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ABSTRACT

We present a subspace learning method, called Local Discriminant
Embedding with Tensor representation (LDET), that addresses si-
multaneously the generalization and data representation problems
in subspace learning. LDET learns multiple interrelated subspaces
for obtaining a lower-dimensional embedding by incorporating both
class label information and neighborhood information. By encoding
each object as a second- or higher-order tensor, LDET can capture
higher-order structures in the data without requiring a large sample
size. Extensive empirical studies have been performed to compare
LDET with a second- or third-order tensor representation and the
original LDE on their face recognition performance. Not only does
LDET have a lower computational complexity than LDE, but LDET
is also superior to LDE in terms of its recognition accuracy.

Index Terms— Learning systems, Pattern classification, Face
recognition

1. INTRODUCTION

Subspace learning, which learns to map data from some input space
to a lower-dimensional subspace, plays a very important role in many
computer vision and pattern classification problems. Two repre-
sentative linear subspace learning methods are principal component
analysis (PCA) [1] and linear discriminant analysis (LDA) [2]. While
PCA seeks to find a low-dimensional representation that minimizes
the reconstruction error, LDA uses the label information to find a
low-dimensional representation that best separates different classes.

There are two directions along which subspace learning meth-
ods can be extended. One direction is to extend the generalization
ability of subspace learning methods, while another direction is to
enhance their data representation ability. Along the first direction,
some examples include independent component analysis (ICA) [3]
proposed as a generalization of PCA to take into account higher-
order statistical dependencies, kernel PCA (KPCA) [4] and kernel
Fisher discriminant analysis (KFD) [5] proposed as nonlinear ex-
tensions to their linear counterparts based on the kernel approach,
an enhanced LDA model [6] and direct LDA [7] as improvements
to the original LDA, and locality preserving projection (LPP) [8] as
an extension of PCA that can preserve the neighborhood structure of
the data. More recently, a new subspace learning method called local
discriminant embedding (LDE) [9] was proposed. LDE makes use
of both the neighborhood relationships between data points and the
class label information to obtain a lower-dimensional embedding.
Unlike LDA and related methods, the discrimination ability of LDE
does not strongly depend on the data distribution, such as the Gaus-
sian assumption. Moreover, unlike many manifold learning methods
such as Isomap [10] and locally linear embedding (LLE) [11], LDE

uses label information to find the embedding and can naturally han-
dle new test data in classification applications.

Along the second direction, some recent subspace learning meth-
ods represent each object as a two-dimensional (2-D) matrix rather
than a one-dimensional (1-D) vector, e.g., [12, 13]. For applications
in which the available data are scarce, a vector representation can
make the curse of dimensionality problem (and hence the small sam-
ple size problem) a lot more serious. Moreover, for objects such as
images, a 1-D representation ignores higher-order structures in the
data. Working directly on 2-D image objects allows principal fea-
tures in the rows or columns of the images to be found, resulting in
substantial reduction in the dimensionality of some computational
problems such as the eigenvalue problem. Recently, further general-
ization was proposed to represent each object as a general tensor of
second or higher order, such as PCA with tensor representation [14]
and LPP with tensor representation [15].

In this paper, we attempt to address both the generalization and
data representation problems simultaneously. Specifically, we pro-
pose to reformulate LDE so that it can work directly on a tensor rep-
resentation. We refer to this new method as Local Discriminant Em-
bedding with Tensor representation (LDET). Based on face recogni-
tion experiments, we empirically compare the classification perfor-
mance of our LDET algorithm and the original LDE algorithm.

2. BRIEF REVIEW OF LDE

Let M be a manifold embedded in R
d. Given a set of n data points

{xi | xi ∈ R
d}n

i=1 ⊂ M, which may also be written as a data
matrix X = [x1, . . . , xn]T ∈ R

n×d, LDE seeks to find a projection
matrix V ∈ R

d×� that maps each data point xi in the d-dimensional
space to a vector zi in the �-dimensional space. With an abuse of
notation, the linear projection may also be expressed in the form of
a mapping V : xi ∈ R

d → zi = VT xi ∈ R
�, where � � d.

Assume that each data point xi ∈ X belongs to one of h classes,
with the corresponding class label yi ∈ {1, . . . , h}. Based on the as-
sumption that any subset of data points belonging to the same class
lies in a submanifold of M, the LDE algorithm aims to find the op-
timal projection matrix V for the embedding by integrating the class
label information of the data points and the neighborhood informa-
tion between data points. The goal is to preserve the within-class
neighborhood relationship while dissociating the submanifolds for
different classes from each other. In so doing, classification based
on the nearest neighbor criterion in the embedding subspace is ex-
pected to be able to predict the class labels of unlabeled test points
more reliably.

