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Abstract

In this paper, we propose a novel metric learning method
based on regularized moving least squares. Unlike most
previous metric learning methods which learn a global Ma-
halanobis distance, we define locally smooth metrics using
local affine transformations which are more flexible. The
data set after metric learning can preserve the original
topological structures. Moreover, our method is fairly ef-
ficient and may be used as a preprocessing step for various
subsequent learning tasks, including classification, cluster-
ing, and nonlinear dimensionality reduction. In particular,
we demonstrate that our method can boost the performance
of content-based image retrieval (CBIR) tasks. Experimen-
tal results provide empirical evidence for the effectiveness
of our approach.

1. Introduction

Metric learning plays a crucial role in machine learning
research, as many machine learning algorithms are based
on some distance metrics. Metric learning for classification
tasks has a long history that can be dated back to some early
work for nearest neighbor classifiers more than two decades
ago [12]. More recent work includes learning locally adap-
tive metrics [3, 4, 6] and global Mahalanobis metrics [5, 13].
Metric learning methods have also been proposed for semi-
supervised clustering tasks, with supervisory information
available in the form of either limited labeled data [15] or
pairwise constraints [1, 2, 14]. Instead of devising metric
learning methods for specific classification or clustering al-
gorithms, it is also possible to devise generic metric learn-
ing methods that can be used for both classification and
clustering tasks, as in [15].

An advantage of many metric learning methods that
learn global Mahalanobis metrics is that learning can of-
ten be formulated as convex optimization problems with
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no local optima and they can be solved using efficient al-
gorithms. For example, Xing et al. [14] formulated semi-
supervised clustering with pairwise constraints as a convex
optimization problem. Bar-Hillel et al. [1] proposed a sim-
pler, more efficient method called relevant component anal-
ysis (RCA) to solve essentially the same problem. More
recently, Weinberger et al. [13] proposed a metric learning
method for nearest neighbor classifiers, called large mar-
gin nearest neighbor (LMNN) classification, that is based
on a margin maximization principle similar to that for sup-
port vector machines (SVM). The metric learning problem
can be formulated as a semi-definite programming (SDP)
problem. Although local information is used for metric
learning in LMNN making the problem more tractable, the
Mahalanobis metric learned is still global in the sense that
the same linear transformation is applied to all data points
globally. For many real-world applications, however, glob-
ally linear transformations are inadequate. One possible
extension is to perform locally linear transformations that
are globally nonlinear, so that different local metrics are
applied at different locations of the input space. For ex-
ample, Chang and Yeung [2] explored this possibility for
semi-supervised clustering tasks. However, the optimiza-
tion problem suffers from local optima and the intra-class
topological structure of the input data cannot be preserved
well during metric learning. Other algorithms that exploit
similar local transformation ideas also experience similar
computational difficulties.

In this paper, our goal is to get the best of both worlds.
Specifically, we want to devise a more flexible metric learn-
ing method that can perform locally linear transformations,
yet it is as efficient as algorithms for learning globally linear
metrics. We refer to our method as locally smooth metric
learning (LSML), which is inspired by the method of mov-
ing least squares for function approximation from pointwise
scattered data [8]. However, the optimization problem for
LSML is significantly different from that for previous meth-
ods, because we formulate the problem under a regulariza-
tion framework with which unlabeled data can also play
a role. This is particularly crucial when labeled data are
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scarce. The advantages of LSML are summarized as fol-
lows: (1) It allows different local metrics to be learned at
different locations of the input space. (2) The local met-
rics vary smoothly over the input space so that the intra-
class topological structure of the data can be preserved dur-
ing metric learning. (3) It is as efficient as global linear
metric learning methods. (4) It is a generic metric learning
method that can be used for various semi-supervised learn-
ing tasks, including classification, clustering, and nonlinear
dimensionality reduction.

The rest of this paper is organized as follows. We present
our LSML method in Section 2. We formulate the optimiza-
tion problem as solving a set of regularized moving least
squares problems and then propose an efficient method to
solve them. Section 3 presents some experimental results
for different semi-supervised learning tasks. We then apply
our metric learning method to content-based image retrieval
(CBIR) in Section 4. Finally, Section 5 gives some conclud-
ing remarks.

