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Abstract

In recent years, metric learning in the semi-
supervised setting has aroused a lot of research in-
terests. One type of semi-supervised metric learn-
ing utilizes supervisory information in the form
of pairwise similarity or dissimilarity constraints.
However, most methods proposed so far are either
limited to linear metric learning or unable to scale
up well with the data set size. In this paper, we
propose a nonlinear metric learning method based
on the kernel approach. By applying low-rank ap-
proximation to the kernel matrix, our method can
handle significantly larger data sets. Moreover, our
low-rank approximation scheme can naturally lead
to out-of-sample generalization. Experiments per-
formed on both artificial and real-world data show
very promising results.

1 Introduction

1.1 Semi-Supervised Learning
In supervised learning, we are given a training sample in the
form of input-output pairs. The learning task is to find a func-
tional relationship that maps any input to an output such that
disagreement with future input-output observations is mini-
mized. Classification and regression problems are the most
common supervised learning problems for discrete-valued
and continuous-valued outputs, respectively. In unsupervised
learning, we are given a training sample of objects with no
output values, with the aim of extracting some structure from
them to obtain a concise representation or to gain some un-
derstanding of the process that generated the data. Clustering,
density estimation, and novelty detection problems are com-
mon unsupervised learning problems.

Over the past decade or so, there has been growing inter-
est in exploring new learning problems between the super-
vised and unsupervised learning extremes. These methods
are generally referred to as semi-supervised learning meth-
ods, although there exist large variations in both the problem
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formulation and the approach to solve the problem. The semi-
supervised learning literature is too large to do a comprehen-
sive review here. Interested readers are referred to some good
surveys, e.g., [Zhu, 2006].

One way to categorize many, though not all, semi-
supervised learning methods is to consider the type of su-
pervisory information available for learning. Unlike unsu-
pervised learning tasks, supervisory information is available
in semi-supervised learning tasks. However, the information
is in a form that is weaker than that available in typical su-
pervised learning tasks. One type of (weak) supervisory in-
formation assumes that only part (usually a limited part) of
the training data are labeled. This scenario is commonly en-
countered in many real-world applications. One example is
the automatic classification of web pages into semantic cate-
gories. Since labeling web pages is very labor-intensive and
hence costly, unlabeled web pages are far more plentiful on
the web. It would be desirable if a classification algorithm
can take advantage of the unlabeled data in increasing the
classification accuracy. Many semi-supervised classification
methods [Zhu, 2006] belong to this category.

Another type of supervisory information is even weaker
in that it only assumes the existence of some pairwise con-
straints indicating similarity or dissimilarity relationships be-
tween training examples. In video indexing applications, for
example, temporal continuity in the data can be naturally used
to impose pairwise similarity constraints between successive
frames in video sequences. Another example is in proteomic
analysis, where protein-protein interactions can naturally be
represented as pairwise constraints for the study of proteins
encoded by the genes (e.g., Database of Interacting Pro-
teins (DIP), http://dip.doe-mbi.ucla.edu/). Yet
another example is the anti-spam problem. Recent studies
show that more than half of the e-mail in the Internet today
is spam, or unsolicited commercial e-mail. One recent ap-
proach to spam detection is based on the trustworthiness of
social networks [Boykin and Roychowdhury, 2005]. Such
social networks can naturally be represented as graphs with
edges between nodes representing pairwise relationships in
the social networks.

While supervisory information in the form of limited la-
beled data can be transformed into pairwise similarity and
dissimilarity constraints, inverse transformation is in general
not possible except for the special case of two-class problems.



In this sense, the second type of supervisory information is of
a weaker form and hence the corresponding learning problem
is more difficult to solve. The focus of our paper is on this
category of semi-supervised learning problems.

1.2 Semi-Supervised Metric Learning Based on
Pairwise Constraints

While many semi-supervised learning methods assume the
existence of limited labeled data [Zhu, 2006], there are much
fewer methods that can work with pairwise constraints only.
We survey the most representative methods in this subsection.

Very often, the pairwise constraints simply state whether
two examples belong to the same class or different classes.
[Wagstaff and Cardie, 2000] first used such pairwise infor-
mation for semi-supervised clustering tasks by modifying the
standard k-means clustering algorithm to take into account
the pairwise similarity and dissimilarity constraints. Exten-
sions have also been made to model-based clustering based
on the expectation-maximization (EM) algorithm for Gaus-
sian mixture models [Shental et al., 2004; Lu and Leen,
2005]. However, these methods do not explicitly learn a dis-
tance function but seek to satisfy the constraints, typically for
clustering tasks. Hence, they are sometimes referred to as
constraint-based clustering methods.