The within-class neighborhood relationship is represented by a
within-class neighborhood graph G while the between-class neigh-
borhood relationship is represented by a between-class neighbor-



hood graph G′. To construct G over all data points, we consider each
pair of points xi and xj that belong to the same class, i.e., yi = yj .
An edge is added between xi and xj if xj is one of the k nearest
neighbors of xi, or vice versa. Alternatively, one may also consider
the ε-ball implementation. For G′, we instead consider each pair of
points xi and xj that belong to different classes, i.e., yi �= yj . Edges
are added in a way similar to that in G.

With these two neighborhood graphs, we then define the corre-
sponding affinity matrices W and W′. For the affinity matrix W of
G, each element wij represents the weight of the edge between xi

and xj and is given by

wij = exp

„
−‖xi − xj‖2

σ

«
, (1)

where ‖ · ‖ denotes the Euclidean norm and σ is a positive constant.
If xi and xj are not connected, we set wij to 0. Apparently W is
a sparse, symmetric matrix. The affinity matrix W′ of G′ can be
computed in the same way.

Unlike PCA and LDA, LDE takes into account the local relation-
ships between neighboring data points while incorporating the class
information. Specifically, in the low-dimensional embedding sub-
space, we want to keep the neighboring points close to each other
if they belong to the same class and prevent data points from other
classes to enter the neighborhood of a data point. To incorporate
these requirements, LDE solves the following optimization prob-
lem:

Maximize J(V) =
X
i,j

‖VT xi − VT xj‖2w′
ij ,

subject to
X
i,j

‖VT xi − VT xj‖2wij = 1.
(2)

where V = [v1, . . . ,v�] ∈ R
d×�. The solution to this optimiza-

tion problem can be obtained by solving the following generalized
eigenvalue problem

XT (D′ − W′)Xv = λXT (D − W)Xv, (3)

for the eigenvectors vi (i = 1, . . . , �) that correspond to the �
largest eigenvalues, where D and D′ are diagonal matrices with di-
agonal elements dii =

P
j wij and d′

ii =
P

j w′
ij . For notational

simplicity, we denote XT (D′ − W′)X by Lb, referred to as local
between-class matrix, and XT (D − W)X by Lw, referred to as
local within-class matrix. Then the generalized eigenvalue problem
(3) can be rewritten as:

Lbv = λLwv. (4)

Note that LDE has the same limitation as the classical LDA in
that it suffers from the small sample size problem (or undersampling
problem). Specifically, in many real-world applications such as face
recognition where the dimensionality of the data is much larger than
the sample size, the matrix Lw is singular and hence (4) cannot be
solved directly. Moreover, its 1-D data representation also ignores
the possibly useful higher-order structures in the data.

3. OUR LDET ALGORITHM

3.1. LDET Algorithm

Most previous approaches to subspace learning consider an object as
a vector which is a 1-D representation. The corresponding learning
algorithms are typically performed in very high-dimensional feature
spaces. As a result, these methods usually suffer from the curse of
dimensionality problem. Moreover, many objects found in image-
based and video-based applications, such as face recognition, are
more naturally represented as second- or higher-order tensors.

Formally, to perform subspace learning using a tensor represen-
tation, we are given a data set of n pth-order tensors {Xi | Xi ∈
R

d1×d2×...×dp}n
i=1. The entire data set may also be represented as

a (p+1)th-order sample tensor X̃ ∈ R
d1×d2×...×dp×n. Embedding

the data set to a lower-dimensional subspace corresponds to finding
for each input tensor Xi a tensor Zi ∈ R

�1×�2×...×�p , with �j � dj

for j = 1, . . . , p.
Let us first review some basic terminology on tensor operations

[14]. The inner product of two tensors A and B with the same di-
mensions d1×d2×. . .×dp is 〈A,B〉 =

P
i1,...,ip

Ai1...ipBi1...ip ,

the norm of a tensor A is ‖A‖ =
p〈A,A〉, and the distance be-

tween two tensors A and B is ‖A−B‖. In the case of second-order
tensors, the tensor norm is just the matrix norm, called Frobenius
norm, written as ‖A‖F . The k-mode product of a tensor A with di-
mensions d1×d2× . . .×dp and a matrix V ∈ R

dk×�k is defined as
B = A×kV, where Bi1...ik−1jik+1...ip =

Pdk
i=1 VijAi1...ik−1iik+1...ip ,

for j = 1, . . . , �k. Besides the k-mode tensor-matrix product, there
is another important tensor operation, called k-mode unfolding of a
tensor into a matrix, which is defined as:

A ∈ R
d1×d2×...×dp ⇒k Ak ∈ R

dk×Q
i�=k di ,

with Ak
ikj = Ai1...ip ,

j = 1 +
Pn

l=1,l�=k(il − 1)
Qn

o=l+1,o �=k do .