2. Our Method

2.1. Locally Smooth Metrics

Let X = {x1, . . . ,xl,xl+1, . . . ,xn} denote n data
points in a d-dimensional input space Rd. For semi-
supervised learning, we assume that supervisory side infor-
mation is available for the first l data points. The side infor-
mation, represented by a set S , can be in the form of labels
for data points or pairwise constraints between data points.
Intuitively, we want to perform local transformations on the
data points such that the points that belong to the same class
or are considered similar according to the similarity con-
straints will get closer after they are transformed. Similar
to [2], we resort to locally linear transformations. More
specifically, for each data point xi ∈ X ⊂ Rd, we define
the corresponding locally linear transformation as:

fi(x) = Aix + bi, (1)

where Ai denotes a d × d transformation matrix and bi a
d-dimensional translation vector. After metric learning, x is
transformed to fi(x).

Note that a different locally linear transformation
fi( · ;Ai,bi) is associated with each input data point xi. It
would be desirable if fi( · ;Ai,bi) changes smoothly in the
input space so that the transformed data points after metric
learning can preserve the intra-class topological structure of
the original data. Since there are n locally linear transfor-
mations, one for each input data point, we have a large num-
ber of parameters to determine. In the next two subsections,
we propose an efficient method for solving this problem.

2.2. Regularized Moving Least Squares

To compute the locally linear transformations for all in-
put data points, we formulate metric learning as a set of n
optimization problems. We extend the method of moving
least squares [8] to regularized moving least squares under
a regularization framework. For each input data point xi,
we compute its local affine transformation by minimizing
the following objective function:

J(Ai,bi) =
l∑

j=1

θij‖fi(xj)−yj‖2+λ

n∑

j=1

wij‖fi(xi)−fj(xj)‖2.

(2)
The first term in the objective function is the moving least
squares term. As in [11], we define the moving weight func-
tion that depends on both xi and xj as θij = 1/‖xi−xj‖2.
For the first l data points, the target location of xj after met-
ric learning is denoted as yj which can be computed from
the input data and the side information. Although it has
been demonstrated that the method of moving least squares
works very well for interpolation and the learned functions
fi( · ;Ai,bi) vary smoothly [8], we notice that performance
degrades when the data points with side information are not
evenly distributed in the input space. The second term in
Equation (2) is to address this problem through regulariza-
tion by incorporating unlabeled data. It restricts the de-
gree of local transformation to preserve local neighborhood
relationships. Like graph-based semi-supervised learning
methods [16], we consider the n points as corresponding
to a graph consisting of n nodes, with a weight between
every two nodes. Since the weights wij are similar to the
edge weights in graph-based methods, we also define wij

as wij = exp(−‖xi − xj‖2/σ2) with σ > 0 specifying the
spread. To combine the two terms, the parameter λ > 0
controls the relative contribution of the regularization term
in the objective function.

The target points yj (j = 1, . . . , l) are set differently for
different learning tasks. For classification tasks with partial
label information, one possibility is to set yj to the mean
of all xk’s with the same label as xj .For clustering tasks
with some given pairwise similarity constraints, we may set
yj by pulling similar points towards each other. We will
show some examples on different learning tasks in the next
section.

2.3. Optimizing the Objective Functions

Note that the objective function J(Ai,bi) for the ith
local transformation involves the parameters of all n lo-
cal transformations, fj( · ;Aj ,bj) (j = 1, . . . , n). Since
J(Ai,bi) is quadratic in Ai and bi, in principle it is possi-
ble to obtain a closed-form solution for the parameters of all
n transformations by solving a set of n equations. This ap-
proach is undesirable, though, as it requires inverting a pos-



sibly large n × n matrix. We propose here a more efficient
alternative approach for obtaining an approximate solution.

More specifically, we estimate fi( · ;Ai,bi) by mini-
mizing a modified form of Equation (2), with the regu-
larization term replaced by one that incorporates only the
i − 1 local transformations already estimated in the previ-
ous steps. We first estimate the local transformations for
the first l data points with side information available. For
the remaining n − l local transformations, we order them
such that the transformations for the data points closer to
the first l points are estimated before those that are farther
away. This may be seen as a process of propagating the
changes from the labeled points to the unlabeled points. Let
ŷj = f̂j(xj) = Âjxj + b̂j denote the new location of
xj after transformation. Substituting Equation (1) into the
modified form of Equation (2), we have the following ap-
proximate objective function:

J(Ai,bi) =
l∑

j=1

θij‖Aixj + bi − yj‖2 +

λ

i−1∑

j=1

wij‖Aixi + bi − ŷj‖2. (3)

We can obtain a closed-form solution for Âi and b̂i as:

Âi = (Di − ȳix̄T
i )(Ci − x̄ix̄T

i )+, (4)

b̂i = ȳi −Aix̄i, (5)

where + denotes the pseudoinverse and x̄i, ȳi, Ci and Di

are defined as:

x̄i =

∑l
j=1 θijxj + λ

∑i−1
j=1 wijxi∑l

i=1 θij + λ
∑i−1

j=1 wij

,

ȳi =

∑l
ji=1 θijyj + λ

∑i−1
j=1 wijŷi∑l

i=1 θij + λ
∑i−1

j=1 wij

,

Ci =

∑l
j=1 θijxjxT

j + λ
∑i−1

j=1 wijxixT
i∑l

i=1 θij + λ
∑i−1

j=1 wij

,

Di =

∑l
j=1 θijyjxT

j + λ
∑i−1

j=1 wijŷjxT
i∑l

i=1 θij + λ
∑i−1

j=1 wij

.

For each local affine transformation, the main computation
is to find the pseudoinverse of a d × d matrix. Thus the
algorithm is very efficient as long as d is not exceptionally
large.

2.4. Algorithm and an Illustrative Example

We summarize the LSML algorithm as follows:

Input: data set X = {x1, . . . ,xn}, side information S;

Compute target points: yi (i = 1, . . . , l);
Metric learning:

sort the data points in {xl+1, . . . ,xn};
For i = 1 to n do

compute local affine transformation using (4), (5);
End

Output: Âi, b̂i (i = 1, . . . , n).

There are only two free parameters in the LSML algorithm,
σ and λ. We set σ2 to be the average squared Euclidean
distance between nearest neighbors in the input space and λ
to some value in (0, 1] which can be determined by cross-
validation.

Let us first look at an illustrative example using our pro-
posed LSML method on the well-known 2-moon data set,
as shown in Figure 1(a). The solid black squares repre-
sent the labeled data points. We set the goal of metric
learning as moving the points with the same label towards
their center (as indicated by the arrows) while preserving
the moon structure. We first compute the locations of the
target points, as shown with black squares in Figure 1(b)
and (c). For illustration purpose, we set the target locations
to be some points along the way to the class centers. In
Figure 1(b), the data set after metric learning has shorter
moon arms. If the target points are closer to the class cen-
ters, the data set after metric learning forms more compact
classes, as shown in Figure 1(c), which are desirable for
classification and clustering tasks. From the color code, we
can see that the intra-class topological structure is well pre-
served after metric learning, showing that the learned func-
tions fi( · ;Ai,bi) (i = 1, . . . , n) vary smoothly along the
arms of the moons. Figure 1(d) and (e) demonstrate the ef-
fect of the regularization term when only a single labeled
point is available for each class. The data set after metric
learning with λ = 0 (without regularization) is shown in
Figure 1(e) and that with λ = 0.5 in Figure 1(f). As we
can see, the regularization term plays an important role in
preserving the structure of the data especially when the side
information available is scarce and unevenly distributed.

3. Experiments on Semi-Supervised Learning
Tasks

In this section, we illustrate through experiments how
the proposed LSML method can be used for different semi-
supervised learning tasks, including classification and clus-
tering. The quality of metric learning is assessed indirectly
via the performance of the respective learning tasks.

3.1. Semi-Supervised Nearest Neighbor Classifica-
tion

We use LSML with a nearest neighbor classifier and
compare its performance with that of LMNN [13], which
learns a global Mahalanobis metric for nearest neighbor



(a) Original data set (b) Transformed data (c) Transformed data

(d) Original data set (e) Transformed data (f) Transformed data

Figure 1. Locally smooth metric learning on the 2-moon data set. (a) and (d) original data set; (b), (c), (e) and (f) transformed data after
metric learning.

classification with the goal that data points from different
classes are separated by a large margin. The MATLAB code
for LMNN is provided by its authors.

We first perform some experiments on the Iris plant data
set from the UCI Machine Learning Repository. There are
150 data points from three classes with 50 points per class.
The dimensionality of the input space is 4. For visualiza-
tion, we plot the data points in a 2-D space before and after
metric learning based on the two leading principal compo-
nents of the data, as shown in Figure 2. Figure 2(a) shows
the original data set. Data points with the same point style
and color belong to the same class. As we can see, one class
(marked with red ‘+’) is well separated from the other two
classes which are very close to each other. Similar to the
2-moon data set in Figure 1, the labeled points are shown
as solid black squares. Figure 2(b) shows the metric learn-
ing result obtained by LMNN. We can see that there is less
overlap between the two nearby classes. This is expected
to lead to better classification results. Using LSML, Fig-
ure 2(c) shows even higher separability between the two
nearby classes. The data points with the same class label
have been transformed to the same location. Using 20 ran-
domly generated training sets with each set having five la-
beled points per class, the average classification rates for
a 3-nearest neighbor classifier are 91.52% for LMNN and
94.63% for LSML. With the training sets increased in size
to 10 points per class, the average classification rates for

LMNN and LSML increase to 95.83% and 95.08%, respec-
tively. This shows that LSML is particularly good when
labeled data are scarce.

