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Abstract. Linear discriminant analysis (LDA) is commonly used for dimension-
ality reduction. In real-world applications where labeled data are scarce, LDA
does not work very well. However, unlabeled data are often available in large
quantities. We propose a novel semi-supervised discriminant analysis algorithm
called SSDACCCP . We utilize unlabeled data to maximize an optimality criterion
of LDA and use the constrained concave-convex procedure to solve the optimiza-
tion problem. The optimization procedure leads to estimation of the class labels
for the unlabeled data. We propose a novel confidence measure for selecting those
unlabeled data points with high confidence. The selected unlabeled data can then
be used to augment the original labeled data set for performing LDA. We also
propose a variant of SSDACCCP , called M-SSDACCCP , which adopts the man-
ifold assumption to utilize the unlabeled data. Extensive experiments on many
benchmark data sets demonstrate the effectiveness of our proposed methods.

1 Introduction

Linear discriminant analysis (LDA) [1, 2] is a commonly used method for dimension-
ality reduction. It seeks a linear projection that simultaneously maximizes the between-
class dissimilarity and minimizes the within-class dissimilarity to increase class
separability, typically for classification applications. Despite its simplicity, the effec-
tiveness and computational efficiency of LDA make it a popular choice for many
applications. Nevertheless, LDA does have its limitations. One of these arises in sit-
uations when the sample size is much smaller than the dimensionality of the feature
space, leading to the so-called small sample size (SSS) problem [3] due to severe under-
sampling of the underlying data distribution. As a result, the within-class scatter matrix
that characterizes the within-class variability is not of full rank and hence it is not in-
vertible. A number of methods have been proposed to overcome this problem, e.g.,
PseudoLDA [4], PCA+LDA [5], LDA/QR [6], NullLDA [3], and DualLDA [7]. Pseu-
doLDA overcomes the singularity problem by substituting the inverse of the within-
class scatter matrix with its pseudo-inverse. PCA+LDA first applies PCA [8] to project
the data into a lower-dimensional space so that the within-class scatter matrix computed
there is nonsingular, and then applies LDA in the lower-dimensional space. LDA/QR is
also a two-stage method which can be divided into two steps: first project the data to
the range space of the between-class scatter matrix and then apply LDA in this space.
NullLDA first projects the data to the null space of the within-class scatter matrix
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and then maximizes the between-class scatter in this space. It is similar to the Dis-
criminative Common Vectors method [9]. DualLDA, which combines the ideas from
PCA+LDA and NullLDA, maximizes the between-class scatter matrix in the range
space and the null space of the within-class scatter matrix separately and then inte-
grates the two parts together to get the final transformation. There is also another ap-
proach to address the SSS problem, with 2DLDA [10] being the representative of this
approach. The major difference between 2DLDA and the algorithms above lies in their
data representation. Specifically, 2DLDA operates on data represented as (2D) matri-
ces, instead of (1D) vectors, so that the dimensionality of the data representation can
be kept small as a way to alleviate the SSS problem. Another limitation of LDA is that
it only gives a linear projection of the data points. Fortunately, the kernel approach can
be applied easily via the so-called kernel trick to extend LDA to its kernel version,
called kernel discriminant analysis (KDA), that can project the data points nonlinearly,
e.g., [11]. Besides addressing these two limitations of LDA, some interesting recent
works also address other issues, e.g., to study the relationships between two variants
of LDA [12], to reformulate multi-class LDA as a multivariate linear regression prob-
lem [13], and to learn the optimal kernel matrix for KDA using semi-definite program-
ming (SDP) [14, 15].

In many real-world applications, it is impractical to expect the availability of large
quantities of labeled data because labeling data requires laborious human effort. On
the other hand, unlabeled data are available in large quantities at very low cost. Over
the past decade or so, one form of semi-supervised learning, which attempts to utilize
unlabeled data to aid classification or regression tasks under situations with limited
labeled data, has emerged as a hot and promising research topic within the machine
learning community. A good survey of semi-supervised learning methods can be found
in [16]. Some early semi-supervised learnng methods include Co-Training [17] and
transductive SVM (TSVM) [18, 19]. Recently, graph-based semi-supervised learning
methods [20, 21, 22] have attracted the interests of many researchers. Unlike earlier
methods, these methods model the geometric relationships between all data points in
the form of a graph and then propagate the label information from the labeled data
points through the graph to the unlabeled data points.