(5)

With simple algebraic computation, we can obtain ‖A ×k V‖ =
‖(Ak)T V‖F .

To generalize LDE to work for tensors rather than vectors, we
first change the matrix-vector multiplication zi = VT xi to Zi =
Xi ×1 V1 ×2 . . . ×p Vp, where Vj ∈ R

dj×�j for j = 1, . . . , p.
We thus rewrite (2) in the following form:

Maximize Q(V1, . . . ,Vp) =X
i,j

‖Xi ×1 . . . ×p Vp − Xj ×1 . . . ×p Vp‖2w′
ij ,

subject to (6)X
i,j

‖Xi ×1 . . . ×p Vp − Xj ×1 . . . ×p Vp‖2wij = 1.

This means that we find multiple interrelated projection matrices
V1, . . . ,Vp that keep the neighboring points close to each other if
they belong to the same class and prevent data points from other
classes to enter the neighborhood of a data point.

Unfortunately this optimization problem is a high-order nonlin-
ear programming problem with a nonlinear constraint, which has no
closed-form solution. An alternative approach is to use an iterative
method [13] to find the subspaces. The basic idea is as follows. To
solve for Vk, we assume that V1, . . . ,Vk−1, Vk+1, . . . ,Vp are
known so that (6) can be rewritten as:

Maximize Q(Vk) =X
i,j

‖Xi ×1 . . . ×p Vp − Xj ×1 . . . ×p Vp‖2w′
ij ,

subject to (7)X
i,j

‖Xi ×1 . . . ×p Vp − Xj ×1 . . . ×p Vp‖2wij = 1.

For known Xi and V1, . . . ,Vk−1,Vk+1, . . . ,Vp, we denote Xi×1

V1 . . . ×k−1 Vk−1 ×k+1 Vk+1 . . . ×p Vp by Yi. Then the opti-
mization problem (7) can be rewritten as:

Maximize Q(Vk) =
X
i,j

‖Yi ×k Vk − Yj ×k Vk‖2w′
ij ,

subject to
X
i,j

‖Yi ×k Vk − Yj ×k Vk‖2wij = 1.
(8)



Algorithm 1 LDET

Given the training data X̃ ∈ R
d1×d2×...×dp×n, their class labels

{yi | yi ∈ {1, . . . , h}}n
i=1, and the final lower dimensions �1 ×

�2 × . . . × �p.
1. Construct neighborhood graphs G and G′;
2. Compute affinity matrices W and W′ for G and G′;
3. Compute the embedding as follows:
Initialize V0

1 = Id1 , V0
2 = Id2 , . . . ,V0

p = Idp ;
for t = 1, 2, . . . , Tmax do

for k = 1, 2, . . . , p do
Yi = Xi ×1 Vt

1 . . . ×k−1 Vt
k−1 ×k+1 Vt

k+1 . . . ×p Vt
p;

Yi ⇒k Yk
i ;

Lw =
P

i,j wij(Y
k
i − Yk

j )(Yk
i − Yk

j )T ;

Lb =
P

i,j w′
ij(Y

k
i − Yk

j )(Yk
i −Yk

j )T ;

LbV
t
k = LwVt

kΛk , Vt
k ∈ R

dk×�k ;
if t > 2 and ‖Vt

k − Vt−1
k ‖ < dk�kε for each k then

break;
end if

end for
end for
Output projection matrices Vk = Vt

k ∈ R
dk×�k , k = 1, . . . , p.

Since ‖A×k V‖ = ‖(Ak)T V‖F , we can express Q(Vk) in terms
of the trace:

Q(Vk) =
X
i,j

‖Yi ×k Vk − Yj ×k Vk‖2w′
ij

=
X
i,j

‖(Yk
i )T Vk − (Yk

j )T Vk‖2
F w′

ij

=
X
i,j

Tr{(YkT
i Vk − YkT

j Vk)T (YkT
i Vk − YkT

j Vk)}w′
ij

=
X
i,j

Tr{VT
k (Yk

i − Yk
j )(Yk

i − Yk
j )T Vk}w′

ij

= Tr{VT
k

X
i,j

w′
ij(Y

k
i − Yk

j )(Yk
i − Yk

j )T Vk}.

Hence the optimization problem (8) can further be rewritten as:

Maximize Q(Vk) =

Tr{VT
k

X
i,j

w′
ij(Y

k
i − Yk

j )(Yk
i − Yk

j )T Vk},

subject to (9)

Tr{VT
k

X
i,j

wij(Y
k
i − Yk

j )(Yk
i − Yk

j )T Vk} = 1.

