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Abstract

Existing semi-supervised learning methods
are mostly based on either the cluster as-
sumption or the manifold assumption. In
this paper, we propose an integrated regu-
larization framework for semi-supervised ker-
nel machines by incorporating both the clus-
ter assumption and the manifold assump-
tion. Moreover, it supports kernel learning
in the form of kernel selection. The optimiza-
tion problem involves joint optimization over
all the labeled and unlabeled data points, a
convex set of basic kernels, and a discrete
space of unknown labels for the unlabeled
data. When the manifold assumption is in-
corporated, graph Laplacian kernels are used
as the basic kernels for learning an optimal
convex combination of graph Laplacian ker-
nels. Comparison with related methods on
the USPS data set shows very promising re-
sults.

1. Introduction

In a wide range of real-world machine learning appli-
cations, unlabeled data are much easier and cheaper
to obtain than labeled data. This characteristic has
motivated a surge of research interest over the past
decade in the so-called semi-supervised learning (SSL)
paradigm. By incorporating unlabeled data into the
learning process, SSL methods aim at improving the
learning performance. This approach is particularly
promising in applications where the amount of labeled
data available is very limited.

In general, many SSL methods are based on either one
or both of two geometric assumptions about the data
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distribution. The first of these is called the manifold
assumption, which assumes the data points as forming
a low-dimensional manifold in some input space. The
SSL methods based on this assumption typically use
the graph Laplacian of a graph-based representation to
characterize the manifold structure, e.g., (Zhu et al.,
2003; Belkin & Niyogi, 2004; Zhou et al., 2004; Sind-
hwani et al., 2005; Zhang & Ando, 2005; Zhou et al.,
2005; Zhu et al., 2005; Argyriou et al., 2006; Belkin
et al., 2006). The second one is called the cluster as-
sumption, which favors decision boundaries for clas-
sification passing through low-density regions in the
input space (Joachims, 1999; Chapelle & Zien, 2005;
Chapelle et al., 2006; Sindhwani et al., 2006).

There is a misconception that SSL is equivalent to
transductive learning. While some SSL methods
only support transductive inference (Zhu et al., 2003;
Belkin & Niyogi, 2004; Zhou et al., 2004; Chapelle &
Zien, 2005; Zhang & Ando, 2005; Zhou et al., 2005;
Zhu et al., 2005; Argyriou et al., 2006), some others
also support inductive inference making out-of-sample
extension possible (Joachims, 1999; Sindhwani et al.,
2005; Belkin et al., 2006; Chapelle et al., 2006; Sind-
hwani et al., 2006). In general, SSL methods that sup-
port inductive inference are based on kernel methods.

For kernel methods, it is well known that the ker-
nel plays an essential role. A poor kernel choice will
lead to impaired performance. Over the past few
years, some methods have been proposed for kernel
learning or kernel selection. Early methods are lim-
ited to learning the parameters of some standard ker-
nel forms (Chapelle et al., 2002). More recent ef-
forts attempt to learn the kernel itself in a nonpara-
metric manner, e.g., by semi-definite programming
(SDP) (Lanckriet et al., 2004) or joint minimization
over regularization frameworks (Argyriou et al., 2005;
Micchelli & Pontil, 2005). In addition, some recent
SSL methods (Zhu et al., 2005; Argyriou et al., 2006)
seek to learn an optimal kernel based on the graph
Laplacian to capture the geometric structure of the
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data.

In this paper, we propose a new kernel selection
method for semi-supervised kernel machines based on
the cluster assumption. The proposed method is based
on joint minimization over the data points, a convex
set of kernels, and a discrete space of unknown labels.
Moreover, we also propose a transductive regulariza-
tion framework that effectively combines the cluster
assumption and the manifold assumption. This inte-
grated regularization framework gives a powerful ap-
proach to the learning of optimal convex combinations
of basic graph Laplacian kernels.

1.1. Notation

For notational consistency, we adopt the following con-
vention throughout this paper.

Let L = {(x1, y1), . . . , (xl, yl)} be the labeled data set
where yi ∈ {+1,−1} denotes the class label of xi, and
U = {xl+1, . . . ,xl+u} be the unlabeled data set with
l + u = n. We assume that all data points xi are from
the Euclidean space R

m. Under the SSL setting, the
goal is to learn a classifier based on both L and U .

