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Abstract--We study the use of kernel subspace methods that 
learn low-dimensional subspace representations for classification 
tasks. In particular, we propose a new method called kernel 
weighted nonlinear discriminant analysis (KWNDA) which 
possesses several appealing properties.  First, like all kernel 
methods, it handles nonlinearity in a disciplined manner that is 
also computationally attractive.  Second, by introducing weighting 
functions into the discriminant criterion, it outperforms existing 
kernel discriminant analysis methods in terms of the classification 
accuracy.  Moreover, it also effectively deals with the small 
sample size problem.  We empirically compare different subspace 
methods with respect to their classification performance of facial 
images based on the simple nearest neighbor rule.  Experimental 
results show that KWNDA substantially outperforms competing 
linear as well as nonlinear subspace methods. 
 

1. INTRODUCTION 
 
Subspace methods play an important role in many pattern 

classification tasks.  Principal component analysis (PCA) and 
linear discriminant analysis (LDA) are two classical linear 
subspace methods that have been widely used for dimensionality 
reduction and feature extraction [1-7].  For solving classification 
problems, LDA-based algorithms generally outperform PCA-
based ones since the former approach finds low-dimensional 
representations that maximize the differences between classes 
while the latter seeks low-dimensional representations that simply 
maximize data variance without taking into account class label 
information.  However, many LDA-based algorithms suffer from 
the small sample size problem.  The traditional solution to this 
problem is to utilize PCA concepts in conjunction with LDA, as 
was done for example in Fisherfaces [2].  Recently, more effective 
solutions, sometimes referred to as direct LDA (DLDA) methods, 
have been proposed [3-5].  While LDA-based methods have been 
demonstrated to perform well on many pattern classification 
applications, their performance is unsatisfactory when applied to 
problems that require nonlinear decision boundaries.  For example, 
they are inadequate for many face recognition applications since 
high variability in facial features, including illumination, facial 
expressions and pose variations, incurs high nonlinearity in the 
representation space.  Thus, it seems reasonable to assume that 
nonlinear generalizations of LDA should be able to provide better 
solutions. 

The past decade has witnessed the emergence of some powerful 
methods called kernel methods, which make use of the so-called 
“kernel trick” to devise nonlinear generalizations of linear 
methods while preserving the computational tractability of their 
linear counterparts.  The first such method is support vector 
machine (SVM), which essentially constructs a separating 
hyperplane in the high-dimensional (possibly infinite-dimensional) 
feature space F obtained through a nonlinear mapping 

: nR Fφ → . The kernel trick allows inner products in the feature 
space to be computed entirely in the input space without 

performing the mapping explicitly.  Thus, for linear methods 
which can represent the relationships between data in terms of 
inner products only, they can readily be “kernelized” to give their 
nonlinear extensions [8-12].  As nonlinear extensions of PCA and 
LDA, kernel PCA (KPCA) and kernel nonlinear discriminant 
analysis (KNDA) have already been shown to provide better 
performance than their linear counterparts in several applications 
[8-12].  The basic ideas of KPCA and KNDA are to first map each 
input data point x into a feature space F via the nonlinear 
mappingφ and then perform PCA and LDA, respectively, in F .  
Similar to their linear counterparts, KNDA-based methods are 
generally better than KPCA-based methods for classification tasks.  
Mika et al. [9] first proposed a two-class kernel discriminant 
analysis algorithm, which was later generalized by Baudat and 
Anouar [10] to give the generalized discriminant analysis (GDA) 
algorithm for multi-class problems.  However, same as traditional 
LDA-based algorithms, these KNDA-based algorithms also suffer 
from the small sample size problem and discard some significant 
discriminatory information.  To overcome this problem, Lu et al. 
[11] proposed the kernel direct discriminant analysis (KDDA) 
algorithm.  More recently, realizing the limitation of KDDA that 
some significant discriminatory information is still lost, we 
proposed a further enhanced algorithm called kernel generalized 
nonlinear discriminant analysis (KGNDA) algorithm [12]. 

