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Abstract. Multi-task learning aims at improving the performance of one learn-
ing task with the help of other related tasks. It is particularly useful when each
task has very limited labeled data. A central issue in multi-task learning is to learn
and exploit the relationships between tasks. In this paper, we generalize boosting
to the multi-task learning setting and propose a method called multi-task boost-
ing (MTBoost). Different tasks in MTBoost share the same base learners but with
different weights which are related to the estimated task relationships in each iter-
ation. In MTBoost, unlike ordinary boosting methods, the base learners, weights
and task covariances are learned together in an integrated fashion using an al-
ternating optimization procedure. We conduct theoretical analysis on the conver-
gence of MTBoost and also empirical analysis comparing it with several related
methods.

1 Introduction

In many real-world applications, the amount of labeled data available in a single learn-
ing task is scarce but there exist multiple related tasks. Multi-task learning [1,2,3] ex-
ploits this scenario to improve the performance of one learning task with the help of
other related tasks. This learning paradigm, which can date back to some research in
psychology and cognitive science, is inspired by human learning ability in that people
often apply the knowledge gained from previous learning tasks to help learn a new task.
For example, if a person can play Chinese chess, then (s)he will learn to play chess
more easily by transferring the knowledge gained from playing Chinese chess. Major
advances have been made in multi-task learning over the past decade. Multi-layered
feedforward neural network [1] is one of the earliest models for multi-task learning.
The units of the hidden layer in a neural network represent the common features for
data points from all tasks and each unit in the output layer usually corresponds to the
output of one task. Besides multi-layered feedforward neural networks, multi-task fea-
ture learning [4,5] also learns common features for all tasks with the difference being
that it is a regularized method. Different from these methods which learn common data
representations, some methods aim to learn similar model parameters for different tasks,
e.g., regularized multi-task support vector machine (SVM) [6] defines a new regularizer
to enforce the SVM parameters for all tasks to be close to each other. Moreover, one
widely used approach for multi-task learning is the task clustering approach [7,8,9] in
which the main idea is to group the tasks into several clusters and then learn identical or
similar data features or model parameters for the tasks within each cluster. An advan-
tage of this approach over the above mentioned methods is its robustness against outlier
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tasks because they reside in separate clusters that do not affect other tasks. Among
many existing methods proposed for multi-task learning, a central issue in multi-task
learning is to learn and exploit the pairwise relationships between tasks. There are three
types of pairwise task relationships, namely, positive task correlation, negative task cor-
relation, and task unrelatedness. However, most existing multi-task learning methods
cannot make full use of all three types of task relationships. One way to incorporate the
task relationships into a learning model is by adopting some model assumption about
task relatedness. Unfortunately, the model assumption adopted may be incorrect. Worse
still, it is not easy to verify the correctness of the model assumption. As such, it is more
desirable to take an alternative approach by learning the task relationships from data
automatically. The multi-task Gaussian process (GP) model [10] and its extension [11]
are recently proposed methods that adopt this approach under the Bayesian framework.
Moreover, Zhang and Yeung proposed a method in [12] to learn task relationships un-
der the regularization framework for classification and regression problems, and then
extended it for feature selection problems in [13].

Boosting [14], which seeks to combine multiple (weak) base learners to form a
learner with significantly better performance, has been widely used in many areas, such
as machine learning and data mining. There exist some explanations, e.g., margin the-
ory [15,16], for the success of boosting. Moreover, some studies show that boosting is
related to the additive model [17,18] in statistics. Even though boosting methods have
shown good performance in many applications, their performance is often unsatisfac-
tory when the labeled data is scarce. This calls for combining boosting and multi-task
learning [19,20].

In this paper, we generalize boosting to the multi-task learning setting via learning
and exploiting the pairwise task relationships. Our point of departure is a regularized
method in [12] which learns the task relationships in the form of a task covariance
matrix under a regularization framework and is related to maximum a posteriori (MAP)
estimation of the weight-space interpretation of the multi-task GP model [10] presented
in [11]. We then extend the formulation for boosting to give a method called multi-task
boosting (MTBoost). By viewing boosting as a feature generating process, different
tasks in MTBoost share the same base learners but with different weights which are
related to the estimated task relationships in each iteration. Unlike single-task boosting
methods which learn the base learners and weights separately, the base learners, weights
and task covariances in MTBoost are learned together in an integrated fashion using an
alternating optimization procedure. We conduct theoretical analysis on the convergence
of the MTBoost learning algorithm.