The Euclidean space R
m is mapped to a high-

dimensional (possibly infinite-dimensional) reproduc-

ing kernel Hilbert space (RKHS) H via an implicit
nonlinear mapping φ : R

m → H. The inner prod-
uct in H corresponds to a symmetric kernel function
k(xi,xj) = 〈φ(xi), φ(xj)〉H which satisfies the finitely
positive semidefinite property. In addition, for any
f ∈ H, f(x) = 〈f(·), k(x, ·)〉H, which is called the re-
producing property.

2. Semi-Supervised Kernel Machines

We first review the common regularization framework
for kernel machines such as support vector machine
(SVM) under the standard supervised learning set-
ting. Given a labeled data set L, the goal is to find a
real-valued function f by minimizing a regularized loss
function that maintains a tradeoff between an empiri-
cal loss term and a model-complexity penalty term:

min
f∈Hk

{
l∑

i=1

L(yi, f(xi)) + γ‖f‖2
k

}
, (1)

where k is a kernel, Hk is the RKHS corresponding
to k, f is a real-valued function in Hk, L(·, ·) is a loss
function penalizing the prediction error of f on the la-
beled data points in L, γ is a regularization parameter,
and ‖·‖k denotes the norm in Hk acting as a regular-
ization term. From the theory of RKHS, we know that
the solution f to the optimization problem (1) has the

form f(x) =
∑l

i=1 αik(xi,x). In other words, the so-
lution can be expressed as an expansion of a subset of
data points in L with nonzero coefficient αi.

To extend this regularization framework to the SSL
setting, we add an extra empirical loss term for the
unlabeled data in U . The resulting optimization prob-
lem becomes:

min
f∈Hk

{
l∑

i=1

L(yi, f(xi)) + β

l+u∑

i=l+1

L̃(ŷi, f(xi)) + γ‖f‖2
k

}

subject to:
1

u

l+u∑

i=l+1

max(0, ŷi) = r, (2)

where L̃(·, ·) is the additional loss function, ŷi is the
predicted label for unlabeled data point xi ∈ U , β is
a positive parameter for the new loss function, and
r is the class ratio representing the percentage of
positive examples in U assumed to be known in ad-
vance. One possible way of defining the loss function
L̃ is L̃(ŷi, f(xi)) = min{L(+1, f(xi)), L(−1, f(xi))},
meaning that ŷ is set in such a way that L(ŷi, f(xi)) is
minimized. Note that an unlabeled data point xi is pe-
nalized more if f(xi) is closer to zero. The solution to
this optimization problem essentially implements the
cluster assumption so that decision boundaries passing
through low-density regions are preferred. The SSL
models based on this idea include (Joachims, 1999;
Chapelle & Zien, 2005; Chapelle et al., 2006; Sind-
hwani et al., 2006).

In what follows, we will refer to kernel machines based
on the problem (2) as semi-supervised kernel machines.
Even though the loss function L is typically chosen to
be a convex function, L̃ is non-convex and optimization
has to be performed over the discrete variables ŷi. The
optimization problem as a whole is thus non-convex.

3. Kernel Selection for Semi-Supervised

Kernel Machines

As discussed in Section 1, introducing adaptability or
learning ability into kernel design can improve the per-
formance of kernel methods. In this section, we pro-
pose an extension to the optimization problem in (2)
for semi-supervised kernel machines by incorporating a
specific type of kernel learning called kernel selection.

3.1. Optimization Problem

A promising recent approach to kernel learning is to
learn an optimal convex combination of some pre-
specified basic kernels. We apply this approach here
to extend the optimization problem in (2) for semi-
supervised kernel machines. The corresponding opti-
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mization problem can be stated as follows:

min
k∈K

min
f∈Hk

{
l∑

i=1

L(yi, f(xi)) + β

l+u∑

i=l+1

L̃(ŷi, f(xi)) + γ‖f‖2k

}

subject to:
1

u

l+u∑

i=l+1

max(0, ŷi) = r, (3)

where K is a convex set of kernels. Specifically,
we consider one possibility where each element in
K is a convex combination of N basic kernels, i.e.,

K =
{∑N

i=1 λiki :
∑N

i=1 λi = 1, λi ≥ 0, i = 1, . . . , N
}
.