However, for multi-class classification tasks, the existing 
discriminant analysis algorithms, including KGNDA, are not 
optimal as they tend to overemphasize the classes that are more 
separable.  A solution to this problem is to introduce weighting 
functions to the discriminant criterion function [7], where a 
weighted between-class scatter matrix is defined to substitute for 
the conventional between-class scatter matrix.  Classes that are 
closer to each other in the feature space, and thus can potentially 
impair the classification performance significantly, should be 
more heavily weighted in the input space.  Based on this idea of 
incorporating weighting functions, we propose in this paper an 
improvement of KGNDA giving rise to a new method called 
kernel weighted nonlinear discriminant analysis (KWNDA).  This 
new method possesses several appealing properties.  First, like all 
kernel methods, it handles nonlinearity in a disciplined manner 
that is also computationally attractive.  Second, by introducing 
weighting functions into the discriminant criterion, it outperforms 
existing kernel discriminant analysis methods in terms of the 
classification accuracy.  Moreover, it also effectively deals with 
the small sample size problem.  We apply KWNDA to face 
recognition where both the nonlinearity problem and the small 
sample size problem widely exist. 

 

2. EXISTING KERNEL NONLINEAR DISCRIMI-
NANT ANALYSIS METHODS 

 
As discussed above, KNDA methods essentially perform LDA 

in the feature space F .  Computation of the inner product of two 
vectors in F does not require applying the nonlinear 



mapping φ explicitly when the kernel trick is applied through 
using an inner product kernel function: 

( , ) ( ) ( )Tk x y x yφ φ= .                                     (1) 
Let ( 1, , )ix i N= … denote one of N  vectors in the training set X .  
X can be partitioned into c disjoint subsets iX , i.e., 1
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vectors in F .  We maximize the following criterion function to 
find the optimal coefficients w for the discriminants: 
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KNDA algorithms that optimize (5) generally utilize the theory of 
reproducing kernels, which can express w as [8, 9]: 
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Substituting (6) into (5), J(w) can be re-expressed as a function of 
1( , , )Nα β β= …  as follows: 
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which is used as an equivalent criterion function for optimization, 
where bK and wK can be computed easily by applying the kernel 
trick.  Details of the derivation can be found in [9]. 

Solving the above optimization problem is equivalent to solving 
a conventional eigenvalue problem to give the leading 
eigenvectors of 1

w bK K−  with the largest eigenvalues.  However, in 
the small sample case, wK is not a full-rank matrix and hence is not 
invertible.  A traditional solution used to circumvent this problem 
is to replace the inverse matrix 1

wK −  with the pseudoinverse of wK , 
as was done for example in GDA [10].  However, this method 
tends to lose the null space of wK  which potentially contains 
significant discriminatory information that can help to improve the 
classification accuracy. 

To overcome the limitation of GDA, Lu et al. [11] proposed 
KDDA to apply the DLDA algorithm of Yu and Yang [3] in F .  
The underlying idea of KDDA is based on the assumption that 
discriminatory information in F only exists in the intersection 
space 1( (0) (0))w bS S −∩ , where (0)wS = { | 0}wx S x = and 

1(0) { | 0}b bS x S x− = ≠ , and it intends to seek this intersection space.  
To do so, KDDA first computes 1(0)bS − by the eigenanalysis 
of bS in F and then computes the discriminant coefficients by the 
eigenanalysis of the projection of wS  in 1(0)bS − .  Since the 
dimensionality of 1(0)bS − is no more than 1c − , it is clear that the 
dimensionality of 1( (0) (0))w bS S −∩  obtained in KDDA is less 
than 1c − .  However, according to [5, 12], it is obvious that the 
dimensionality of 1( (0) (0))w bS S −∩  is 1c − in essence, since the 
dimensionality of F is far greater than the number of training 
examples in F .  As a result, KDDA still discards some significant 
discriminatory information. 