The remainder of this paper is organized as follows. We present our MTBoost model
and its learning algorithm in Section 2. Section 3 reviews some related work and Sec-
tion 4 reports experimental results on some multi-task learning applications. Concluding
remarks are given in the final section.

2 Multi-Task Boosting by Exploiting Task Relationships

Let there be m learning tasks {Ti}mi=1. For the ith task Ti, the training set consists of ni

labeled data points (xi
j , y

i
j), j = 1, . . . , ni, with xi

j ∈ R
d and its corresponding output

yij ∈ {−1, 1} for a binary classification problem.
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2.1 Task Covariance Matrix

In [10], Bonilla et al. proposed a multi-task GP model which models the pairwise task
relationships using a task covariance matrix under the Bayesian framework. However,
it is not clear how to learn the task covariance matrix for other models such as those
formulated under the regularization framework. In [12], the authors presented a regu-
larized method, shedding light on how the task covariance matrix affects the learning of
multiple tasks. More specifically, the task covariance matrix Ω is used as a parameter
matrix for the matrix-variate normal distribution [21] over the model parameters in least
squares regression or support vector machine (SVM):

A = (a1, . . . , am) ∼ MN d×m(A |0d×m, Id ⊗Ω), (1)

where ai ∈ R
d is the model parameter vector for the ith task, MN d×m(M,Σ ⊗Ω)

denotes a matrix-variate normal distribution with mean M ∈ R
d×m, row covariance

matrix Σ ∈ R
d×d and column covariance matrix Ω ∈ R

m×m. The probability density
function of the matrix-variate normal distribution is

p(X |M,Σ,Ω) =
exp

(− 1
2 tr

(
Σ−1(X−M)Ω−1(X−M)T

))

(2π)md/2|Σ|m/2|Ω|d/2 ,

where tr(·) denotes the trace of a square matrix, | · | denotes the determinant of a square
matrix, and B−1 denotes the inverse of a non-singular matrix B or the pseudo-inverse
when it is singular. From this view, we can see that Ω is used to model the covariance
between the columns in the model parameter matrix A and hence to model the task rela-
tionships since each column in A represents the model parameters of the corresponding
task.

Given the likelihood (i.e., logistic model for classification problem or Gaussian noise
model for regression problem) and the prior defined in Eq. (1), the MAP solution is
obtained by solving the following problem:

min
A,Ω

m∑

i=1

ni∑

j=1

l(aTi x
i
j , y

i
j) +

λ

2
tr(AΩ−1AT )

s.t. Ω � 0, tr(Ω) = 1, (2)

where l(·, ·) defines the empirical loss corresponding to the likelihood, λ is a regu-
larization parameter which balances the tradeoff between the empirical loss and the
regularization term, and Ω � 0 means that the matrix Ω is positive semidefinite. The
first constraint in problem (2) is needed because Ω is defined as a task covariance ma-
trix and the second constraint serves to restrict the complexity of Ω. The second term
in the objective function of problem (2) is derived from the matrix-variate normal prior
in Eq. (1) and is used to regularize the task relationships.

It is easy to show that problem (2) is a convex problem as long as the loss function
l(·, ·) is convex, as proved in [12]. We will show how to design a boosting algorithm
according to problem (2).



700 Y. Zhang and D.-Y. Yeung

2.2 Multi-Task Boosting

In a boosting algorithm, we are given a fixed class of functions (or called base hy-
potheses) denoted by F and are required to find a linear combination of functions
in F , denoted by lin(F), that minimizes a cost functional C(·) on lin(F). For ex-
ample, in our experiments, due to the high-dimensional data involved, a linear least-
squares SVM is utilized as the base learner. The final hypothesis can be written as
F (x) =

∑Q
t=1 wtft(x) where ft ∈ F and wi ∈ R. So, boosting may be viewed as

finding for each data point x a new feature representation z = (f1(x), . . . , fQ(x))
T

and also a coefficient vector. From this view, we can extend problem (2) for multi-task
boosting as

min
W,Ω,{ft}

m∑

i=1

ni∑

j=1

l(wT
i z

i
j , y

i
j) +

λ

2
tr(WΩ−1WT )

s.t. zij = (f1(x
i
j), . . . , fQ(x

i
j))

T ∀i, j
Ω � 0, tr(Ω) = 1, (3)

where W = (w1, . . . ,wm). In this formulation, we can see that the final hypothesis Fi

for the ith task can be expressed as Fi =
∑Q

j=1 wijfj , where wij is the jth element of
wi. So different tasks share the same base hypotheses but with different weights.