Note that this is a complicated joint optimization
problem over k, f and {ŷi}

l+u
i=l+1. For simplicity, we

denote {ŷi}
l+u
i=l+1 by ŷ

U
.

3.2. A Deterministic Annealing Approach

The non-convex optimization problem in (3) involv-
ing discrete variables ŷ

U
and non-convex loss function

L̃ is difficult to solve directly. We use a determin-

istic annealing (DA) approach to solve this problem.
In essence, DA is a homotopy approach for dealing
with combinatorial optimization problems. Instead of
solving the original problem directly, a DA method
relaxes the original problem to a simpler but related
problem. The simplified problem is typically a convex
problem that is much easier to solve and has guarantee
for global optimality. The simplified problem is then
gradually deformed to the original problem by varying
a temperature parameter T . Recently, Sindhwani et al.
(2006) proposed a DA method for semi-supervised ker-
nel machines.

We apply DA to gradually approach the global solution
and simultaneously learn an optimal convex combina-
tion of the basic kernels. In DA, discrete variables are
usually formulated as random variables over a space
of probability distributions. The original optimization
problem is relaxed into minimizing the expectation of
the original objective function with respect to a prob-
ability distribution over discrete variables. Inspired by
(Sindhwani et al., 2006), we express the relaxed opti-
mization problem as:

min
k∈K

min
f∈Hk

min
p∈P({+1,−1}u)

{EpCβ,γ(k, f, ŷ
U
) − T s(p)}

subject to:
1

u

u∑

i=1

pi = r, (4)

where Cβ,γ(k, f, ŷ
U
) is a short form for the objective

function in (3), P is a family of probability distribu-
tions over the discrete variables ŷ

U
, T is a temperature

parameter, p = (p1, . . . , pu) with each pi represent-
ing the probability that ŷl+i = 1, Ep is the expecta-
tion with respect to the probability distribution p, and

s(p) is the entropy over p. By computing the expec-
tation in (4), the relaxed optimization problem for DA
is rewritten as:

min
k∈K

min
f∈Hk

min
p∈P({+1,−1}u)

{
l∑

i=1

L(yi, f(xi))+

β
u∑

i=1

piL(+1, f(xl+i)) + β
u∑

i=1

(1− pi)L(−1, f(xl+i))+

γ‖f‖2k + T
u∑

i=1

pi log pi + T
u∑

i=1

(1− pi) log(1− pi)

}

subject to:
1

u

u∑

i=1

pi = r. (5)

We notice from (5) that for a fixed kernel k (hence
RKHS Hk), the globally optimal solution for f can
be effectively tracked by DA as T tends to zero. For
fixed distribution p, (5) can be reduced to a joint op-
timization problem over both data in L and U and
the convex set of kernels K, and the corresponding so-
lution can be found based on the recently developed
kernel selection framework for the supervised learn-
ing setting (Argyriou et al., 2005; Micchelli & Pontil,
2005). For any given k (hence Hk) and function f ,
problem (5) becomes a convex problem over the vari-
ables p. Similar to (Sindhwani et al., 2006), the above
observations motivate us to optimize problem (5) via a
joint minimization over both the data and the convex
set of kernels for fixed p and over p for fixed k and f .
We consider these two subproblems in detail below.