As a different category, some methods have been proposed
to learn a Mahalanobis metric or some other distance function
based on pairwise constraints. [Xing et al., 2003] formulated
a convex optimization problem with inequality constraints to
learn a Mahalanobis metric and demonstrated performance
improvement in a subsequent clustering task. Solving a simi-
lar problem to learn a Mahalanobis metric, the relevant com-
ponent analysis (RCA) algorithm [Bar-Hillel et al., 2003;
2005] was proposed as a simpler and more efficient algorithm
than that of [Xing et al., 2003]. However, RCA can make use
of similarity constraints only. [Hertz et al., 2004] proposed
a distance function learning method called DistBoost. How-
ever, there is no guarantee that the distance function learned
is a metric. [Bilenko et al., 2004] explored the possibility of
integrating constraint-based clustering and semi-supervised
clustering based on distance function learning. The distance
function learning methods reviewed above either learn a Ma-
halanobis metric that corresponds to linear transformation
only, or learn a distance function that is not a metric. In our
previous work [Chang and Yeung, 2004], we proposed a met-
ric learning method that corresponds to nonlinear transfor-
mation. While this method is more powerful than the linear
methods, the optimization problem is non-convex and hence
is more complicated to solve.

In this paper, we focus on the distance function learn-
ing approach because distance functions are central to many
learning models and algorithms. This also makes it easier to
achieve out-of-sample generalization. Moreover, we focus on
learning metrics because this allows us to formulate the met-
ric learning problem based on the kernel approach [Schölkopf
and Smola, 2002], which provides a disciplined, computa-
tionally appealing approach to nonlinear metric learning.

1.3 Organization of Paper
In Section 2, we propose a simple and efficient kernel-based
metric learning method based on pairwise similarity con-
straints. Like many kernel methods, a limitation of this
method is that it does not scale up well with the sample size.
In Section 3, we address the scalability issue by applying
low-rank approximation to the kernel matrix. This extended
method can also naturally give rise to out-of-sample gener-
alization, which is addressed in Section 4. We present some
experimental results in Section 5 to demonstrate the effec-
tiveness of our metric learning algorithm. Finally, Section 6
concludes the paper.

2 Kernel-Based Metric Learning
2.1 Problem Setup
Let {xi}n

i=1 be a set of n data points in some input space X .
Suppose we have a Mercer kernel k̂ which induces a nonlin-
ear feature map φ̂ from X to some reproducing kernel Hilbert
spaceH [Schölkopf and Smola, 2002]. The corresponding set
of feature vectors in H is {φ̂(xi)}n

i=1 and the kernel matrix is
K̂ = [k̂(xi,xj)]n×n = [〈φ̂(xi), φ̂(xj)〉]n×n. Choices for k̂
include the Gaussian RBF kernel and the polynomial kernel.
We apply a centering transform such that the feature vectors
in H have zero mean. The resulting kernel matrix K can be
computed as K = [k(xi,xj)]n×n = [〈φ(xi), φ(xj)〉]n×n =
HK̂H, where the centering matrix H = I − (1/n)11T with
I being the n×n identity matrix and 1 being the n×1 vector
of ones.

We consider a type of semi-supervised metric learning in
which the supervisory information is given in the form of
pairwise similarity constraints.1 Specifically, we are given
a set of point pairs, which is a subset of X × X , as S =
{(xi,xj) | xi and xj belong to the same class}. Our goal is to
make use of S to learn a better metric through modifying the
kernel so that the performance of some subsequent task (e.g.,
clustering, classification) based on the metric is improved af-
ter kernel learning.

2.2 Kernel Learning
Since the kernel matrix K is symmetric and positive semi-
definite, we can express it as K =

∑p
r=1 λrvrvT

r =∑p
r=1 λrKr, where λ1 ≥ · · · ≥ λp > 0 are the p ≤ n

positive eigenvalues of K, v1, . . . ,vp are the corresponding
normalized eigenvectors, and Kr = vrvT

r .
We consider a restricted form of kernel matrix learning

by modifying K through changing the λ r’s while keep-
ing all Kr’s fixed. To ensure that the eigenvalues are
nonnegative, we rewrite K as Kβ = [kβ(xi,xj)]n×n =
[〈φβ(xi), φβ(xj)〉]n×n =

∑p
r=1 β2

rKr, which represents
a family of kernel matrices parameterized by β =
(β1, . . . , βp)T .