However, here we cannot know the base hypotheses in advance. So we view this
model as an additive model [17] and use the gradient boosting technique [18,22] to
learn the base hypotheses and their weights. More specifically, in the t-th iteration, the
existing combined hypothesis for the ith task is denoted by F

(t−1)
i and the optimization

problem is

min
wt,Ω,ft

m∑

i=1

C(F
(t−1)
i + witft) +

λ

2
tr(WtΩ

−1WT
t )

s.t. Ω � 0, tr(Ω) = 1, (4)

where Wt is the weight matrix until the tth iteration with (i, j)th element as wji and
wt = (w1t, . . . , wmt) denotes the new weight vector obtained in the tth iteration.
Here C(Fi) =

∑ni

j=1 l(Fi(x
i
j), y

i
j). Since we mainly consider the classification prob-

lem in this section, we take the margin cost functional to be the loss function, i.e.,
l(F (xi

j), y
i
j) = c(yijF (xi

j)) for some monotonically decreasing function c(·). In this
paper, c(·) takes the form of c(x) = ln(1+ exp(−x)) which is widely used in boosting
algorithms such as LogitBoost [17].

Since problem (4) is still not easy to solve, we use the majorization-minimization (MM)
algorithm [23] to solve it. The MM algorithm is an iterative algorithm which seeks an up-
per bound of the objective function based on the solution of the previous iteration as a
surrogate function for a minimization problem and minimizes the surrogate function in-
stead of the original objective function. It has been proved that the MM algorithm is guar-
anteed to find a local optimum. Here for simplicity, we just run one iteration of the MM
algorithm with the initial solution of ft as a zero function. Since c(x) = ln(1+exp(−x))
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is a concave function due to the fact that ∂2c(x)
∂2x = − exp(−x)

(1+exp(−x))2 < 0, C(·) is also a
concave functional and hence we have

C(F
(t−1)
i + witft) ≤ C(F

(t−1)
i ) + wit〈∇C(F

(t−1)
i ), ft〉,

due to the first-order property of a concave function. Here ∇C(Fi) denotes the func-
tional derivative of C at Fi and 〈Fi, Gi〉 is the inner product which is defined as
〈Fi, Gi〉 =

∑ni

j=1 Fi(x
i
j)Gi(x

i
j). So in each iteration of the MM algorithm, the op-

timization problem can be formulated as

min
wt,Ω,ft

m∑

i=1

wit〈∇C(F
(t−1)
i ), ft〉+ λ

2
tr(WtΩ

−1WT
t )

s.t. Ω � 0, tr(Ω) = 1. (5)

Unlike conventional boosting algorithms which can optimize wit and ft separately as
in [18,22], here in problem (5) wit and ft are coupled together. We use an alternating
method to solve the problem.

When wt and Ω are given, we can get

〈∇C(F
(t−1)
i ), ft〉 =

ni∑

j=1

yijft(x
i
j)c

′(yijF
(t−1)
i (xi

j)),

where c′(·) is the derivative of c(·), since C(F
(t−1)
i ) =

∑ni

j=1 c(y
i
jF

(t−1)
i (xi

j)). Then
we need to solve the following minimization problem to find ft:

min
ft

m∑

i=1

wit

ni∑

j=1

yijft(x
i
j)c

′(yijF
(t−1)
i (xi

j)). (6)

Since c(·) is monotonically decreasing, the derivative c′(·) is negative. Problem (6) can
be reformulated as

max
ft

m∑

i=1

ni∑

j=1

ỹijft(x
i
j)d

i
j , (7)

where dij =
c′(yi

jF
(t−1)
i (xi

j))|wit|
∑m

i=1 |wit|
∑ni

j=1 c′(yi
jF

(t−1)
i (xi

j))
defines the instance weight for xi

j , ỹij =

sign(wit)y
i
j , and sign(·) is the sign function. Since wit ∈ R, here we take the abso-

lute value of wit to keep the instance weights {dij} non-negative and the equivalence
between problem (6) and (7) is due to the fact that wit = sign(wit)|wit|. We assume
ft(·) ∈ {−1, 1}. Since ỹij ∈ {−1, 1},1 the objective function in problem (7) can be
rewritten as

m∑

i=1

ni∑

j=1

ỹijft(x
i
j)d

i
j =

∑

ỹi
j=ft(xi

j)

dij −
∑

ỹi
j �=ft(xi

j)

dij = 1− 2
∑

ỹi
j �=ft(xi

j)

dij .