Recently, we proposed KGNDA to address the small sample 
size problem [12].  To prevent the loss of significant 
discriminatory information, the procedure of computing optimal 

discriminant coefficients in F , which essentially can be 
considered as a nonlinear extension of DLDA [4, 5], is carried out 
in KGNDA.  KGNDA is based on the assumption that 
discriminatory information in F  can be obtained from the 
intersection space 1( (0) (0))w tS S −∩ , since the intersection space 

1( (0) (0))w tS S −∩ is equivalent to the intersection space 
1( (0) (0))w bS S −∩ in practice, where 1(0)tS − = { | 0}tx S x ≠ .  To 

obtain 1( (0) (0))w tS S −∩ , KGNDA first computes 1(0)tS − by the 
eigenanalysis of tS in F , and then obtains this intersection space 
by the eigenanalysis of the projection of wS in 1(0)tS − .  
Since 1( (0) (0))w tS S −∩ can be obtained, KGNDA will compute the 
discriminant coefficients in this intersection space without losing 
the significant discriminatory information.  More details can be 
found in [12]. 

 

3. KERNEL WEIGHTED NONLINEAR DISCRIMI-
NANT ANALYSIS ALGORITHM 

 
In this section, we present a new KWNDA algorithm to further 

improve the performance of KGNDA by incorporating weighting 
functions into the discriminant criterion of KGNDA. 

The conventional discriminant criterion in (5) is not related to 
the classification ability of the feature representation obtained and 
overemphasizes the classes that are more separable in the input 
feature space F .  As a result, the classification ability will be 
impaired.  A solution to this problem is to introduce weighting 
functions to the discriminant criterion [7], where a weighted 
between-class scatter matrix is defined to replace the conventional 
between-class scatter matrix.  Classes that are closer together in 
the output space, and thus can potentially impair the classification 
performance, should be more heavily weighted in the input space.  
According to [7], a weighted between-class scatter 
matrix BS in F can be defined as: 
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,i j

d is the Euclidean distance between the means of class i  
and class j in F , the weighting function

,
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p∈` .  It is worthy to mention that matrix BS equals matrix bS  
under the special case of ,( ) 1i jw d = .  In addition, it is clear 
that ,i jd in F can be calculated by the kernel trick as follows: 
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Hence, the weighted discriminant criterion in F is expressed as: 
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where T B wS S S= + .  According to [11], it is obvious that the 
former is equivalent to the latter.  As in KGNDA, we assume that 
the significant discriminatory information with respect 
to 2 ( )J w only exists in the intersection space 1(0) (0)w TS S −∩ , 
where 1(0) { | 0}T TS x S x− = ≠ .  However, it is intractable to 
compute this intersection space, due to two reasons. First, (0)wS is 
computationally intractable since the dimensionality of F may be 
arbitrarily large or even infinite.  Second, it is intractable to 
compute 1(0)TS − by the eigenanalysis of TS , since T B wS S S= + . 



Fortunately, we have proven the following lemma to overcome 
this problem.  The detailed proof is omitted here due to space 
limitation. 
 

Lemma 1. The space 1(0) { | 0}t tS x S x− = ≠ is equivalent to the 
space 1(0) { | 0}T TS x S x− = ≠ , where tS is the conventional 
population scatter matrix and T B wS S S= + . 

 
From this lemma, 1(0) (0)w TS S −∩  can be obtained by calculating 

1(0) (0)w tS S −∩ . From KGNDA, this intersection space can be 
calculated by the eigenanalysis of wS and tS in F , as follows: 

 
Eigenanalysis of tS in F : To obtain 1(0)tS − , we need to compute 
the orthonormal bases of 1(0)tS − .  Then, tS in (4) can be rewritten 
as: 

 
1

( ) ( )N T T
t i i t ti

S x xφ φ
=

= = Φ Φ∑                         (11) 

where ( ) ( ( ) )1/i ix x mNφ φ= − , 1[ ( ), , ( )]t Nx xφ φΦ = … . 
According to [11, 12], the orthonormal bases of 1(0)tS −  can be 

obtained by computing the corresponding orthonormal 
eigenvectors of tS with positive eigenvalues. Since the 
dimensionality of F , denoted as 'N , could be arbitrarily large or 
even infinite, it is intractable to directly compute those 
orthonormal eigenvectors of the ' 'N N× matrix tS .  Fortunately, 
those orthonormal eigenvectors can be indirectly derived from the 
eigenvectors of T

t tΦ Φ (with size N N× ). 
For all training examples 1{ ( )}N

i ixφ = in F , we can define 
an N N×  kernel matrix K as follows: 
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                                    (12) 

where , ( ) ( )i j i j
Tk x xφ φ= .  Hence, by the kernel trick, T

t tΦ Φ can 
be expressed as: 

2
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where N NI × is the N N× matrix with all terms being one.  Let iλ  
and ie ( 1, ,i m= … ) be the ith positive eigenvalue and the 
corresponding eigenvector of T

t tΦ Φ , respectively.  According to 
[12], it is clear that 1 2

i t i iv e λ−= Φ ( 1, ,i m= … ) constitute the 
orthonormal bases of 1(0)tS − . 
 