The objective of this paper is to alleviate the SSS problem of LDA by exploiting
unlabeled data. We propose a novel semi-supervised discriminant analysis algorithm
called SSDACCCP . Although there already exists another semi-supervised LDA al-
gorithm, called SDA [23], which exploits the local neighborhood information of data
points in performing dimensionality reduction, our SSDACCCP algorithm works in a
very different way. Specifically, we utilize unlabeled data to maximize an optimality
criterion of LDA and formulate the problem as a constrained optimization problem
that can be solved using the constrained concave-convex procedure (CCCP) [24, 25].
This procedure essentially estimates the class labels of the unlabeled data points. For
those unlabeled data points whose labels are estimated with sufficiently high confidence
based on some novel confidence measure proposed by us, we select them to expand the
original labeled data set and then perform LDA again. Besides SSDACCCP , we also
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propose a variant of SSDACCCP , called M-SSDACCCP , which adopts the manifold
assumption [20] to utilize the unlabeled data. Note that M-SSDACCCP shares the spirit
of both TSVM and graph-based semi-supervised learning methods.

The remainder of this paper is organized as follows. We first briefly review the tradi-
tional LDA algorithm in Section 2. We then present our SSDACCCP and M-SSDACCCP

algorithms in Section 3. Section 4 reports experimental results based on some com-
monly used data sets. Performance comparison with some representative methods are
reported there to demonstrate the effectiveness of our methods. Finally, some conclud-
ing remarks are offered in the last section.

2 Background

We are given a training set of n data points, D = {x1, . . . , xn}, where xi ∈ R
N , i =

1, . . . , n. Let D be partitioned into C ≥ 2 disjoint classes Πi, i = 1, . . . , C, where
class Πi contains ni examples. The between-class scatter matrix Sb and the within-
class scatter matrix Sw are defined as

Sb =
C∑

k=1

nk(m̄k − m̄)(m̄k − m̄)T

Sw =
C∑

k=1

∑

xi∈Πk

(xi − m̄k)(xi − m̄k)T ,

where m̄ = (
∑n

i=1 xi)/n is the sample mean of the whole data set D and m̄k =
(
∑

xi∈Πk
xi)/nk is the class mean of Πk. LDA seeks to find a projection matrix W ∗

that maximizes the trace function of Sb and Sw:

W ∗ = arg max
W

trace((WT SwW )−1WT SbW ), (1)

which has an analytically tractable solution. According to [26], the optimal solution
W ∗ for the problem (1) can be computed from the eigenvectors of S−1

w Sb, where S−1
w

denotes the matrix inverse of Sw. Since W ∗ computed this way is computationally
simple yet effective for many applications, the optimality criterion in (1) is often used
for many applications. Because the rank of Sb is at most C − 1, W contains C − 1
columns in most situations.

3 Semi-supervised Discriminant Analysis Via CCCP

In this section, we first present a theoretical result on the optimal solution for LDA.
We then show how to utilize unlabeled data to solve the optimization problem, lead-
ing to the SSDACCCP algorithm. Next, we incorporate the manifold assumption into
SSDACCCP to give M-SSDACCCP . Finally we give some discussions about our
methods.
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3.1 Optimal Solution for LDA

In our work, we use the following optimality criterion:

W ∗ = argmax
W

trace((WT StW )−1WT SbW ), (2)

where St is the total scatter matrix with St = Sb + Sw. It is easy to prove that the
optimal solution to the problem (2) is equivalent to that to the problem (1).

We assume that St is of full rank, or else we can apply principal component analysis
(PCA) [8] first to eliminate the null space of St without affecting the performance of
LDA since the null space makes no contribution to the discrimination ability of LDA
[27].

The following theorem on the optimal solution to the problem (2) is relevant here.