1 When wit = 0, the ith task has no effect on problem (7) and hence can be ignored.
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So problem (7) is equivalent to minimizing the weighted classification error

min
ft

∑

ỹi
j �=ft(xi

j)

dij . (8)

From problem (8), we may look at it as a weighted combination of multiple tasks to
give a single “supertask” with possible label flipping from yij to ỹij depending on the
relationships between tasks. For a base learner such as least-squares SVM, we need to
solve a weighted least-squares SVM where the instance weights are defined by {dij}.

When ft and wt are given, we need to solve the following problem

min
Ω

tr(WtΩ
−1WT

t )

s.t. Ω � 0, tr(Ω) = 1. (9)

Then we have

tr(Ω−1B) = tr(Ω−1B)tr(Ω)

= tr((Ω− 1
2B

1
2 )(B

1
2Ω− 1

2 ))tr(Ω
1
2Ω

1
2 )

≥ (tr(Ω− 1
2B

1
2Ω

1
2 ))2 = (tr(B

1
2 ))2,

where B = WT
t Wt. The first equality holds because of the last constraint in prob-

lem (9), and the last inequality holds because of the Cauchy-Schwarz inequality for the
Frobenius norm. Moreover, tr(Ω−1B) attains its minimum value (tr(B

1
2 ))2 if and only

if Ω− 1
2B

1
2 = aΩ

1
2 for some constant a and tr(Ω) = 1. So we can get the analytical

solution

Ω =
(WT

t Wt)
1
2

tr
(
(WT

t Wt)
1
2

) . (10)

When ft and Ω are given, the optimization problem for wt is formulated as

min
wt

J(wt) = wtβt +
λ

2
wtΩ−1(wt)T , (11)

where βt = (〈∇C(F
(t−1)
1 ), ft〉, . . . , 〈∇C(F

(t−1)
m ), ft〉)T . We set the derivative of

problem (11) with respect to wt to zero to get the solution of wt as

wt = − 1

λ
(βt)

TΩ. (12)

We summarize the MTBoost algorithm in Table 1.
For the initialization of wt, we randomly generate it from a normal distribution with

zero mean and Ω as the covariance matrix due to the matrix-variate normal prior on
Wt in Eq. (1).

The whole procedure of our MTBoost algorithm includes solving problem (8) and
updating Ω and wt according to Eqs (10) and (12). The main computational cost lies in
solving problem (8) whose complexity equals the computational cost of training a base
learner (i.e., SVM or least-squares SVM) on the training data of all tasks.
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Table 1. Algorithm for Multi-Task Boosting (MTBoost)

Input: {(xi
j , y

i
j)}ni

j=1 (i = 1, . . . ,m), λ,
maximum numbers of iterations Q and Q1

Let F (0)
i (x) := 0 for i = 1, . . . ,m and Ω := Im;

for t := 1 to Q do
Initialize wt;
for t1 := 1 to Q1

Update ft by solving problem (8);
Update Ω via Eq. (10);
Update wt via Eq. (12);

end for
Let F (t)

i := F
(t−1)
i + witft for i = 1, . . . ,m;

if (βt)
TΩβt ≤ ε

break;
end if

end for

Output: F (Q)
i for i = 1, . . . ,m

2.3 Theoretical Analysis

In this section, we prove the convergence of the MTBoost algorithm.

Theorem 1. The solution minimizing problem (5) also minimizes problem (4).

Proof Let G(wt,Ω, ft) denote the objective function of problem (4) and H(wt,Ω, ft)
denote the objective function of problem (5). Due to the concavity of C(·), for any wt,
Ω and ft, we have

G(wt,Ω, ft) ≤ H(wt,Ω, ft) +

m∑

i=1

C(F
(t−1)
i ).

Moreover, we have

G(wt
0,Ω0, 0) = H(wt

0,Ω0, 0) +
m∑

i=1

C(F
(t−1)
i ),

where 0 denotes the zero function and wt
0 and Ω0 are the initial values for the variables

wt and Ω. For the solution (wt,Ω, ft) minimizing problem (5), we have

H(wt,Ω, ft) ≤ H(wt
0,Ω0, 0).

