], and so on.

In the machine learning literature, supervisory infor-
mation for semi-supervised distance learning usually
takes the form of limited labeled data or pairwise similar-

ity or dissimilarity constraints. The latter type of informa-
tion is weaker in the sense that pairwise constraints can
be derived from labeled data but not vice versa. Rele-
vance feedback, which has been commonly used in
CBIR, may be used to obtain the pairwise constraints.
Recently, some machine learning researchers have pro-
posed different metric learning methods for semi-super-
vised clustering with pairwise similarity or dissimilarity
side information [19–22]. Most of these methods try to
learn a global Mahalanobis metric corresponding to lin-
ear transformation in the original image space [19,20,22].
In particular, an efficient, noniterative algorithm called
relevance component analysis (RCA) [19,20] has been
used to improve image retrieval performance in CBIR
E
D

P
R

O
O

F

tasks. This work was later extended in [19] by incorpo-
rating both similarity and dissimilarity constraints into
the EM algorithm for model-based clustering based on
Gaussian mixture models. More recently, Hertz et al.
[23,24] proposed a nonmetric distance function learning
algorithm called DistBoost by boosting the hypothesis
over the product space with Gaussian mixture models
as weak learners. Using DistBoost, they demonstrated
very good image retrieval results in CBIR tasks.

Most existing systems only make use of relevance feed-
back within a single query session. More recently, some
methods have been proposed for the so-called long-term

learning by accumulating relevance feedback from multiple
query sessions which possibly involve different users
[25,12,13,26]. However, [12,13] are based on the assump-
tion that the feature vectors representing the images form
a Riemannian manifold in the feature space. Unfortunate-
ly, this assumption may not hold in real-world image dat-
abases. Moreover, the log-based relevance feedback
method [26] is expected to encounter the scale-up problem
as the number of relevance feedback log sessions increases.

1.3. This paper

Metric learning based on pairwise constraints can be
categorized into linear and nonlinear methods. Most
existing metric learning methods learn a Mahalanobis
metric corresponding to performing linear transformation
in the original image space. However, for CBIR tasks,
the original image space is highly nonlinear due to high
variability of the image content and style. In this paper,
we define the transformation in the kernel-induced fea-
ture space which is nonlinearly related to the image
space. The transformation is then learned based on side
information in the form of pairwise (dis)similarity con-
straints. Moreover, to address the efficiency problem
for long-term learning, we boost the image retrieval per-
formance by adapting the distance metric in a stepwise
manner based on relevance feedback.

Our kernel-based distance metric learning method per-
forms kernel PCA on the whole data set, followed by met-
ric learning in the feature space. It does not suffer from the
small sample size problem encountered by traditional Fish-
er discriminant analysis methods. Therefore, our method is
significantly different from many existing methods which
aim to address the small sample size problem in multimedia
information retrieval, e.g., the kernel-based biased discrim-
inant analysis method proposed in [14].

In Section 2, we will propose a kernel-based method for
nonlinear metric learning. In Section 3, we will describe
how this method can be used to improve the performance
of CBIR tasks. Our method will then be compared with
other distance learning methods based on two real-world
image databases. The stepwise kernel-based metric learning
algorithm that pays attention to both effectiveness and effi-
ciency will be presented in Section 4. Finally, some con-
cluding remarks will be given in the last section.
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2. Kernel-based metric learning

Kernel methods typically comprise two parts. The first
part maps (usually nonlinearly) the input points to a fea-
ture space often of much higher or even infinite dimension-
ality, and then the second part applies a relatively simple
(usually linear) method in the feature space. In this section,
we propose a two-step method which first uses kernel prin-
cipal component analysis (PCA) [27] to embed the input
points in terms of their nonlinear principal components
and then applies metric learning there.

2.1. Centering in the feature space

Let xi (i = 1, . . . ,n) be n points in the input space X .
Suppose we use a kernel function k̂ which induces a nonlin-
ear mapping /̂ from X to some feature space F .1 The ‘‘im-
ages’’ of the n points in F are /̂ðxiÞ (i = 1, . . . ,n), which in
general are not centered (i.e., their sample mean is not zero).
The corresponding kernel matrix K̂ ¼ ½k̂ðxi; xjÞ�n�n ¼
½h/̂ðxiÞ; /̂ðxjÞi�n�n.

We want to transform (simply by translating) the coor-
dinate system of F such that the new origin is at the sample
mean of the n points. As a result, we also convert the kernel
matrix K̂ to K = [k (xi,xj)]n·n = [Æ/ (xi),/ (xj)æ]n·n.