Theorem 1. For W ∈ R
N×(C−1),

max
W

trace((WT StW )−1WT SbW ) = trace(S−1
t Sb).

The proof of this theorem can be found in [26].

3.2 SSDACCCP : Exploiting Unlabeled Data to Maximize the Optimality
Criterion

Suppose we have l labeled data points x1, . . . , xl ∈ R
N with class labels from C classes

Πi, i = 1, . . . , C, and m unlabeled data points xl+1, . . . , xl+m ∈ R
N with unknown

class labels. So we have totally n = l + m examples available for training. Usually
l � m. When l is too small compared with the input dimensionality, LDA generally
does not perform very well. To remedy this problem, we want to incorporate unlabeled
data to improve its performance.

Inspired by TSVM [18, 19], which utilizes unlabeled data to maximize the mar-
gin, we use unlabeled data here to maximize the optimality criterion of LDA. Since
the optimal criterion value is trace(S−1

t Sb) (from Theorem 1), we utilize unlabeled
data to maximize trace(S−1

t Sb) via estimating the class labels of the unlabeled data
points.

We first calculate St as St =
∑n

i=1(xi − m̄)(xi − m̄)T , where m̄ = (
∑n

i=1 xi)/n is
the sample mean of all the data points. We define the class indicator matrix A ∈ R

n×C ,
where the (i, j)th element Aij is given by

Aij =
{

1 if xi ∈ Πj

0 otherwise
(3)

If D = (x1, . . . , xl, xl+1, . . . , xn) is the data matrix and Ak is a vector for the
kth column of A, then the class mean can be expressed as m̄k = DAk/nk, where
nk = AT

k 1n is the number of data points that belong to the kth class and 1n is an
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n-dimensional column vector of ones. Similarly, we can also express the sample mean
as m̄ = D1n/n. Then Sb can be calculated as

Sb =
C∑

k=1

nk(m̄k − m̄)(m̄k − m̄)T

=
C∑

k=1

nkD

(
Ak

nk
− 1n

n

) (
AT

k

nk
− 1T

n

n

)
DT

= D

[
C∑

k=1

nk

(
Ak

nk
− 1n

n

) (
AT

k

nk
− 1T

n

n

)]
DT .

So trace(S−1
t Sb) can be calculated as

trace(S−1
t Sb) = trace

(
S−1

t D

[
C∑

k=1

nk

(
Ak

nk
− 1n

n

) (
AT

k

nk
− 1T

n

n

)]
DT

)

= trace

([
C∑

k=1

nk

(
Ak

nk
− 1n

n

) (
AT

k

nk
− 1T

n

n

)]
DT S−1

t D

)

= trace

(
C∑

k=1

nk

(
AT

k

nk
− 1T

n

n

)
S

(
Ak

nk
− 1n

n

))

=
C∑

k=1

1
nk

(
AT

k − nk

n
1T

n

)
S

(
Ak − nk

n
1n

)
,

where S = DT S−1
t D is a positive semi-definite matrix.

Since those entries in A for the unlabeled data points are unknown, we maximize
trace(S−1

t Sb) with respect to A. By defining some new variables for the sake of nota-
tional simplicity, we formulate the optimization problem as:

max
A,Bk,tk

C∑

k=1

BT
k SBk

tk

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak − tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ∈ {0, 1}, i = l+1, . . . , n, j = 1, . . . , C

C∑

j=1

Aij = 1, i = l+1, . . . , n. (4)

Unfortunately this is an integer programming problem which is known to be NP-hard
and often has no efficient solution. We seek to make this integer programming problem
tractable by relaxing the constraint Aij ∈ {0, 1} in (4) to Aij ≥ 0, giving rise to a
modified formulation of the optimization problem:
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max
A,Bk,tk

C∑

k=1

BT
k SBk

tk

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak − tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . , C

C∑

j=1

Aij = 1, i = l+1, . . . , n. (5)

With such relaxation, the matrix entries of A for the unlabeled data points may be
interpreted as posterior class probabilities. However, even though the constraints in the
optimization problem (5) are linear, the problem seeks to maximize a convex func-
tion which, unfortunately, does not correspond to a convex optimization problem [28].
If we re-express the optimization problem in (5) as minimizing a concave function,
we can adopt the constrained concave-convex procedure (CCCP) [24, 25] to solve
this non-convex optimization problem. For our case, the convex part of the objective
function degenerates to the special case of a constant function which always returns
zero.