Then we can get

G(wt,Ω, ft) ≤ H(wt,Ω, ft) +
m∑

i=1

C(F
(t−1)
i )

≤ H(wt
0,Ω0, 0) +

m∑

i=1

C(F
(t−1)
i )

= G(wt
0,Ω0, 0),



704 Y. Zhang and D.-Y. Yeung

which means the value of the objective function of problem (4) at the solution of prob-
lem (5) is lower than that at the initial values. Hence we prove the result. �

Theorem 2.

m∑

i=1

C(F
(t)
i ) ≤

m∑

i=1

C(F
(t−1)
i )− 1

λ
βtΩβt ≤

m∑

i=1

C(F
(t−1)
i )

Proof Due to the concavity of C(·), we have

C(F
(t)
i ) = C(F

(t−1)
i + witft)

≤ C(F
(t−1)
i ) + wit〈∇C(F

(t−1)
i ), ft〉.

Then we can get

m∑

i=1

C(F
(t)
i ) ≤

m∑

i=1

C(F
(t−1)
i ) + wit〈∇C(F

(t−1)
i ), ft〉

=

m∑

i=1

C(F
(t−1)
i ) +wtβt

=
m∑

i=1

C(F
(t−1)
i )− 1

λ
(βt)

TΩβt,

where the last equality holds due to the relationship between wt and βt reflected in
Eq. (12). Moreover, since Ω is a positive semi-definite matrix which can be verified by
the solution of Ω in Eq. (10), we have

1

λ
(βt)

TΩβt ≥ 0

and hence
m∑

i=1

C(F
(t−1)
i )− 1

λ
βtΩβt ≤

m∑

i=1

C(F
(t−1)
i ).

Finally we reach the conclusion. �
From Theorem 2, we can see that when adding a new component classifier in MTBoost,
the empirical loss of all tasks decreases. Since the empirical loss is non-negative, our
method is guaranteed to converge. Moreover, Theorem 2 suggests a termination criterion
for the MTBoost algorithm in Table 1: (βt)

TΩβt is small and below a threshold ε.

3 Related Work

Duchi and Singer [24] proposed a boosting method for multi-class classification prob-
lems by utilizing the structural sparsity of model parameters. They claimed that the
method can be generalized for multi-task learning. An underlying assumption of their
method is that all tasks are similar and they share a similar model or data representation.
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However, in many applications, there exist tasks which exhibit negative task correlation
or task unrelatedness and hence the assumption is violated, impairing the performance
of the method.

Wang et al. [19] extended the idea of task clustering [8] to boosting by grouping the
tasks into several clusters and learning similar data features or model parameters for the
tasks within each cluster. This approach is robust against outlier tasks because outlier
tasks reside in separate clusters that do not affect other tasks, but they are local methods
in the sense that only similar tasks within the same task cluster can interact to help each
other, thus ignoring negative task correlation which may exist between tasks residing
in different clusters. Moreover, how to determine the number of clusters is a difficult
model selection problem.

Chapelle et al. [20] proposed a multi-boost method for multi-task learning which
assumes that the model parameters in different tasks are similar and utilizes the differ-
ence between different model parameters to define a regularization term for boosting.
The relationship between the multi-boost method and single-task boosting is similar to
that between regularized multi-task SVM [6] and single-task SVM. Moreover, similar
to [24], the multi-boost method also uses l1 regularization to enforce sparsity.

Dai et al. [25] proposed a boosting method for transfer learning. Transfer learning
is related to multi-task learning but there exist some differences. The tasks in trans-
fer learning can be divided into source and target tasks and transfer learning aims at
improving the performance of the target task with the help of the source tasks while
multi-task learning seeks to improve the performance of all tasks simultaneously. Par-
doe and Stone [26] extended boosting to regression problems in the transfer setting.

4 Experiment

In this section, we study MTBoost empirically on some applications and compare it
with a single-task boosting method called AnyBoost [22], a multi-task boosting method
called Multi-boost [20], a multi-task learning method called multi-task GP (MTGP) [10]
and MTRL [12] which can also learn the task relationships under the GP and regular-
ization framework respectively.2

4.1 Multi-domain Sentiment Classification

In this subsection, we study a multi-domain sentiment classification application3 which
is naturally a multi-task classification problem. Its goal is to classify the reviews of
some products into two classes: positive and negative reviews. In this application, there
are four different products (tasks) from Amazon.com: books, DVDs, electronics, and
kitchen appliances. For each task, there are 1,000 positive and 1,000 negative data
points corresponding to positive and negative reviews, respectively. Each data point
has 473,856 feature dimensions.