Eigenanalysis of wS in F : Projecting wS into the subspace spanned 
by 1 2

i t i iv e λ−= Φ ( 1, ,i m= … ), it is clear that the 
projection wS of wS in this subspace can be expanded as: 

T T T
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where 1( , , )N N mdiag A A×Α = … , iA is the i iN N× matrix with all 
terms being1/ iN . 

Let 1[ , , ]lP γ γ= … be the corresponding eigenvectors of the zero 
eigenvalues of wS  (generally, 1l c= − ), so it is clear that 

1(0) (0)w TS S −∩ can be spanned by VP . Then, the optimal 
discriminant vectors with respect to 2 ( )J w  can be calculated 
in 1(0) (0)w TS S −∩ without the loss of significant discriminatory 
information.  From KGNDA, since the between-class distance is 
equal to zero in 1(0) (0)w TS S −∩ , the weighted discriminant 
criterion 2 ( )J w in (10) can be replaced by 2

ˆ ( ) T T
BJ w P V S VP= .  By 

the kernel trick, it can be expanded as: 
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where 1[ , , ]lP γ γ= … , 1[ , , ]mV v v= … , 1/ 2 1 / 2
1 1( , , )m mE e eλ λ− −= … , 

, [ ]T
i j i j j iZ KL HKL KL HKL= + − − , H is the N N× matrix with all 

terms being 1 N , iL is the 1N × matrix, where the terms 
corresponding to class i  are1 iN  and the remaining terms are zero. 
It is clear that the matrix T T

BP V S VP is a tractable l l× matrix. 
Let iz be the ith eigenvector of T T

BP V S VP , where 1, ,i l= … , 
sorted in decreasing order of the corresponding eigenvalue '

iλ . 
According to KGNDA, it is clear that ( 1, , )i iY VPz i l= = …  
constitute the optimal discriminant vectors with respect to the 
weighted discriminant criterion 2 ( )J w in F . This gives the new 
KWNDA algorithm.  For an input pattern x , its projection into the 
subspace spanned by 1[ , , ]lY YΘ = … can be calculated 
by ( )Tz xφ= Θ , and this expression can be rewritten via the kernel 
trick as follows: 

1( , , )T
lz Pz Pz= … i  

1
1 1

1 1 1( ( , ) ( , ), , ( , ) ( , ))
N N

T T
i N N

i i
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N N N= =
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where 1/ 2 1 / 2
1 1( , , )m mE e eλ λ− −= … , 1[ , , ]lP γ γ= … . 

Thus, KWNDA can give a low-dimensional representation with 
enhanced discriminatory power.  Moreover, this method also 
effectively addresses the nonlinearity problem and the small 
sample size problem. 

 

4. EXPERIMENTAL RESULTS 
 
To assess the performance of the KWNDA method proposed in 

this paper, we conduct some face recognition experiments to 
compare KWNDA with other subspace methods.  Note that 
typical face recognition tasks suffer from the small sample size 
problem and require nonlinear methods, which are particularly 
suitable for demonstrating the strengths of KWNDA.  Our 
experiments are performed on a database of 1045 images 
corresponding to 67 subjects by combining the following two 
image sources: 
1) 47 subjects are selected from the FERET database, with each 

subject contributing 10 gray-scale images. 
2) 20 subjects are selected from the UMIST database, with a 

total of 575 gray-scale images. 
The gray-level and spatial resolutions of all images are 256 and 
92×112, respectively.  There exist large variations in illumination, 
facial expressions, and pose variations.  As a result, the 
distribution of the face image patterns is highly nonlinear and 
complex. 