CCCP is an iterative algorithm. In each iteration, the concave part of the objective
function for the optimization problem is replaced by its first-order Taylor series approx-
imation at the point which corresponds to the result obtained in the previous iteration.
Specifically, in the (p+1)th iteration, we solve the following optimization problem:

max
A,Bk,tk

C∑

k=1

(
2(B(p)

k )T S

t
(p)
k

Bk − (B(p)
k )T SB

(p)
k

(t(p)
k )2

tk

)

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak − tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . , C

C∑

j=1

Aij = 1, i = l+1, . . . , n, (6)

where B
(p)
k , t

(p)
k , k = 1, . . . , C were obtained in the pth iteration. The objective func-

tion in (6) is just the first-order Taylor series approximation of that in (5) by ignoring
some constant terms.
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Since the optimization problem (6) is a linear programming (LP) problem, it can be
solved efficiently and hence can handle large-scale applications. Because the optimal
solution of an LP problem falls on the boundary of its feasible set (or called constraint
set), the matrix entries of the optimal Aij computed in each iteration must be in {0, 1},
which automatically satisfies the constraints in (4).

As the optimization problem is non-convex, the final solution that CCCP obtains
generally depends on its initial value. For the labeled data points, the corresponding en-
tries in Aij are held fixed based on their class labels. For the unlabeled data points,
we initialize the corresponding entries in Aij with equal prior probabilities for all
classes:

A
(0)
ij =

{
1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l, j = 1, . . . , C

A
(0)
ij =

1
C

, i = l+1, . . . , n, j = 1, . . . , C. (7)

The initial values for B
(0)
k and t

(0)
k can be computed based on the equality constraints

in (6) which establish the relationships between A, Bk and tk.

3.3 M-SSDACCCP : Incorporating the Manifold Assumption

The manifold assumption [20] is adopted by many graph-based semi-supervised learn-
ing methods. Under this assumption, nearby points are more likely to have the same
class label for classification problems and similar low-dimensional representations for
dimensionality reduction problems. We adopt this assumption to extend SSDACCCP to
M-SSDACCCP .

Given the data set D = {x1, . . . , xn}, we first construct a K-nearest neighbor graph
G = (V, E), with the vertex set V = {1, . . . , n} corresponding to the labeled and un-
labeled data points and the edge set E ⊆ V ×V representing the relationships between
data points. Each edge is assigned a weight wij which reflects the similarity between
points xi and xj :

wij =

{
exp

(
− ‖xi−xj‖2

σiσj

)
if xi ∈ NK(xj) or xj ∈ NK(xi)

0 otherwise

where NK(xi) denotes the neighborhood set of K-nearest neighbors of xi, σi the dis-
tance between xi and its Kth nearest neighbor, and σj the distance between xj and
its Kth nearest neighbor. This way of constructing the nearest neighbor graph is called
local scaling [29], which is different from that in SDA [23]. In SDA, a constant value
of 1 is set for all neighbors. This is unsatisfactory especially when some neighbors are
relatively far away.

By incorporating the manifold assumption into our problem, we expect nearby points
to be more likely to have the same class label and hence the two corresponding rows
in A are more likely to be the same. We thus modify the optimization problem (5) by
adding one more term to the objective function:
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max
A,Bk,tk

C∑

k=1

BT
k SBk

tk
− λ

n∑

i=1

n∑

j=i+1

wij‖A(i) − A(j)‖1

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak − tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . , C

C∑

j=1

Aij = 1, i = l+1, . . . , n, (8)

where λ > 0 is a regularization parameter, A(i) denotes the ith row of A, and ‖x‖1 is
the L1-norm of vector x.