Let Y = [/ (x1), . . . ,/ (xn)]T, Ŷ ¼ ½/̂ðx1Þ; . . . ; /̂ðxnÞ�T
and H ¼ I� 1

n 11T, where 1 is a column vector of ones.
We can express Y ¼ HŶ. Hence,

K ¼ YYT ¼ HŶŶTH ¼ HK̂H: ð1Þ
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C2.2. Step 1: Kernel PCA

We briefly review the kernel PCA algorithm here. More
details can be found in [27].

We first apply the centering transform as in Eq. (1) to
get the kernel matrix K. We then solve the eigenvalue equa-
tion for K: Ka = na. Let n1 P � � �Pnp > 0 denote the p 6 n
positive eigenvalues of K and a1, . . . ,ap be the correspond-
ing eigenvectors. The embedding dimensionality p may be
set to the rank of K, or, more commonly, a smaller value
to ignore the insignificant dimensions with very small
eigenvalues, as in ordinary PCA.

For any input x, the kth principal component ~yk of / (x)
is given by

~yk ¼
1ffiffiffiffiffi
nk

p
Xn

i¼1

aikh/ðxiÞ;/ðxÞi: ð2Þ

If x = xj for some 1 6 j 6 n, i.e., x is one of the n original
points, then the kth principal component ~yjk of / (xj)
becomes

~yjk ¼
1ffiffiffiffiffi
nk

p ðKakÞj ¼
1ffiffiffiffiffi
nk

p ðnkakÞj ¼
ffiffiffiffiffi
nk

p
ajk; ð3Þ
252
253
2541 We use RBF kernel in this paper.
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which is proportional to the expansion coefficient ajk. Thus,
the input points xi (i = 1, . . . ,n) are now represented as ~yi

(i = 1, . . . ,n).

2.3. Step 2: Linear metric learning

To perform metric learning, we further transform ~yi

(i = 1, . . . ,n) by applying a linear transform A to each
point based on the pairwise similarity and dissimilarity
information in S and D, respectively.

We define a matrix CS based on S as follows:

CS ¼
1

jSj
X
ðxi ;xjÞ2S

~yi �
~yi þ ~yj

2

� �
~yi �

~yi þ ~yj

2

� �T
"

þ ~yj �
~yi þ ~yj

2

� �
~yj �

~yi þ ~yj

2

� �T
#

¼ 1

2jSj
X
ðxi ;xjÞ2S

ð~yi � ~yjÞð~yi � ~yjÞT; ð4Þ

where jSj denotes the number of similar pairs in S. Note
that this form is similar to that used in RCA [19] by treat-
ing each pair in S as a chunklet. This slight variation makes
it easier to extend the method to incorporate pairwise dis-
similarity constraints into metric learning, as illustrated
here. Similarly, we define a matrix CD based on D:

CD ¼
1

2jDj
X

ðxk ;xlÞ2D
ð~yk � ~ylÞð~yk � ~ylÞT; ð5Þ

where jDj denotes the number of similar pairs in D.
The linear transform A is defined as

A ¼ C
1
2
DC
�1

2
S : ð6Þ

Each point ~y, whether or not corresponding to one of the n
original points, is then transformed to z ¼ A~y ¼ C

1
2
DC
�1

2
S ~y.

The Euclidean metric in the transformed feature space thus
corresponds to a modified metric in the original space to
better characterize the implicit similarity relationships be-
tween data points.

3. Image retrieval experiments

In this section, we apply the kernel-based metric learn-
ing method to improve the retrieval performance of CBIR
tasks. We also compare the retrieval performance of this
method with other distance learning methods.

3.1. Image databases and feature representation

Our image retrieval experiments are based on two image
databases. One database is a subset of the Corel Photo
Gallery, which contains 1010 images belonging to 10 differ-
ent classes. The 10 classes include bear (122), butterfly
(109), cactus (58), dog (101), eagle (116), elephant (105),
horse (110), penguin (76), rose (98), and tiger (115). Anoth-
er database contains 547 images belonging to six classes
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that we downloaded from the Internet. The image classes
are manually defined based on high-level semantics.

We first represent the images in the HSV color space,
and then compute the color coherence vector (CCV) [28]
as the feature vector for each image, as was done in
[23,24]. Specifically, we quantize each image to 8 · 8 · 8
color bins, and then represent the image as a 1024-dimen-
sional CCV (a1,b1, . . . ,a512,b512)T, with ai and bi represent-
ing the numbers of coherent and noncoherent pixels,
respectively, in the ith color bin. The CCV representation
stores the number of coherent versus noncoherent pixels
with each color and gives finer distinctions than the use
of color histograms. Thus, it usually gives better image
retrieval results. For computational efficiency, we first
apply ordinary PCA to retain the 60 dominating principal
components before applying metric learning as described in
the previous section.