The database is randomly partitioned into two disjoint sets for 
training and testing.  Five images per subject are randomly chosen 
for training while the rest for testing.  Thus, the training and test 
sets consist of 335 and 710 images, respectively.  For each feature 
representation obtained by one subspace method, we use a simple 
nearest neighbor classifier with the Euclidean distance measure to 
assess the classification performance.  Each experiment is 
repeated 10 times and the average classification rates are reported 
below. 

The first experiment compares KWNDA with several linear 
subspace methods for face recognition, including eigenfaces [1], 
Fisherfaces [2], enhanced Fisher linear discriminant model (EFM) 
[6], Yu and Yang’s DLDA [3], and Huang et al.’s DLDA [4].  In 
addition, for the sake of simplicity, KWNDA uses the RBF kernel 
function 1 2( ( , )k z z = 2 9

1 2exp(|| || 10 ))z z− and weighting function 
4( )w d d −= .  The experimental results shown in Fig.1 reveal that, 

as expected, KWNDA outperforms the linear subspace methods 
significantly. 
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Fig.1. Comparative performance of KWNDA and several linear subspace 
methods, where the RBF kernel function 2 9

1 2 1 2( ( , ) exp(|| || 10 ))k z z z z= −  
and weighting function 4( )w d d −= are used for KWNDA. 
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Fig.2. Comparative performance of KWNDA and several kernel nonlinear 
subspace methods, where the RBF kernel function 

2 9
1 2 1 2( ( , ) exp(|| || 10 ))k z z z z= − and different weighting functions 

2 3 4( ) { , , }w d d d d− − −= are used for KWNDA. 

Table 1 Average error percentages for different subspace methods 
when compared with KWNDA 

Weighting function 2d −  3d −  4d −  
Huang’s DLDA [4] 81.20% 79.91% 79.71%

EFM [6] 70.14% 69.11% 69.04%
KPCA [8] 70.14% 69.03% 68.88%
GDA [10] 75.65% 74.47% 74.32%

KDDA [11] 91.82% 90.40% 90.25%
KGNDA [12] 95.82% 94.31% 94.09%

 
The second experiment compares KWNDA with several kernel 

nonlinear subspace methods for face recognition, including KPCA 
[8], GDA [10], KDDA [11], and KGNDA [12].  Fig.2 shows the 
classification rates obtained for these different subspace methods.  
For our KWNDA method, the RBF kernel function 

2 9
1 2 1 2( ( , ) exp(|| || 10 ))k z z z z= − and different weighting 

functions 2 3 4( ) { , , }w d d d d− − −= are used.  It can be seen that 
KGNDA is better than KPCA, GDA and KDDA, but KWNDA 
with different weighting functions further improve the 
performance of KGNDA.  When the number of features is 30, the 
accuracy of KWNDA with weighting function 4( )w d d −=  is 
89.6% while that of KGNDA is 88.1%.  According to the 
definition of the average error percentage in [11], the average 
error percentage of the error rates of KWNDA over those of some 
other method is calculated as 66

5
(1 ) (1 )i ii

α β
=

− −∑ , where iα and 
iβ are the average recognition rates of KWNDA and one of the 

methods above, respectively, and i refers to the number of feature 
vectors.  The average error percentages for different subspace 
methods are summarized in Table 1, showing that KWNDA is 
more effective than all other methods.  More experiments have 
been performed by us but the results, which are consistent with 

those presented here, are not included in this paper due to space 
limitation.  In general, all results obtained show than KWNDA 
outperforms the other subspace methods at least for the face 
recognition experiments we performed.  The favorable results 
provide empirical justification for the discussions above which 
claim that KWNDA is able to generalize over and overcome some 
of the limitations of previous subspace methods. 

 

5. CONCLUSION 
 
We have presented a new kernel subspace method, called 

KWNDA, that learns low-dimensional representations for 
classification tasks.  By incorporating weighting functions into the 
discriminant criterion, we improve upon the KGNDA method 
proposed by us before.  Experimental results on face recognition 
show that KWNDA consistently outperforms existing linear and 
nonlinear subspace methods.  Besides face recognition, we expect 
that KWNDA can also deliver excellent performance in other 
classification applications, including content-based image 
indexing and retrieval as well as video and audio classification. 
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