2 The implementation of our method can be downloaded from http://www.cse.ust.
hk/∼dyyeung/code/MTBoost.zip

3 http://www.cs.jhu.edu/˜mdredze/datasets/sentiment/

http://www.cse.ust.hk/~dyyeung/code/MTBoost.zip
http://www.cse.ust.hk/~dyyeung/code/MTBoost.zip
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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Table 2. Comparison of different methods on multi-domain sentiment classification. Each column
in the table represents one task. For each method, the first row records the mean classification
error over 10 trials and the second row records the standard deviation. 1st task: books; 2nd task:
DVDs; 3rd task: electronics; 4th task: kitchen appliances.

Method 1st Task 2nd Task 3rd Task 4th Task
AnyBoost 0.2595 0.2500 0.1999 0.1789

0.0086 0.0085 0.0096 0.0054
MTGP 0.2594 0.2510 0.2493 0.2407

0.0097 0.0089 0.0076 0.0085
Multi-boost 0.2918 0.3041 0.3116 0.3165

0.0138 0.0122 0.0204 0.0175
MTRL 0.2474 0.2233 0.1925 0.1719

0.0116 0.0115 0.0135 0.0098
MTBoost 0.2385 0.2236 0.1666 0.1491

0.0105 0.0087 0.0054 0.0114

Since the feature dimensionality is very high making tree classifiers such as C4.5 and
decision stump difficult to use, we choose linear least-squares SVM as the base learner
in AnyBoost, Multi-boost and our MTBoost method. To simulate real applications in
which the labeled data is scarce, we choose only 20% of the data in each task to form
the training set and the rest to form the test set. We perform 10 random splits of the data
and report the mean and standard deviation over the 10 trials. The number of rounds
in AnyBoost, Multi-Boost and MTBoost is set to 100 and the number of the inner
iterations of our MTBoost (i.e., Q1) is set to 10. The optimal λ is determined by 5-
fold cross validation where the candidate set is {0.01, 0.1, 1, 10, 100}. The results are
summarized in Table 2 and the best result after pairwise t-test is shown in bold. From
the table, we can see that MTBoost outperforms AnyBoost, Multi-boost, MTGP and
MTRL on almost every task. Moreover, we notice that the performance of Multi-boost
is just comparable or even worse than that of AnyBoost. One possible reason is that
not all the tasks are very similar to each other as can be revealed by the mean task
correlation matrix shown in Table 3. In other words, the assumption underlying Multi-
boost is not satisfied well in this data set.

The mean task correlation matrix over 10 trials is shown in Table 3. We can see that
the first task ‘books’ is more correlated with the second task ‘DVDs’ than with the other
tasks; the third and fourth tasks achieve the highest correlation among all pairs of tasks.
The finding from Table 3 about the relationships between tasks matches our intuition,
with the following possible interpretation: ‘books’ and ‘DVDs’ are mainly for enter-
tainment; and almost all the elements in ‘kitchen appliances’ belong to ‘electronics’.

4.2 Handwritten Letter Classification

The handwritten letter classification applicaton4 consists of seven tasks each of which is
a binary classification problem. The corresponding letter pairs for the seven tasks are:

4 http://multitask.cs.berkeley.edu/

http://multitask.cs.berkeley.edu/


Multi-Task Boosting by Exploiting Task Relationships 707

Table 3. Mean task correlation matrix over 10 trials for multi-domain sentiment data. 1st task:
books; 2nd task: DVDs; 3rd task: electronics; 4th task: kitchen appliances.

1st 2nd 3rd 4th
1st 1.0000 0.6977 0.6253 0.6357
2nd 0.6977 1.0000 0.6306 0.6186
3rd 0.6253 0.6306 1.0000 0.7994
4th 0.6357 0.6186 0.7994 1.0000

Table 4. Comparison of different methods on handwritten letter classification. Each column in
the table represents one task. For each method, the first row records the mean classification error
over 10 trials and the second row records the standard deviation.