3.2. Comparative study

We want to compare the image retrieval performance of
the two-step kernel method with the baseline method of
using Euclidean distance without distance learning as well
as some other distance learning methods. In particular,
we consider two distance learning methods: Mahalanobis
distance learning with RCA and distance learning with
DistBoost.2 RCA makes use of the pairwise similarity con-
straints to learn a Mahalanobis distance, which essentially
assigns large weights to relevant components and low
weights to irrelevant components with relevance estimated
based on the connected components composed of similar
patterns. DistBoost, as discussed in Section 1.2, is a non-
metric distance learning method that makes use of the pair-
wise constraints and performs boosting. Since both
DistBoost and our kernel method can make use of dissim-
ilarity constraints in addition to similarity constraints, we
conduct experiments with and without such supervisory
information for the two methods. In summary, the follow-
ing four methods are included in our comparative study:

1. Euclidean distance without distance learning.
2. Mahalanobis distance learning with RCA.
3. Nonmetric distance learning with DistBoost (with and

without dissimilarity constraints).
4. Metric distance learning with our kernel method (with

and without dissimilarity constraints).

3.3. Performance measures

We use two performance measures in our comparative
study. The first one, based on precision and recall, is com-
monly used in information retrieval. The second one, used
354
355
356
357

2 The program code for RCA and DistBoost was obtained from the
authors of [19,24,20].
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in [23,24], is based on cumulative neighbor purity curves.
Cumulative neighbor purity measures the percentage of
correctly retrieved images in the k nearest neighbors of
the query image, averaged over all queries, with k up to
some value K (K = 30 in our experiments).

For each retrieval task, we compute the average per-
formance statistics over all queries of five randomly gen-
erated sets of similar and dissimilar image pairs. For
both databases, the number of similar image pairs is
set to 150, which is about 0.3% and 0.6%, respectively,
of the total number of possible image pairs in the dat-
abases. The pairs of similar images are randomly selected
based on the true class labels. The number of dissimilar
image pairs used in DistBoost and our kernel method is
also set to 150. For each set of similar and dissimilar
image pairs, we set the number of boosting iterations
in DistBoost to 50.

3.4. Experimental results

Fig. 1 shows the retrieval results on the first image data-
base based on both cumulative neighbor purity and preci-
sion/recall. We can see that metric learning with the two-
step kernel method significantly improves the retrieval per-
formance and outperforms other distance learning methods
especially with respect to the cumulative neighbor purity
measure. The retrieval results on the second image data-
base are shown in Fig. 2. Again, our kernel method signif-
icantly outperforms the other methods. For both
databases, using dissimilarity constraints in DistBoost
and the kernel method can improve the retrieval perfor-
mance slightly.

Some typical retrieval results on the first and second
databases are shown in Fig. 3(a) and (b), respectively.
For each query image, we show the retrieved images in
three rows, corresponding, from top to bottom, to the
use of Euclidean distance without distance learning and
distance learning with DistBoost and our kernel method
based on similarity and dissimilarity information. Each
row shows the seven nearest neighbors of the query
image with respect to the distance used, with dissimilarity
based on the distance increasing from left to right. The
query image is shown with a frame around it. Note that
the query image may not be the nearest neighbor using
the DistBoost method since it learns nonmetric distance
functions which, among other things, may not satisfy
d (x,x) = 0 and the triangle inequality condition. We
can see that both DistBoost and our kernel method
improve the retrieval performance, with our method out-
performing DistBoost slightly.

While the experiments above use the images in the dat-
abases as query images, another scenario that exists in
some CBIR systems is to use query images that are not
in the image databases. We have also performed some
experiments on the first database under this setting, with
a separate set of query images that are not used for distance
learning. We split the database into the training (70%) and
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and the latter serving as query images. Fig. 4 presents the
retrieval results, which show that the kernel-based metric
learning method still outperforms other methods.

3.5. Discussions

We have demonstrated the promising performance of
our kernel-based metric learning method for CBIR tasks.
Unlike other metric learning methods which learn a Maha-
lanobis metric corresponding to performing linear transfor-
mation in the original image space, we define the
transformation in the kernel-induced feature space which
is nonlinearly related to the image space. Metric learning
estimates a linear transformation in the higher-dimensional
feature space induced by the kernel used in kernel PCA.
Any query image, either inside or outside the image
database, is then mapped to the transformed feature space
where the Euclidean metric can capture better the similarity
relationships between patterns. Moreover, it is worthy to
note that our kernel-based metric learning method is very
efficient. In our experiments, it is more than 10 times faster
than DistBoost for the same retrieval tasks.