Since the objective function of the optimization problem (8) is the difference of two
convex functions, we can also adopt CCCP to solve it. Similar to SSDACCCP , in each
iteration of CCCP, we also need to solve an LP problem:

max
A,Bk,tk

C∑

k=1

(
2(B(p)

k )T S

t
(p)
k

Bk − (B(p)
k )T SB

(p)
k

(t(p)
k )2

tk

)
− λ

n∑

i=1

n∑

j=i+1

wij‖A(i) − A(j)‖1

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak − tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . , C

C∑

j=1

Aij = 1, i = l+1, . . . , n. (9)

One reason for choosing the L1-norm in the problem (8) is to keep the problem (9) as
an LP problem which has an efficient and effective solution.

3.4 Augmenting the Labeled Data Set with Unlabeled Data

For both SSDACCCP and M-SSDACCCP , CCCP estimates the class labels of all the
unlabeled data points by solving the corresponding optimization problems with respect
to A. One might then use all these unlabeled data points with estimated class labels to
expand the labeled data set and then apply LDA again. However, it should be noted that
not all the class labels can be estimated accurately. Thus, including those points with
noisy class labels may impair the performance of LDA. Here we propose an effective
method for selecting only those unlabeled data points whose labels are estimated with
sufficiently high confidence.
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Since all matrix entries in Aij obtained by CCCP are either 0 or 1, they cannot serve
as posterior class probabilities for defining a measure to characterize the label estima-
tion confidence. Here we propose an alternative scheme. We first use all the unlabeled
data points with their estimated labels and the original labeled data set to perform LDA.
Then, in the embedding space, we consider the neighborhood of each unlabeled data
point by taking into account unlabeled data points only. If an unlabeled point has a suf-
ficiently large proportion (determined by some threshold θ, usually chosen to be larger
than 0.5) of neighboring unlabeled points with the same estimated class label as its own,
we consider this unlabeled point to have an estimated class label with high confidence
and hence select it to augment the labeled data set for performing LDA again.

3.5 Discussions

In order to gain some insight into our method, we investigate the dual form of the op-

timization problem (6). We denote R
(p)
k = 2(B(p)

k )T S

t
(p)
k

and q
(p)
k = (B(p)

k )T SB
(p)
k

(t(p)
k )2

, for k =

1, . . . , C. We plug the first two equality constraints of the optimization problem (6) into
its objective funciton and get the following Lagrangian:

L(A, α, β) =
C∑

k=1

[(
q
(p)
k +

R
(p)
k 1n

n

)
1T

n − R
(p)
k

]
Ak −

C∑

k=1

l∑

i=1

αki(Aik − δ
c(i)
k )

−
C∑

k=1

n∑

i=l+1

αkiAik −
n∑

i=l+1

βi(
C∑

k=1

Aik − 1),

where c(i) is the class label of labeled data point i and δ
c(i)
k is the delta function whose

value is 1 if c(i) = k and 0 otherwise.
So the dual form of the optimization problem (6) is

max
α,β

C∑

k=1

l∑

i=1

αkiδ
c(i)
k +

n∑

i=l+1

βi

s.t. αki = q
(p)
k − R

(p)
ki +

R
(p)
k 1n

n
, i = 1, . . . , l, k = 1, . . . , C

αki + βi = q
(p)
k − R

(p)
ki +

R
(p)
k 1n

n
, i = l+1, . . . , n, k = 1, . . . , C

αki ≥ 0, i = l+1, . . . , n, k = 1, . . . , C (10)

where R
(p)
ki is the ith element of vector R

(p)
k .