Similar to LDE, we define the local between-class matrix as
Lb =

P
i,j w′

ij(Y
k
i − Yk

j )(Yk
i − Yk

j )T and the local within-class

matrix as Lw =
P

i,j wij(Y
k
i − Yk

j )(Yk
i − Yk

j )T . The columns
of projection matrix Vk can be found by solving the generalized
eigenvalue problem

Lbv = λLwv, (10)

for the eigenvectors corresponding to the �k largest eigenvalues.
Algorithm 1 summarizes the complete LDET algorithm. We can

notice that LDET degenerates to LDE if a first-order tensor represen-
tation (equivalent to a vector representation) is used, and hence LDE
is a special case of LDET. We will show through experiments in the
next section that LDET with higher-order tensors outperforms LDE.

3.2. Algorithmic Analysis

We now shift our focus to evaluate the merits of the proposed ap-
proach in terms of its learnability and computational complexity.

Singularity and Curse of Dimensionality: In LDE, the size of Lb

and Lw is
Qp

i=1 di × Qp
i=1 di. For many applications,

Qp
i=1 di is

very large and hence the singularity problem is often encountered. In
LDET, however, the stepwise matrices Lb and Lw are of size dk×dk,
which is much smaller than that of LDE. Moreover, the objects ana-
lyzed in LDET are the column vectors of the unfolded matrices and
hence the sample size is essentially enlarged to n

Qp
i�=k di. Since dk

is much smaller than n
Qp

i�=k di especially when higher-order ten-
sors are used, it is less likely to suffer from the singularity problem.

Computational Cost: For simplicity of analysis, let us assume that
the tensors have the same dimensionality for all tensor dimensions,
i.e., di = d for all i = 1, . . . , p. Therefore, the time complexity
of LDE is O(d3p), while in LDET, the complexity of computing the
matrices is O(pdp+1) and the complexity of solving the generalized
eigenvalue problem is O(pd3) for each iteration. Apparently the
computational complexity of LDET is much lower. Although LDET
has no closed-form solution and many iterations are required to solve
the optimization problem, in practice it is still much faster than LDE
due mainly to the simplicity of the computation required in each
iteration.

4. EXPERIMENTAL RESULTS

In this section, we empirically evaluate the performance of LDET
on face recognition. Since LDE has been shown to outperform most
other subspace learning methods for face recognition [9], we only
compare LDET with LDE here due to space limitation. LDET/2
and LDET/3 refer to LDET using second- and third-order tensors,
respectively.

Dataset: Our experiments are performed on FERET [16] which is
the most representative benchmark face dataset. In our experiments,
47 persons are randomly selected from the FERET dataset with 10
different gray-scale images per person. Five images for each person
are randomly chosen for training and the remaining five for testing.
The images are downsampled to a resolution of 56 × 46. Following
[17], we extract 40 Gabor features with five different scales and eight
different directions in the downsampled positions. Thus each image
is encoded as a third-order tensor of size 56 × 46 × 40 for LDET/3.
To overcome the singularity problem in LDE, PCA is first applied to
reduce the data dimensionality to n − 1.

Effect of the number of iterations Tmax: We first study the effect of
the number of iterations (Tmax in Algorithm 1) on LDET/2. We also
vary the numbers of nearest neighbors (k and k′) for the neighbor-
hood graph construction. For simplicity, we set k = k′ to be equal to
10 or 100. Figure 1 shows the classification rates of a nearest neigh-
bor classifier under different settings, with �1 = �2 = 6. It is clear
that both curves do not change much with the number of iterations.
The implication is that we can simply set Tmax = 1 in Algorithm 1
without having to repeat the outer loop.

Effect of the reduced dimensionality �: We next study the effect of
the reduced dimensionality � on both the LDE and LDET algorithms,
where the value of � is

Qp
k=1 �k for LDET. We have performed ex-

tensive experiments using different values of �. For simplicity, we
choose the same dimensionality for all subspaces, i.e., �i = p

√
� for

i = 1, . . . , p. Figure 2 summarizes the results. The recognition rates
of LDET/2 and LDET/3 become stabilized and reach the maximum
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Fig. 2. Performance comparison of LDE and LDET under different
settings.

values when the dimensionality reaches 8 to 27, while LDE reaches
the maximum at around 50 to 60.

From all the experiments, we can say that LDET is a more effec-
tive subspace learning algorithm than LDE, especially for LDET/3
which achieves the highest recognition accuracy.

5. CONCLUSION

In this paper, we have proposed a tensor extension to the recently
proposed LDE algorithm for subspace learning. By addressing the
generalization and data representation problems simultaneously, the
proposed LDET algorithm outperforms LDE in all our face recog-
nition experiments. A natural extension of the empirical study is
to consider even higher-order tensors, such as applying LDET/4 to
video-based face recognition.
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