Optimization on fixed p

For fixed p, problem (5) degenerates to:

min
k∈K

min
f∈Hk

{
l∑

i=1

L(yi, f(xi)) + β
u∑

i=1

piL(+1, f(xl+i))

+β

u∑

i=1

(1− pi)L(−1, f(xl+i)) + γ‖f‖2k

}
. (6)

Based on all the training data in L and U , we define
the RKHS Hk for a given kernel k as the completion
of the span of the functions k(xi, ·) for all data points

in L and U , i.e., Hk = span{k(x1, ·), . . . , k(xn, ·)}. In
general Hk should depend on k only, not on the data
points. So this may be seen as an “empirical” ver-
sion of the RKHS. Furthermore, for any fixed kernel
k (hence Hk), it follows from the representer theo-
rem that if f is a solution to the problem (6), then
it has the form f(x) =

∑n
i=1 αik(xi,x). Based on

this form, the squared norm ‖f‖2
k can be computed as

‖f‖2
k = α

TKα where α = (α1, . . . , αn)T and K is an
n × n Gram matrix induced by a kernel k ∈ K on L
and U . As a result, the optimization problem (6) can
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be converted into the following form:

min
k∈K

min
α∈Rn

{
l∑

i=1

L(yi, α
T
ki) + β

u∑

i=1

piL(+1, αT
kl+i)

+β
u∑

i=1

(1− pi)L(−1, αT
kl+i) + γα

T
Kα

}
, (7)

where ki = (k(x1,xi), . . . , k(xn,xi))
T is the ith col-

umn of K. Since each pi fixed here belongs to the
range [0, 1], from the recent results on learning convex
combinations of kernels via regularization (Argyriou
et al., 2005; Micchelli & Pontil, 2005), we know that
the optimal kernel for the problem (7) can always be
computed as a convex combination of at most n + 2
basic kernels, even though K is an uncountable set.
Through the problem (7), we can effectively extend
the theoretical study of (Argyriou et al., 2005; Mic-
chelli & Pontil, 2005) on kernel selection to the SSL
setting. We now rewrite the optimization problem (7)
as an equivalent saddle point problem:

max
k∈K

min
α∈Rn

V (α,K), (8)

where the new function V (α,K) is defined as

V (α, K) =
l∑

i=1

L∗(yi, αi) +
u∑

i=1

L̃∗(±1, αl+i) +
1

4γ
α

T
Kα.

Here, L∗ and L̃∗ denote the corresponding conjugate
functions of the loss functions for the labeled and un-
labeled data sets, respectively. Following (Rockafel-
lar, 1996), both can be further defined as L∗(yi, α) =

sup{θα − L(yi, θ) : α, θ ∈ R} and L̃∗(±1, α) =
sup{θα − βpiL(+1, θ) − β(1 − pi)L(−1, θ) : α, θ ∈ R}.

Based on similar analysis as in (Argyriou et al., 2005),
we can obtain the necessary and sufficient condi-
tions for a pair (α,K) to be a saddle point, moti-
vating us to adopt a greedy algorithm to solve the
problem. The greedy algorithm begins with an ini-
tial kernel matrix K(1) and then solves the optimiza-
tion problem minα∈Rn V (α,K(1)) for the correspond-
ing vector α(1). In general, based on the ith ker-
nel matrix K(i) and the vector α(i) obtained from
solving the corresponding optimization problem, we
seek a new basic kernel K(o) satisfying α

T
(i)K(o)α(i) >

α
T
(i)K(i)α(i). Then the (i + 1)th kernel K(i+1) is cal-

culated as K(i+1) = µ̂K(o) + (1 − µ̂)K(i), which is
a convex combination of K(o) and K(i). The coef-
ficient µ̂ for the convex combination is calculated as
µ̂ = argmaxµ∈(0,1] V (α(i), µK(o) + (1 − µ)K(i)). By
repeating this iterative procedure, we can obtain a se-
quence of kernels 〈K(1), . . . ,K(t)〉. Some remarks are
given here. If the set K is a convex combination of a

finite number of basic kernels, then the corresponding
combination coefficients λ1, . . . , λN can be identified
by tracking µ̂ for each kernel matrix, and K(o) can be
calculated on a basic kernel kc ∈ K. If K is a con-
vex combination of continuously parameterized basic
kernels, then we just track the change of the corre-
sponding parameter to calculate K(o). More detailed
discussions can be found in (Argyriou et al., 2005). In
our experiments, since L is a squared loss function,
α(i) has a closed-form solution and µ̂ is computed by
the Newton method.