The Karush-Kuhn-Tucker (KKT) condition [28] for the optimization problem (10) is

αkiAik = 0, i = l+1, . . . , n, k = 1, . . . , C. (11)

From the first constraint of the optimization problem (10), we can see that each
αki has a constant value for i = 1, . . . , l, k = 1, . . . , C. So we can simplify the



Semi-supervised Discriminant Analysis Via CCCP 653

optimization problem (10) by eliminating the first summation term in the objective func-
tion and the first constraint as

max
α,β

n∑

i=l+1

βi

s.t. αki + βi = q
(p)
k − R

(p)
ki +

R
(p)
k 1n

n
, i = l+1, . . . , n, k = 1, . . . , C

αki ≥ 0, i = l+1, . . . , n, k = 1, . . . , C, (12)

which can be further simplified as

max
β

n∑

i=l+1

βi

s.t. βi ≤ q
(p)
k − R

(p)
ki +

R
(p)
k 1n

n
, i = l+1, . . . , n, k = 1, . . . , C. (13)

So the optimal solution of βi can be obtained as βi = mink{q
(p)
k − R

(p)
ki + R

(p)
k 1n

n } for
i = l + 1, . . . , n.

For each unlabeled data point, if we assume Aik� > 0, then from the KKT condition

(11) we can get αk�i = 0 and also βi = q
(p)
k� − R

(p)
k�i + R

(p)
k� 1n

n according to the first
constraint of the optimization problem (12). So

q
(p)
k� − R

(p)
k�i +

R
(p)
k� 1n

n
= min

k

{
q
(p)
k − R

(p)
ki +

R
(p)
k 1n

n

}

and

k� = arg min
k

{
q
(p)
k − R

(p)
ki +

R
(p)
k 1n

n

}
.

So q
(p)
k − R

(p)
ki + R

(p)
k 1n

n can be seen as the negative confidence that the ith data point
belongs to the kth class and hence we can classify each data point to the class corre-
sponding to the minimal negative confidence. If there is a unique minimum, then we can
get Aik� = 1 and Aik′ = 0 for k′ �= k�; otherwise, we can first find the set of unlabeled
data points for which there exist unique minimum and Aik can be easily determined,
and then we can solve a smaller LP problem (6) by plugging in the known elements
Aij . From our experiments, the latter situation seldom occurs and this can speed up the
optimization problem (6), which even does not need to solve a LP problem.

[30] proposed a novel clustering method called DisKmeans which also maximize the
optimality criterion of LDA to do clustering. However, its purpose is very different. In
our work, M-SSDACCCP and SSDACCCP utilize unlabeled data to alleviate the SSS
problem of LDA and we formulate the learning problem under the semi-supervised
setting. On the other hand, DisKmeans aims at clustering high-dimensional data which
is an unsupervised learning problem.

The computation cost of SSDACCCP and M-SSDACCCP includes performing LDA
twice and solving the optimization problem using CCCP. The complexity of LDA
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Table 1. Algorithm for SSDACCCP or M-SSDACCCP

Input: labeled data xi (i = 1, . . . , l), unlabeled data xi (i = l+1, . . . , n), K, θ, ε

Initialize A(0) using Eq. (7);
Initialize B

(0)
k and t

(0)
k based on A(0) for k = 1, . . . , C;

Construct the K-nearest neighbor graph;
p = 0;
Repeat

p = p + 1;
Solve the optimization problem (6) or (9);
Update A(p), B

(p)
k and t

(p)
k using the result of the optimization problem for k = 1, . . . , C;

Until‖A(p) − A(p−1)‖F ≤ ε
Select the unlabeled data points with high confidence based on the threshold θ;
Add the selected unlabeled data points with their estimated labels into the labeled data set
and perform LDA on the augmented labeled data set to get the transformation W .
Output: the transformation W

is O(N3). The LP problem inside each iteration of CCCP can be solved efficiently.
From our experimental results, CCCP converges very fast in less than 10 iterations. So
SSDACCCP and M-SSDACCCP are efficient under most situations.

Finally, we summary this section by presenting the SSDACCCP (or M-SSDACCCP)
algorithm in Table 1.

4 Experiments

In this section, we first study SSDACCCP and M-SSDACCCP empirically and com-
pare their performance with several other dimensionality reduction methods, including
PCA, LDA [5] and SDA. Note that PCA is unsupervised, LDA is supervised, and SDA
is semi-supervised in nature. After dimensionality reduction has been performed, we
apply a simple nearest-neighbor classifier to perform classification in the embedding
space. We also compare SSDACCCP and M-SSDACCCP with two state-of-the-art in-
ductive semi-supervised learning methods, LapSVM and LapRLS [20].