We want to investigate further on how practical it is
to incorporate distance learning into real-world CBIR
tasks. As discussed above, relevance feedback is com-
monly used in CBIR systems for improving the retrieval
performance [10,7,15,9,6,5,16,17,14]. The pairwise
(dis)similarity constraints used by the kernel method
can make better use of the relevance feedback from
users, not only from one specific query but also from
all previous ones. Specifically, similarity (dissimilarity)
constraints can be obtained from the relevance feedback,
with each relevant (irrelevant) image and the query
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image forming a similar (dissimilar) image pair. The set
of similar and dissimilar image pairs (or pairwise similar-
ity and dissimilarity constraints) is incrementally built up
as relevance feedback is collected from users. Thus, later
retrieval tasks can make use of an increasing set of sim-
ilar and dissimilar image pairs for metric learning. Fig. 5
gives a functional diagram that summarizes how metric
learning can be realized in CBIR systems.
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4. Stepwise metric learning for image retrieval

The kernel-based metric learning algorithm incorporates
pairwise constraints to perform metric learning. In the
experiments performed in Section 3, we accumulate the
similarity constraints over multiple query sessions before
applying metric learning. Experimental results show that
more pairwise constraints can lead to greater improvement.
However, this also implies higher computational demand.

4.1. Stepwise kernel-based metric learning

As a compromise, we can perform stepwise kernel-based
metric learning by incorporating the pairwise constraints in
reasonably small, incremental batches each of a certain size
x. Whenever the batch of newly collected pairwise con-
straints reaches this size, metric learning will be performed
with this batch to obtain a new metric. The batch of simi-
larity constraints is then discarded. This process will be
repeated continuously with the arrival of more relevance
feedback from users. In so doing, knowledge acquired from
relevance feedback in one session can be best utilized to
give long-term improvement in subsequent sessions. This
stepwise metric adaptation algorithm is summarized in
Fig. 6.

4.2. Evaluation on CBIR tasks

To evaluate the stepwise kernel-based metric learning
algorithm described above, we devise an automatic
evaluation scheme to simulate a typical CBIR system
U
N

C
O 453

454
455
456
457
458
459
460

Fig. 6. Stepwise kernel-based metric learning algorithm for boosting
image retrieval performance.
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with the relevance feedback mechanism implemented.
More specifically, for a prespecified maximum batch size
x, we randomly select x images from the database as
query images. In each query session based on one of
the x images, the system returns the top 20 images from
the database based on the current distance function,
which is Euclidean initially. Of these 20 images, five rel-
evant images are then randomly chosen, simulating the
relevance feedback process performed by a user.3 Our
kernel-based metric learning method is performed once
after every x sessions.

Fig. 7 shows the cumulative neighbor purity curves for
the retrieval results on the Corel image database based
on stepwise metric learning with different maximum batch
sizes x. As we can see, long-term metric learning based on
stepwise metric learning can result in continuous improve-
ment of retrieval performance. Moreover, to incorporate
the same amount of relevance feedback from users, it seems
more effective to use larger batch sizes. For example, after
incorporating 40 query sessions from the same starting
point, the final metric (metric4) of Fig. 7(a) is not as good
as that (metric2) of Fig. 7(b), which in turn is (slightly)
worse than that of Fig. 7(c). Thus, provided that the com-
putational resources permit, one should perform each met-
ric learning step using relevance feedback from more query
sessions.

5. Concluding remarks

In this paper, we have proposed an efficient kernel-
based distance metric learning method and demonstrated
its promising performance for CBIR tasks. Not only
does our method based on semi-supervised metric learn-
ing improve the retrieval performance of Euclidean dis-
tance without distance learning, it also outperforms
other distance learning methods significantly due to its
higher flexibility in metric learning. Moreover, unlike
most existing relevance feedback methods which only
improve the retrieval results within a single query
3 In real-world CBIR tasks, users intuitively select the most relevant
images from the returned (say top 20) images. The selected images are not
necessarily the nearest ones computed based on the (learned) distance
metric. To simulate real-world CBIR tasks, we use five randomly selected
images as relevance feedback from the user. In fact, for the purpose of
metric learning, selecting more ‘‘distant’’ yet relevant images as similar
pairs is even better, as the distance metric can be improved to a greater
extent in the subsequent metric learning process.
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Fig. 7. Retrieval results based on stepwise kernel-based metric learning
with different maximum batch sizes. (a) x = 10 sessions; (b) x = 20
sessions; (c) x = 40 sessions.
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session, we propose a stepwise metric learning algorithm
to boost the retrieval performance continuously by
accumulating relevance feedback collected over multiple
query sessions.
O
O

F

Despite its promising performance, there is still room to
further enhance our proposed method. In our kernel
method, the kernel PCA embedding step does not make
use of the supervisory information available. One potential
direction to pursue is to combine the two steps into one
using the kernel trick and reformulate the metric learning
problem as a kernel learning problem. Other possible
research directions include applying the idea of kernel-
based metric learning to other pattern recognition tasks.
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