Optimization on fixed k and f

After obtaining an optimal saddle point (α̂, K̂) for the
optimization problem (8) based on a fixed p, the op-
timization problem (5) is reformulated as:

min
p∈P({+1,−1}u)

J(p)

subject to:
1

u

u∑

j=1

pi = r, (9)

where the function J(p) is expressed as

J(p) =

β

u∑

i=1

piL(+1, α̂T
k̂l+i) + β

u∑

i=1

(1 − pi)L(−1, α̂T
k̂l+i)

+T

u∑

i=1

pi log pi + T

u∑

i=1

(1 − pi) log(1 − pi). (10)

Here, k̂i denotes the ith column of K̂. Since (9) is
convex with respect to p, its solution can be found
easily.

For a fixed temperature parameter T , the optimization
problem (4) effectively selects an optimal combination
of kernels and also relaxes the non-convex combinato-
rial optimization problem into another problem that is
easier to solve. We decrease the temperature param-
eter T gradually according to the DA procedure until
some termination conditions are satisfied. Algorithm 1
summarizes the major steps of the kernel selection al-
gorithm for semi-supervised kernel machines.

3.3. Combining Graph Laplacian Kernels for

Semi-Supervised Kernel Machines

In this subsection, we further extend the above frame-
work formulated based on the cluster assumption to
incorporate the manifold assumption as well.

We first construct a neighborhood graph G = (V , E)
to represent the local geometric structure of the data
based on pairwise relationships. V is the vertex set for
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Algorithm 1 Learning an Optimal Convex Combination
of Basic Kernels for Semi-Supervised Kernel Machines

1: Input: L = {(xi, yi)}
l
i=1, U = {xi}

n
i=1+l, β, γ, r, r0,

T0, ǫ0, Tmax;
2: Initialize: p = (r, . . . , r) ∈ R

u, p′ = p, T = T0;

3: Select K̂; % induced by any kernel k ∈ K on L and U
4: repeat
5: repeat

6: K(1) ← K̂;
7: for i = 1, . . . , Tmax do
8: α(i) = arg minα∈Rn V (α,K(i));

9: Find K(o) s.t. α
T
(i)K(o)α(i) > α

T
(i)K(i)α(i);

10: if such K(o) does not exist then
11: break;
12: end if
13: µ̂ = arg maxµ∈(0,1] V (α(i), µK(o) +(1−µ)K(i));
14: K(i+1) ← µ̂K(o) + (1− µ̂)K(i);
15: end for
16: α̂ ← α(i);

17: K̂← K(i);
18: p′ ← p;
19: Calculate p using α̂ and K̂;
20: until ||p′ − p|| < ǫ0
21: T ← T/r0;
22: until t < ǫ0
23: Output: K̂, α̂, and f(x) =

∑n

i=1 α̂ik̂(xi,x).

all data points xi in L and U , and E is the edge set
where each edge eij has a weight wij representing the
pairwise relationship between vertices xi and xj . The
corresponding affinity matrix W = [wij ]n×n is defined
based on the heat kernel as:

wij =





exp(−‖xi − xj‖

2/σ2), if xj ∈ NK(xi)
or xi ∈ NK(xj);

0, otherwise,

(11)

where NK(x) denotes the set of K nearest neighbors
of x, σ is a positive constant, and ‖x‖ denotes the
norm of x. The graph Laplacian matrix L is defined
as L = D−W, where D is a diagonal matrix with the
diagonal entries dii =

∑
j wij . L can be regarded as an

empirical version of the Laplace-Beltrami operator if
the underlying distribution of the whole data space is
a Riemannian manifold. Instead of using L, there also
exist other possible choices (Belkin et al., 2006), such
as iterated graph Laplacian Lp (p > 0), heat semigroup
e−tLp

, normalized graph Laplacian D−1/2LD−1/2, etc.
In what follows, the graph Laplacian L may be chosen
to be any of these forms.