4.1 Experimental Setup

We use MATLAB to implement all the algorithms and the CVX toolbox1 for solving the
optimization problems. We use the source code offered by Belkin et al. for LapSVM
and LapRLS.2 We evaluate these algorithms on 11 benchmark data sets, including 8
UCI data sets [31], a brain-computer interface dataset BCI3 and two image data sets:
COIL3 and PIE [32]. See Table 2 for more details.

1 http://www.stanford.edu/∼boyd/cvx/
2 http://manifold.cs.uchicago.edu/manifold regularization/
manifold.html

3 http://www.kyb.tuebingen.mpg.de/ssl-book/

manifold.html
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Table 2. Summary of data sets used and data partitioning for each data set

Data set #Dim (N ) #Inst (n) #Class (C) #Labeled (q) #Unlabeled (r)

diabetes 8 768 2 5 100
heart-statlog 13 270 2 5 100
ionosphere 34 351 2 5 50
hayes-roth 4 160 3 3 20
iris 4 150 3 3 20
mfeat-pixel 240 2000 10 5 50
pendigits 16 10992 10 5 95
vehicle 18 864 4 5 100
BCI 117 400 2 5 50
COIL 241 1500 6 5 100
PIE 1024 1470 30 2 20

For each data set, we randomly select q data points from each class as labeled data
and r points from each class as unlabeled data. The remaining data form the test set.
Table 2 shows the data partitioning for each data set. For each partitioning, we perform
20 random splits and report the mean and standard derivation over the 20 trials. For
M-SSDACCCP , we choose the number of nearest neighbors K for constructing the
K-nearest neighbor graph to be the same as that for SDA, LapSVM, and LapRLS.

4.2 Experimental Results

We first compare our methods with dimensionality reduction methods and the experimen-
tal results are listed in Table 3. There are two rows for each data set: the upper one being
the classification error on the unlabeled training data and the lower one being that on the
test data. For each data set, the lowest classification error is shown in boldface. From the
results, we can see that the performance of SSDACCCP or M-SSDACCCP is better than
other methods in most situations. For DIABETES, HEART-STATLOG, PENDIGITS, VEHI-
CLE and PIE, the improvement is very significant. Moreover, for the data sets such as
DIABETES and HEART-STATLOG which may not contain manifold structure, the perfor-
mance of SSDACCCP is better than M-SSDACCCP . For MFEAT-PIXEL, PIE and others
which may contain manifold structure, the performance of M-SSDACCCP is better than
SSDACCCP . Thus for data sets such as images which may have manifold structure, we
recommend to use M-SSDACCCP . Otherwise SSDACCCP is preferred. Compared with
SDA, SSDACCCP and M-SSDACCCP are more stable. Specifically, the performance of
SSDACCCP or M-SSDACCCP is comparable to or better than that of LDA in most situ-
ations. For SDA, however, the performance degradation can sometimes be very severe,
especially for MFEAT-PIXEL and PIE.

We also investigate the selection method described in Section 3.4. We record the
mean accuracy of label estimation for the unlabeled data over 20 trials before and after
applying the selection method. The results in Table 4 show that the estimation accuracy
after applying the selection method is almost always higher, sometimes very signifi-
cantly. This confirms that our selection method for unlabeled data is very effective.
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Table 3. Average classification errors for each method on each data set. Each number inside
brackets shows the corresponding standard derivation. The upper row for each data set is the
classification error on the unlabeled training data and the lower row is that on the test data.