1As we will see later in the formulation of the optimization prob-
lem for kernel learning, these constraints are “soft” constraints rather
than “hard” constraints in that they are only preferred, not enforced.
This makes it easy to handle noisy constraints, i.e., erroneous super-
visory information, if we so wish.



We perform kernel learning such that the mean squared Eu-
clidean distance induced by Kβ between feature vectors in H
corresponding to point pairs in S is reduced. Thus the crite-
rion function for optimization is

JS(β)

=
1
|S|

∑
(xi,xj)∈S

[(Kβ)ii + (Kβ)jj − 2(Kβ)ij ]

=
p∑

r=1

β2
r

⎡
⎣ 1
|S|

∑
(xi,xj)∈S

(bi − bj)T Kr(bi − bj)

⎤
⎦

= βTDSβ, (1)

where bi is the ith column of the p × p identity matrix2 and
DS is a p × p diagonal matrix with diagonal entries

(DS)rr =
1
|S|

∑
(xi,xj)∈S

(bi − bj)T Kr(bi − bj)

=
1
|S|

∑
(xi,xj)∈S

[(bi − bj)T vr]2 ≥ 0. (2)

To prevent β from degenerating to the zero vector 0 and
to eliminate the scaling factor, we minimize the convex func-
tion JS(β) subject to the linear constraint 1T β = c for some
constant c > 0. This is a simple convex optimization prob-
lem with a quadratic objective function and a linear equality
constraint. We introduce a Lagrange multiplier ρ to minimize
the following Lagrangian:

JS(β, ρ) = JS(β) + ρ(c − 1T β). (3)

The optimization problem can be solved easily to give the
optimal value of β as the following closed-form solution:

β =
cD−1

S 1
1TD−1

S 1
. (4)

Note that D−1
S exists as long as all the diagonal entries of

DS are positive, which is usually true.3 We set the constant
c =

∑p
r=1

√
λr.

3 Scalable Kernel Learning

The kernel learning method described above requires per-
forming eigendecomposition on K. In case n is very large
and hence K is a large matrix, operations such as eigende-
composition on K are computationally demanding. In this
section, we apply low-rank approximation to extend the ker-
nel learning method so that it scales up well with n.

2This indicator variable will be “overloaded” later to refer to a
column of any identity matrix whose size is clear from the context.

3In case DS is really singular (though a rare case), a common
way to make it invertible is to add a term εI to DS where ε is a
small positive constant.

3.1 Low-Rank Approximation
We apply low-rank approximation to approximate K by an-
other n × n symmetric and positive semi-definite matrix K̃:

K � K̃ = WLWT , (5)

where W ∈ R
n×m is an n × m matrix and L ∈ R

m×m is
an m × m symmetric and positive semi-definite matrix, with
m 	 n.

There are different ways to construct L for low-rank ap-
proximation. We consider one way which constructs L us-
ing a subset of the n data points. We refer to these points as
landmarks [de Silva and Tenenbaum, 2003; Weinberger et al.,
2005; Silva et al., 2006]. Without loss of generality, we as-
sume that the n points are ordered in such a way that the first
m points form the set of landmarks {xi}m

i=1. We should en-
sure that all points involved in S are chosen as landmarks.
Other landmarks are randomly sampled from all the data
points. Similar to K in the previous section, L is obtained
here by applying the centering transform to L̂, as L = HL̂H,
where L̂ = [k̂(xi,xj)]m×m = [〈φ̂(xi), φ̂(xj)〉]m×m is the
upper-left m × m submatrix of K̂.

We apply eigendecomposition on L and express it as

L =
q∑

r=1

µrαrα
T
r = VαDµVT

α, (6)

where µ1 ≥ · · · ≥ µq > 0 are the q ≤ m positive eigenvalues
of L, α1, . . . , αq are the corresponding normalized eigenvec-
tors, Dµ = diag(µ1, . . . , µq), and Vα = [α1, . . . , αq]. Sub-
stituting (6) into (5), we can rewrite K̃ as K̃ =

∑q
r=1 µrK̃r,

where K̃r = (Wαr)(Wαr)T .