We further perform more classification experiments on
two larger data sets. One data set contains handwritten dig-
its from the MNIST database.1 The digits in the database
have been size-normalized and centered to 28×28 gray-
level images. In our experiments, we randomly choose
2,000 images for digits ‘0’–‘4’ from a total of 60,000 digit
images in the MNIST training set. Another data set is the
Isolet data set from the UCI Machine Learning Reposi-
tory, which contains 7,797 isolated spoken English letters
belonging to 26 classes with each letter represented as a
617-dimensional vector. For both data sets, since the orig-
inal features are highly redundant, we first reduce the di-
mensionality by performing principal component analysis
(PCA) to keep the first 100 principal components.

The 3-nearest neighbor classification results based on
different metrics are summarized in Table 1 below. For each
metric and training set size, we show the mean classifica-
tion rate and standard deviation over 10 random runs corre-
sponding to different randomly generated training sets. We
can see that both LMNN and LSML are significantly better
than the Euclidean metric, with LSML being slightly better.

1http://yann.lecun.com/exdb/mnist/
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Figure 2. Metric learning using the Iris plant data set. (a) 4-D data set projected onto a 2-D space; data set after metric learning based on
(b) LMNN and (c) LSML.

Table 1. 3-nearest neighbor classification results based on three different distance metrics.
MNIST Isolet

% labeled data 10% 20% 10% 20%
Euclidean 0.3770 (±0.030) 0.5095 (±0.006) 0.7054 (±0.008) 0.7629 (±0.005)
LMNN 0.8711 (±0.009) 0.9270 (±0.004) 0.9111 (±0.005) 0.9337 (±0.006)
LSML 0.8959 (±0.010) 0.9315 (±0.014) 0.9336 (±0.011) 0.9480 (±0.006)

3.2. Semi-Supervised Clustering with Pairwise
Similarity Constraints

We next perform some experiments on semi-supervised
clustering with pairwise similarity constraints as side infor-
mation in S . We compare LSML with two previous metric
learning methods for semi-supervised clustering: a globally
linear method called RCA [1] and a locally linear but glob-
ally nonlinear method called locally linear metric adapta-
tion (LLMA) [2]. Euclidean distance without metric learn-
ing is used for baseline comparison. These four metrics are
used with k-means clustering and their performance is com-
pared.2 As in [1, 2, 14], we use the Rand index [10] as the
clustering performance measure. For each data set, we ran-
domly generate 20 different S sets for the similarity con-
straints and report the average Rand index over 20 runs.

We use six data sets from the UCI Machine Learn-
ing Repository: Protein (116/20/6/15), Iris plants
(150/4/3/30), Wine (178/13/3/20), Ionosphere
(351/34/2/30), Boston housing (506/13/3/40), and
Balance (625/4/3/40). The numbers inside the brackets
(n/d/c/t) summarize the characteristics of the data sets,
including the number of data points n, number of features
d, number of clusters c, and number of randomly selected
point pairs for the similarity constraints.

Figure 3 shows the clustering results using k-means with
different distance metrics. From the results, we can see that
LLMA and LSML, as nonlinear metric learning methods,

2The MATLAB code for RCA and LLMA was obtained from the au-
thors of [1] and [2], respectively.

generally outperform RCA. Moreover, LSML is compara-
ble to or even better than LLMA.

Besides semi-supervised classification and clustering,
LSML can also be used for semi-supervised embedding
tasks, where we directly specify the target point yj as the
location of xj in some low-dimensional space. We have
obtained some promising results for such embedding tasks,
showing that LSML can also be extended for visualization
and other machine learning applications. Due to space lim-
itation, however, such experimental results are omitted in
this paper.