For the defined graph G, we consider a real-valued
vector f = (f1, . . . , fn) ∈ R

n as representing the la-
bel information for the data points in G. In general,
we only consider f in the space HG that is orthog-
onal to the eigenvectors of L with zero eigenvalues.
The corresponding graph regularization term can be

induced by the strict norm for f under its inner prod-
uct: ‖f‖2

HG
= 〈f , f〉HG

= fT Lf . Moreover, from the
definition of graph Laplacian matrix above, we can
also express it as ‖f‖2

HG
= 1

2

∑n
i,j=1(fi − fj)

2wij . By
integrating this into the regularization framework pre-
sented above for semi-supervised kernel machines, the
following optimization problem can be formulated for
finding a more effective f that also captures the man-
ifold assumption:

min
f∈HG

{
l∑

i=1

L(yi, fi) + β

l+u∑

i=l+1

L̃(ŷi, fi) + γ‖f‖2
HG

}

subject to:
1

u

l+u∑

i=l+1

max(0, ŷi) = r. (12)

Here, ŷi may be seen as “hard” labels for unla-
beled data points while fi are “soft” labels for all
data points. While existing semi-supervised kernel
machines (Joachims, 1999; Chapelle & Zien, 2005;
Chapelle et al., 2006; Sindhwani et al., 2006) are based
on the cluster assumption and graph-based SSL meth-
ods (Zhu et al., 2003; Zhou et al., 2004; Zhou et al.,
2005; Belkin et al., 2006) are based on the manifold as-
sumption, the optimization problem in (12) attempts
to capture both assumptions into an integrated regu-
larization framework.1

According to (Argyriou et al., 2006), the graph Lal-
pacian kernel matrix for HG can be induced by the
pseudoinverse L+ = [L+

ij ]i,j=1,...,n of the graph Lapla-
cian matrix L and HG essentially becomes an RKHS.
For data points xi and xj , the corresponding graph
kernel can be calculated by k(xi,xj) = L+

ij . Further-
more, based on the representer theorem for HG, we
have fi =

∑n
j=1 αjL

+
ij . Thus, the problem (12) can be

rewritten as:

min
α∈Rn






l∑

i=1

L(yi,

n∑

j=1

αjL
+
ij)+

β

l+u∑

i=l+1

L̃(ŷi,

n∑

j=1

αjL
+
ij) + γα

TL+
α






subject to:
1

u

l+u∑

i=l+1

max(0, ŷi) = r. (13)

Zhang and Ando (2005) proposed a graph-based SSL

1Note that the problem (12) differs from the low-density
SSL method of (Chapelle & Zien, 2005) which combines
semi-supervised kernel machines with graph-based tech-
niques. In (Chapelle & Zien, 2005), the kernel captures
some low-density distance measure defined on the nearest-
neighbor graph, so that semi-supervised kernel machines
based on this kernel still follow the cluster assumption.
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method based on spectral decomposition and graph
Laplacian kernels. Its optimization problem for kernel
learning can be stated as

min
α∈Rn





l∑

i=1

L(yi,

n∑

j=1

αjL
+
ij) + γα

TL+
α



 , (14)

which is a special case of the optimization problem in
(13) above.

Belkin et al. (2006) recently proposed the manifold
regularization framework for SSL in which an addi-
tional graph regularization term is introduced to cap-
ture the manifold structure of the data distribution.
Based on graph Laplacian kernels, the conventional
norm and the manifold regularization term in (Belkin
et al., 2006) can be converted into α

TL+
α, and hence

the manifold regularization framework can be refor-
mulated in the form (14). Argyriou et al. (2006)
employed the graph Laplacian kernel to extend the
supervised learning problem in (1) to the SSL set-
ting. Zhang and Ando (2005) showed that the ob-
jective function in (Argyriou et al., 2006) can also be
formulated in the form (14). As such, the methods
in (Argyriou et al., 2006; Belkin et al., 2006) can be
seen as special cases of (13) since this more general
form is based on both the cluster assumption and the
manifold assumption.

Another problem to address is how to specify the ini-
tial basic graph Laplacian kernels. Currently there
exist two major approaches to this problem. One ap-
proach is based on the empirical kernel alignment score
with order constraints on the linear combination coef-
ficients (Zhu et al., 2005). Another approach is based
on a regularized risk function (essentially the same as
that in (14)) on which joint minimization over both
the training data and the set of graph Laplacian ker-
nels (Argyriou et al., 2006) is applied. Here, we present
a new graph Laplacian kernel selection method based
on the problem (13). Considering the overfitting prob-
lem encountered by empirical kernel alignment in (Zhu
et al., 2005) and the lack of the cluster assumption
in (Argyriou et al., 2006), our method is expected to
be more general and robust.