3.2 Kernel Learning
We apply low-rank approximation to devise a scalable kernel
learning algorithm which can be seen as an extension of the
algorithm described in Section 2. We use K̃ to approximate
K and define the following parameterized family of kernel
matrices: K̃β =

∑q
r=1 β2

rK̃r. Note, however, that β is now
a q × 1 vector rather than a p × 1 vector.

The optimal value of β has the same form as (4), except
that the constant c is set to

∑q
r=1

√
µr and DS is now a q× q

diagonal matrix with diagonal entries

(DS)rr =
1
|S|

∑
(xi,xj)∈S

[(bi − bj)T (Wvr)]2 ≥ 0. (7)

3.3 Computing the Embedding Weights
A question that remains to be answered is how to obtain W
for low-rank approximation. We use a method that is similar
to locally linear embedding (LLE) [Roweis and Saul, 2000;
Saul and Roweis, 2003], with two differences. First, we only
use the first part of LLE to obtain the weights for locally linear
fitting. Second, we perform locally linear fitting in the kernel-
induced feature space H rather than the input space X .

Let W = [wij ]n×m and wi = (wi1, . . . , wim)T . If xi is a
landmark, i.e., 1 ≤ i ≤ m, then

wij =
{

1 i = j
0 otherwise. (8)



If xi is not a landmark, then we minimize the following func-
tion to obtain wi:

E(wi) =
∥∥∥φ(xi) −

∑
φ(xj)∈Ni

wijφ(xj)
∥∥∥2

, (9)

where Ni is the set of K nearest landmarks of φ(xi) in H,
subject to the constraints

∑
φ(xj)∈Ni

wij = 1Twi = 1 and
wij = 0 for all φ(xj) 
∈ Ni. We can rewrite E(wi) as

E(wi) =
∑

φ(xj),φ(xk)∈Ni

wijwik(φ(xi) − φ(xj))T ·

(φ(xi) − φ(xk))

= wT
i Giwi, (10)

where

Gi = [k(xi,xi) + k(xj ,xk) − k(xi,xj) − k(xi,xk)]K×K

(11)
is the local Gram matrix of xi in H.

To prevent wi from degenerating to 0, we minimize E(wi)
subject to the constraints

∑
φ(xj)∈Ni

wij = 1Twi = 1 and
wij = 0 for all φ(xj) 
∈ Ni. As above for the kernel learn-
ing problem, we solve a convex optimization problem with a
quadratic objective function and a linear equality constraint.
The Lagrangian with a Lagrange multiplier α is as follows:

L(wi, α) = wT
i Giwi + α(1 − 1Twi). (12)

The closed-form solution for this optimization problem is
given by wi = (G−1

i 1)/(1TG−1
i 1) if G−1

i exists.4

Instead of performing matrix inversion, a more efficient
way of finding the solution is to solve the linear system of
equations Giŵi = 1 for ŵi and then compute wi as wi =
ŵi/(1T ŵi) to ensure that the equality constraint 1Twi = 1
is satisfied.

We assume above that the neighborhood relationships be-
tween points in H and the local Gram matrices remain fixed
during the kernel learning process. A simple extension of this
basic algorithm is to repeat the above procedure iteratively
using the learned kernel at each iteration. Thus the basic al-
gorithm is just a special case of this iterative extension when
the number of iterations is equal to one.

4 Out-of-Sample Generalization
The exact form of out-of-sample generalization depends on
the operation we want to perform. For example, the n given
points are first clustered into C ≥ 2 classes after kernel learn-
ing, and then a new data point x is classified into one of the
C classes. We are interested in the case where both the clus-
tering of the n points and the classification of new points are
based on the same Euclidean metric in H.

The key idea of our out-of-sample generalization scheme
rests on the observation that kernel principal component anal-
ysis (KPCA) [Schölkopf et al., 1998] can be performed on
{xi}n

i=1 to obtain an embedding in a q-dimensional subspace

4Similar to DS above, we may add εI to make sure that Gi is
invertible.

Y of H, so that the non-landmark points {x i}n
i=m+1 and any

out-of-sample point x can be embedded into Y in the same
way.