Method 1st Task 2nd Task 3rd Task 4th Task 5th Task 6th Task 7th Task
AnyBoost 0.1330 0.3026 0.1271 0.0970 0.0895 0.1997 0.0689

0.0231 0.0135 0.0311 0.0068 0.0137 0.0178 0.0062
MTGP 0.1316 0.2844 0.1146 0.0903 0.1349 0.2177 0.0852

0.0135 0.0070 0.0153 0.0075 0.0256 0.0388 0.0456
Multi-boost 0.2064 0.3425 0.2144 0.1295 0.1301 0.2111 0.0989

0.0548 0.1238 0.1001 0.0675 0.0175 0.0327 0.0754
MTRL 0.1184 0.2790 0.1058 0.0824 0.0880 0.2180 0.0561

0.0048 0.0128 0.0090 0.0060 0.0057 0.0131 0.0073
MTBoost 0.1136 0.2642 0.1001 0.0611 0.0830 0.1924 0.0623

0.0161 0.0108 0.0127 0.0066 0.0105 0.0233 0.0078

Table 5. Comparison of different methods on USPS digit classification. Each column in the table
represents one task. For each method, the first row records the mean classification error over 10
trials and the second row records the standard deviation.

Method 1st Task 2nd Task 3rd Task 4th Task 5th Task 6th Task 7th Task 8th Task 9th Task
AnyBoost 0.0040 0.0120 0.0437 0.0166 0.0292 0.0490 0.0078 0.0234 0.0232

0.0003 0.0017 0.0034 0.0028 0.0076 0.0080 0.0027 0.0090 0.0066
MTGP 0.0009 0.0050 0.0374 0.0139 0.0252 0.0484 0.0069 0.0232 0.0230

0.0005 0.0028 0.0035 0.0025 0.0073 0.0065 0.0034 0.0085 0.0087
Multi-boost 0.0010 0.0107 0.0421 0.0153 0.0276 0.0481 0.0065 0.0249 0.0259

0.0363 0.0082 0.0088 0.0037 0.0021 0.0085 0.0041 0.0078 0.0078
MTRL 0.0008 0.0048 0.0353 0.0120 0.0267 0.0340 0.0029 0.0225 0.0223

0.0007 0.0011 0.0035 0.0044 0.0014 0.0040 0.0019 0.0026 0.0046
MTBoost 0.0003 0.0040 0.0324 0.0105 0.0252 0.0348 0.0052 0.0206 0.0213

0.0005 0.0034 0.0056 0.0042 0.0094 0.0075 0.0017 0.0060 0.0095
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c/e, g/y, m/n, a/g, a/o, f/t and h/n. Each data point has 128 features corresponding to
the pixel values of the handwritten letter images. For each task, there are about 1,000
positive and 1,000 negative data points. The experimental settings are the same as those
for the multi-domain sentiment application above.

The mean classification errors and the standard deviations of different methods over
10 trials are summarized in Table 4. The results show that MTBoost outperforms Any-
Boost on every task, showing the effectiveness of sharing between multiple learning
tasks. MTGP, another method which can learn the task covariance matrix from data,
performs better than AnyBoost on some tasks but worse on other tasks. One possible
reason is that MTGP usually uses low-rank approximation for the task covariance ma-
trix to reduce the computational cost. This may affect the expressive power of the model
and impair its performance. Moreover, MTBoost outperforms Multi-boost, MTGP and
MTRL.

4.3 USPS Digit Classification

The USPS digit data set5 contains 7,291 examples each of which is described by 255
features. There are nine classification tasks, each corresponding to the classification
of two digits. The experimental settings are similar to those in the above subsections.
The mean classification errors and the standard deviations of different methods over 10
trials are summarized in Table 5. Again, we find that MTBoost outperforms AnyBoost,
Multi-boost and MTGP on almost every task. Moreover, MTBoost performs better than
MTRL on most tasks and comparable with MTRL on the other tasks.

5 Conclusion

In this paper, we have proposed a multi-task boosting method based on learning and
exploiting the pairwise relationships between tasks. The alternating optimization proce-
dure in MTBoost has been shown to converge with theoretical guarantee. In the current
setting, each task is a binary classification problem. One future direction is to extend
this work to a general setting where each task can be either a binary or a multi-class clas-
sification problem. Besides, we mainly consider classification problems in this paper.
In our future work, we will also investigate the extension of our method to regression
problems. One possibility is to make use of the loss function defined in [27] for such
problems.
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