3.3. Efficiency

Besides the promising performance of LSML for dif-
ferent semi-supervised learning tasks, our method also has
the additional advantage of being fairly efficient. As dis-
cussed in Section 2.3, each local affine transformation can
be obtained directly from Equations (4) and (5). In the ex-
periments we have performed, LSML is much faster than
LMNN [13], which solves an SDP problem based on gradi-
ent descent, and LLMA [2], which optimizes a non-convex
objective function using an iterative algorithm.

4. Experiments on Image Retrieval

For a specific feature representation, a good similarity
measure can improve the performance of image retrieval
tasks. Recently, learning distance metrics for image re-
trieval has aroused great interest in the research community.
In particular, RCA and LLMA have been applied to boost
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Figure 3. Semi-supervised clustering results on six UCI data sets based on different distance metrics.

the image retrieval performance of CBIR tasks. Besides, a
nonmetric distance learning algorithm called DistBoost [7],
which makes use of pairwise contraints and performs boost-
ing, has also demonstrated very good image retrieval results
in CBIR tasks.

In this section, we will apply our LSML algorithm to
CBIR and compare it with RCA, LLMA and DistBoost,
which are representative semi-supervised metric learning
methods that are also based on pairwise constraints as su-
pervisory information.

4.1. Image Databases and Feature Representation

Our image retrieval experiments are based on two im-
age databases. One database is a subset of the Corel Photo
Gallery, which contains 1010 images belonging to 10 dif-
ferent classes. The 10 classes include bear (122), butterfly
(109), cactus (58), dog (101), eagle (116), elephant (105),
horse (110), penguin (76), rose (98), and tiger (115). An-
other database contains 547 images belonging to six classes
that we downloaded from the Internet. The image classes
are manually defined based on high-level semantics.

We first represent the images in the HSV color space,
and then compute the color coherence vector (CCV) [9] as
the feature vector for each image. Specifically, we quantize
each image to 8×8×8 color bins, and then represent the im-
age as a 1024-dimensional CCV (α1, β1, . . . , α512, β512)T ,
with αi and βi representing the numbers of coherent and
non-coherent pixels, respectively, in the ith color bin. The
CCV representation gives finer distinctions than the use of
color histograms. Thus it usually gives better image re-
trieval results. For computational efficiency, we first apply
PCA to retain the 60 dominating principal components be-

fore applying metric learning as described in the previous
section.

4.2. Experimental Settings

The similarity constraints used in LLMA and LSML are
obtained from the relevance feedback of the CBIR system,
with each relevant image and the query image forming a
similar image pair. It is straightforward to construct chun-
klets for RCA from the similarity constraints.

Besides RCA and LLMA, we also compare the image re-
trieval performance of our method with the baseline method
of using Euclidean distance without distance learning. In
summary, the following five methods are included in our
comparative study: (1) Euclidean distance without metric
learning; (2) Global metric learning with RCA; (3) Non-
metric distance boosting with DistBoost; (4) Local metric
learning with LLMA; (5) Local metric learning with LSML.

We measure the retrieval performance based on cumu-
lative neighbor purity curves. Cumulative neighbor purity
measures the percentage of correctly retrieved images in the
k nearest neighbors of the query image, averaged over all
queries, with k up to some value K (K = 20 or 40 in our
experiments).

For each retrieval task, we compute the average perfor-
mance statistics over 5 randomly generated sets of similar
image pairs. For both databases, the number of similar im-
age pairs is set to 150, which is about 0.3% and 0.6%, re-
spectively, of the total number of possible image pairs in the
databases.

4.3. Experimental Results

Figure 4 shows the retrieval results on the first image
database based on cumulative neighbor purity curves. We
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Figure 4. Retrieval results on the first image database.
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Figure 5. Retrieval results on the second image database.

can see that local metric learning with LLMA and LSML
methods significantly improves the retrieval performance,
while LSML leads to slightly better result than LLMA. Dis-
tBoost obtains high recall with more images retrieved, but
low precision on the top ranking images, which most on-
line image retrieval engines return. The retrieval results on
the second image database are shown in Figure 5. Again,
LSML outperforms other metric learning methods.

5. Concluding Remarks

We have proposed a novel semi-supervised metric learn-
ing method based on regularized moving least squares. This
metric learning method possesses the simultaneous advan-
tages of being flexible, efficient, topology-preserving, and
generically applicable to different semi-supervised learning
tasks. In particular, this method can be used to boost image
retrieval performance.

A promising approach to the nonlinear extension of lin-
ear methods is through the so-called kernel trick. In our
future work, we will investigate a kernel version of LSML
so that the locally linear transformations are modeled as an

implicit mapping corresponding to a kernel function.
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