Let {u1, . . . ,uq} be an orthonormal basis with each ur ∈
H being a unit vector along the direction of the rth prin-
cipal component. We define U = [u1, . . . ,uq]. Then
each landmark xi (i = 1, . . . , m) can be embedded into
Y to give a q-dimensional vector yi = UT φ(xi). Since
ur = 1√

µr

∑m
j=1 αjrφ(xj), we can express yi as yi =

D−1/2
µ VT

αLbi = D1/2
µ VT

αbi. Let Ym = [y1, . . . ,ym]. So

Ym = D1/2
µ VT

α.
For the non-landmark points {xi}n

i=m+1, from (9), we use

φ̃(xi) =
∑

φ(xj)∈Ni
wijφ(xj) to approximate φ(xi) and ỹi

to denote the embedding of φ̃(xi) in Y . Thus we have

ỹi = UT φ̃(xi) = YmWTbi = D1/2
µ VT

αWT bi. (13)
Similarly, for any out-of-sample example x, we use

φ̃(x) =
∑

φ(xj)∈Ni
wjφ(xj) to approximate φ(x) and ỹ to

denote the embedding of φ̃(x) in Y . The embedding weights
w = (w1, . . . , wm)T can be determined as in Section 3.3.
Similar to the non-landmark points {xi}n

i=m+1, we can ob-
tain

ỹ = D1/2
µ VT

αw. (14)
Based on (13) and (14), the squared Euclidean distance be-

tween ỹi and ỹ in Y before kernel learning can be expressed
as

d2(xi,x) = ‖ỹi − ỹ‖2

= (bT
i W − wT )VαDµVT

α(WTbi − w)

= (bT
i W − wT )L(WT bi − w). (15)

The squared Euclidean distance after kernel learning is

d2
β(xi,x) = (bT

i W − wT )VαDβVT
α(WT bi − w), (16)

where Dβ = diag(β2
1 , . . . , β2

q ).

5 Experimental Results
In this section, we present some experiments we have per-
formed based on both artificial and real-world data.

5.1 Experimental Setup
We compare two versions of our kernel-based metric learning
method described in Sections 2 and 3 with RCA [Bar-Hillel et
al., 2003; 2005], which is a promising linear metric learning
method that usually performs equally well as other computa-
tionally more demanding methods. For baseline comparison,
we also include two metrics without metric learning. They
are the Euclidean metric in the input space and the Euclidean
metric in the feature space induced by a Gaussian RBF ker-
nel.

For each data set, we randomly generate 10 differentS sets.
For small data sets, we can learn Kβ without low-rank ap-
proximation. For large data sets, in addition to the data points
involved in S, we also randomly select some other points as
landmarks for learning K̃β. We use the iterative extension
of the scalable kernel learning algorithm with the number of
iterations equal to 3. We also measure the change in metric
learning performance as the number of landmarks increases.
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Figure 1: XOR illustration. (a) input data and similarity constraints; (b) new data points; (c) RCA; (d) RBF; (e) K β;
(f) K̃β (m = 40).

5.2 An Illustrative Example
Figure 1 uses the XOR data set to compare the performance
of different metrics, some with metric learning. Figure 1(a)
shows 360 data points in the input space. The points with
the same color and mark belong to the same class. The ran-
domly generated point pairs corresponding to the similarity
constraints in S are shown in solid lines. Figure 1(b) shows
40 new data points in the input space. The results obtained by
RCA, RBF kernel and two versions of our method are shown
in Figure 1(c)–(f). RCA performs metric learning directly in
the input space, which can be generalized to new data using
the learned linear transformation. For the kernel methods,
we apply KPCA using the (learned) kernel matrix to embed
the data points to a 2-dimensional space, as shown in Fig-
ure 1(d)–(f). New data points can be embedded using the
generalization method described in Section 4. As expected,
RCA does not perform satisfactorily for the XOR data set
since it can only perform linear transformation. On the other
hand, our kernel-based metric learning method can group the
points according to their class membership. The result of the
scalable kernel learning method with low-rank approximation
based on 40 landmarks is almost as good as that of the basic
algorithm based on all 400 data points. Moreover, the result
on embedding of new data points verifies the effectiveness of
our out-of-sample generalization method.