Let L+
1 , . . . ,L+

N denote the N graph Laplacian ker-
nels corresponding to N graphs constructed from all
the data points. The corresponding convex set is
coL = {L̂+ =

∑N
i=1 λiL

+
i :

∑N
i=1 λi = 1, λi ≥ 0, i =

1, . . . , N}. Motivated by the kernel selection method
for semi-supervised kernel machines presented in Sec-
tion 3.2, the optimization problem for learning an op-
timal combination of graph Laplacian kernels can be

stated as:

min
L̂∈coL

min
α∈Rn





l∑

i=1

L(yi,

n∑

j=1

αjL̂
+
ij)+

β

l+u∑

i=l+1

L̃(ŷi,

n∑

j=1

αjL̂
+
ij) + γα

T L̂+
α






subject to:
1

u

l+u∑

i=l+1

max(0, ŷi) = r, (15)

where L̂+ = [L̂+
ij ]i,j=1,...,n. Obviously, the problem

(15) can also be solved efficiently using Algorithm 1
developed for kernel selection of semi-supervised kernel
machines.

4. Experimental Evaluation

To evaluate the performance of our proposed meth-
ods, we report here some classification experiments on
the USPS data set that was also used in (Argyriou
et al., 2006) for graph Laplacian kernel selection. For
simplicity, we only consider the binary classification
problems to compare our methods with some closely
related kernel selection methods (Argyriou et al., 2005;
Argyriou et al., 2006).

The kernel selection method in (Argyriou et al., 2005)
is based on the standard regularization framework (1)
and hence it is related to our kernel selection method
for semi-supervised kernel machines. On the other
hand, the graph Laplacian kernel selection method
for SSL in (Argyriou et al., 2006) is related to our
graph Laplacian kernel selection method. For the con-
venience of referencing, KS-SL (kernel selection for su-
pervised learning) refers to the method in (Argyriou
et al., 2005) and GLKS-SSL (graph Laplacian kernel
selection for semi-supervised learning) refers to the
method in (Argyriou et al., 2006). In contrast, our
two methods are referred to as KS-SSKM and GLKS-
SSKM.

As in (Argyriou et al., 2006), we have in-
cluded in our experiments five digit pairs
{(1, 7), (2, 3), (2, 7), (3, 8), (4, 7)} from the USPS
data set. The dimensionality of each digit image
and the number of digits in each digit class of each
set are 256 and 200, respectively. We partition each
data set randomly into disjoint labeled and unlabeled
sets. In each labeled set, six examples from each class
are labeled. Each experiment is repeated 10 times
and the average classification error rate tested on the
unlabeled data set is reported. Similar to (Sindhwani
et al., 2006), the methods are compared on the
effectiveness of optimization under the regularization
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parameter values of 10−h (h = 1, . . . , 5). For our
methods, the input parameters are set as follows:
r = 0.5, r0 = 1.4, T0 = 10, ǫ0 = 10−7, and Tmax = 50.
For each experiment, we try to select a very poor
initial kernel for our methods to demonstrate the
effectiveness of kernel selection.

First, we compare our KS-SSKM method with KS-
SL (Argyriou et al., 2005). We consider a convex set
formed by 20 Gaussian kernels as basic kernels, with
their kernel parameters σ equally spaced in the range
[0.1, 100000] under log scale. Usually some of these ba-
sic kernels are very poor choices and they are included
to act as noise to evaluate the robustness of the ker-
nel selection methods. Table 1 shows the results. As
expected, KS-SSKM gives significantly lower classifi-
cation errors than KS-SL since it captures the cluster
assumption in its formulation.