5.3 Quantitative Performance Comparison
Let {yi}n

i=1 be the set of true class labels of the n data points.
We define the following performance measure:

J =
db

dw

, (17)

where db = (1/nb)
∑

yi �=yj
‖xi − xj‖ is the mean between-

class distance with nb being the number of point pairs with
different class labels, and dw = (1/nw)

∑
yi=yj

‖xi −xj‖ is
the mean within-class distance with nw being the number of
point pairs with the same class label. Note that J is closely re-
lated to the optimization criterion JS in (1), except that JS is
defined for the labeled data (i.e., data involved in the pairwise
constraints) only while J is for all data assuming the exis-
tence of true class labels. For kernel methods, we use φ(xi)
or φ̃(xi) in place of xi and apply the kernel trick to compute
the mean distances and hence J . A larger value of J corre-
sponds to a better metric due to its higher class separability.

We first perform some experiments on a much larger XOR
data set with 8,000 data points. We randomly select 50 sim-
ilarity constraints to form S and measure the metric learning
performance in terms of the J value for an increasing number
of landmarks. Table 1 shows the results for different metrics.
For the metric learning methods (i.e., RCA and our method),
we show for each trial the mean (upper) and standard devia-
tion (lower) over 10 random runs corresponding to different
S sets. From the results, we can see that our method outper-
forms the other methods significantly. Moreover, using more
landmarks generally gives better results.

We further perform some experiments on real-world data
sets. One of them is the Isolet data set from the UCI Machine
Learning Repository which contains 7,797 isolated spoken
English letters belonging to 26 classes, with each letter repre-
sented as a 617-dimensional vector. Other data sets are hand-
written digits from the MNIST database.5 The digits in the
database have been size-normalized and centered to 28×28

5http://yann.lecun.com/exdb/mnist/



Table 1: Performance comparison in terms of J value for XOR data set (|S| = 50, m = 100:100:800).

INPUT DATA RBF RCA OUR METHOD

m = 100 m = 200 m = 300 m = 400 m = 500 m = 600 m = 700 m = 800
1.2460 1.4253 1.2552 2.8657 3.0886 3.5640 3.8422 4.2378 4.6395 4.8334 4.7463

±0.19 ±1.28 ±0.42 ±0.78 ±1.25 ±0.99 ±0.68 ±0.90 ±0.65

Table 2: Performance comparison in terms of J value for Isolet and MNIST data sets (|S| = 50, m = 100).

ISOLET MNIST
{0, 1} {1, 3} {1, 5} {1, 7} {1, 9} {0, 1, 2} {6, 7, 8} {0, 1, 9} {3, 4, 5, 6}

INPUT DATA 1.3888 1.3914 1.2124 1.1920 1.2458 1.2379 1.2408 1.1534 1.2779 1.1162
RBF 1.2477 1.2460 1.1447 1.1357 1.1570 1.1548 1.1598 1.0963 1.1796 1.0729
RCA 1.3049 1.2970 1.1779 1.1705 1.1820 1.2086 1.1844 1.1207 1.2087 1.0793

±0.0030 ±0.0324 ±0.0270 ±0.0283 ±0.0399 ±0.0391 ±0.0311 ±0.0160 ±0.0200 ±0.0110
OUR METHOD 2.7938 2.9078 1.7070 1.4015 1.5463 1.7023 1.8620 1.6233 1.9608 1.2945

±0.0430 ±0.4614 ±0.2252 ±0.1400 ±0.2055 ±0.3567 ±0.3160 ±0.1996 ±0.1884 ±0.0667

gray-level images. Hence the dimensionality of the input
space is 784. In our experiments, we randomly choose 2,000
images for each digit from a total of 60,000 digit images in
the MNIST training set. We use 50 similarity constraints and
100 landmarks in the experiments. The results for Isolet and
different digit data sets are shown in Table 2. From the re-
sults, we can again see that the metric learned by our method
is the best in terms of the J measure.

6 Concluding Remarks
We have presented a simple and efficient kernel-based semi-
supervised metric learning method based on supervisory in-
formation in the form of pairwise similarity constraints. Not
only does it scale up well with the data set size, it can also
naturally lead to out-of-sample generalization. Although pre-
vious studies by other researchers showed that pairwise dis-
similarity constraints usually cannot help much in many real-
world applications, there are situations when incorporating
them may still be helpful and hence we plan to extend our
method to incorporate dissimilarity constraints as well. In
our low-rank approximation scheme, besides including those
points involved in S, we also randomly sample some other
points as landmarks. A recent study [Silva et al., 2006] shows
that non-uniform sampling of landmarks for manifold learn-
ing can give parsimonious approximations using only very
few landmarks. We will pursue research along this direction
in our future work.
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