Next, we perform experiments to compare our GLKS-
SSKM method with GLKS-SSL (Argyriou et al.,
2006). We adopt the same setup in (Argyriou et al.,
2006) for our experiments. The 30 basic graph Lapla-
cian matrices are created from corresponding graphs
constructed based on the k-nearest-neighbor criterion
for k = 1, . . . , 10 with the Euclidean, affine trans-
formation, and tangent distances. Moreover, follow-
ing (Argyriou et al., 2006), we run GLKS-SSKM
and GLKS-SSL on four different convex sets of graph
Laplacian kernels, with three sets based on the three
distance metrics and the last one based on all col-
lected metrics. Table 2 summarizes the experimen-
tal results. GLKS-SSKM outperforms GLKS-SSL in
different cases, showing that integrating the cluster
assumption and the manifold assumption does help.
In addition, the results of our GLKS-SSKM method
on the convex set of all graph Laplacian kernels are
very close to (or even better than) the best results of
GLKS-SSKM on the other three convex sets, implying
that GLKS-SSKM is effective in learning an optimal
combination of graph Laplacian kernels.

To demonstrate the kernel selection behavior of our
methods in more detail, we also study semi-supervised
kernel machines based on each individual basic graph
Laplacian kernel. Figure 1 shows the results, where
we apply GLKS-SSKM on the convex set of 30 ba-
sic graph Laplacian kernels as described above and
begin with the “poor” graph kernel denoted by “1”.
In each subfigure, (1, . . . , 10) in the horizontal axis
denote the graph Laplacian kernels based on the k-
nearest-neighbor criterion for k = 1, . . . , 10 with the
Euclidean distance, (11, . . . , 20) denote those with the
affine transformation distance, and (21, . . . , 30) for
those with the tangent distance. For each graph Lapla-

Table 1. Classification error rates (%) and standard devia-
tions when KS-SSKM is compared with KS-SM.

Data sets KS-SM KS-SSKM
USPS (1 vs. 7) 01.60±00.72 00.00±00.00
USPS (2 vs. 3) 10.10±04.20 05.10±01.27
USPS (2 vs. 7) 09.28±06.41 01.86±00.43
USPS (3 vs. 8) 10.82±04.09 07.42±00.83
USPS (4 vs. 7) 07.53±03.88 03.92±02.01

cian kernel, the classification error rate based on that
kernel alone and its combination coefficient for the ker-
nel selection method are shown separately. The high
correlation between the two curves shows that the ker-
nel selection procedure focuses on the best kernels ef-
fectively. More specifically, while some graph Lapla-
cian kernels such as those denoted by “1”, “11” and
“21” have very high classification error rates, the corre-
sponding coefficients learned by GLKS-SSKM become
very small.
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Figure 1. Combination coefficients (%) vs. classification
error rates (%) on different basic graph Laplacian kernels,
where H denotes the classification error rates and � denotes
the combination coefficients.
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Table 2. Classification error rates (%) and standard deviations when GLKS-SSKM is compared with GLKS-SSL.
Euclidean Transformation Tangent All

Data set GLKS-SSL GLKS-SSKM GLKS-SSL GLKS-SSKM GLKS-SSL GLKS-SSKM GLKS-SSL GLKS-SSKM
USPS (1 vs. 7) 01.55±00.00 01.55±00.00 01.55±00.00 00.77±00.00 01.03±00.00 00.98±00.12 01.19±00.22 00.90±00.14
USPS (2 vs. 3) 03.20±00.76 01.24±00.46 02.68±01.12 00.67±00.35 01.13±00.14 00.15±00.23 02.22±01.10 00.15±00.23
USPS (2 vs. 7) 03.92±00.28 03.51±00.14 02.73±00.50 02.01±00.34 02.11±00.34 01.86±00.22 02.73±00.76 02.01±00.22
USPS (3 vs. 8) 07.06±00.90 06.39±00.84 06.96±00.71 06.13±00.69 06.19±00.58 04.74±00.14 06.39±00.72 04.43±00.34
USPS (4 vs. 7) 02.63±00.56 01.80±00.18 01.91±00.43 01.03±00.32 01.16±00.25 00.93±00.18 02.37±01.28 00.88±00.23

5. Conclusion

We have proposed a novel regularization framework for
semi-supervised kernel machines by integrating both
the cluster assumption and the manifold assumption.
Experimental comparison with related methods pro-
posed recently in the machine learning community
demonstrates the effectiveness of this framework in ex-
ploiting the geometric structure of the data.
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