Data set PCA LDA SDA SSDACCCP M-SSDACCCP

diabetes 0.4335(0.0775) 0.4438(0.0878) 0.4022(0.0638) 0.3898(0.0674) 0.4360(0.0605)
0.4253(0.1154) 0.4311(0.0997) 0.3763(0.0864) 0.3276(0.0643) 0.4125(0.1074)

heart-statlog 0.4288(0.0689) 0.3978(0.0582) 0.3680(0.0564) 0.3293(0.0976) 0.3818(0.0662)
0.3975(0.0669) 0.3767(0.1055) 0.3783(0.1076) 0.3133(0.1174) 0.3258(0.1493)

ionosphere 0.2895(0.1032) 0.2850(0.0876) 0.2695(0.1056) 0.2860(0.1015) 0.2830(0.1029)
0.2189(0.0632) 0.2365(0.0972) 0.2241(0.0863) 0.2351(0.1032) 0.2399(0.1278)

hayes-roth 0.5175(0.0571) 0.4942(0.0531) 0.5058(0.0661) 0.4867(0.0569) 0.4758(0.0586)
0.5115(0.0605) 0.5165(0.0690) 0.5077(0.0752) 0.5121(0.0770) 0.5060(0.0627)

iris 0.0917(0.0417) 0.0933(0.0613) 0.0825(0.0506) 0.0708(0.0445) 0.0667(0.0493)
0.0907(0.0333) 0.0833(0.0586) 0.0809(0.0395) 0.0611(0.0370) 0.0611(0.0454)

mfeat-pixel 0.1450(0.0232) 0.1501(0.0290) 0.2783(0.0435) 0.1501(0.0289) 0.1367(0.0210)
0.1429(0.0228) 0.1486(0.0264) 0.3428(0.0298) 0.1485(0.0264) 0.1329(0.0213)

pendigits 0.1724(0.0305) 0.2238(0.0364) 0.2547(0.0447) 0.1785(0.0266) 0.1617(0.0242)
0.1761(0.0276) 0.2192(0.0332) 0.2544(0.0382) 0.1779(0.0190) 0.1650(0.0225)

vehicle 0.5739(0.0375) 0.5741(0.0365) 0.5400(0.0402) 0.4396(0.0734) 0.4838(0.0901)
0.5808(0.0453) 0.5879(0.0429) 0.5462(0.0312) 0.4329(0.0672) 0.4739(0.0791)

BCI 0.4835(0.0460) 0.4830(0.0557) 0.4960(0.0476) 0.4750(0.0432) 0.4975(0.0484)
0.5000(0.0324) 0.4803(0.0249) 0.4812(0.0326) 0.4732(0.0331) 0.4741(0.0346)

COIL 0.4443(0.0418) 0.5247(0.0371) 0.5419(0.0607) 0.5236(0.0374) 0.5193(0.0401)
0.4391(0.0364) 0.5194(0.0421) 0.5461(0.04821) 0.5178(0.0434) 0.5096(0.0398)

PIE 0.6156(0.0275) 0.5055(0.1624) 0.7629(0.0377) 0.4674(0.1757) 0.2381(0.0552)
0.6207(0.0251) 0.5126(0.1512) 0.8277(0.0208) 0.4777(0.1696) 0.2424(0.0592)

Table 4. Accuracy of label estimation for the unlabeled data before and after applying the selec-
tion method

SSDACCCP (%) M-SSDACCCP (%)
Data set Before After Before After

diabetes 64.03 66.67 54.10 51.20
heart-statlog 72.27 72.62 55.25 66.70
ionosphere 69.05 87.51 74.10 82.07
hayes-roth 46.75 52.73 42.00 42.64
iris 75.42 93.39 91.42 95.06
mfeat-pixel 32.49 100.0 94.21 98.91
pendigits 75.31 86.08 88.92 94.02
vehicle 56.30 69.88 44.80 52.26
BCI 50.75 65.42 49.00 49.15
COIL 33.57 96.07 42.64 60.03
PIE 30.48 85.00 52.64 70.41
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Table 5. Average classification errors for each method on each data set. Each number inside
brackets shows the corresponding standard derivation. The upper row for each data set is the
classification error on the unlabeled training data and the lower row is that on the test data.

Data set LapSVM LapRLS SSDACCCP M-SSDACCCP

diabetes 0.4763(0.0586) 0.4523(0.0650) 0.3620(0.0680) 0.4015(0.0893)
0.5643(0.0684) 0.5009(0.0775) 0.3488(0.0514) 0.4234(0.1107)

heart-statlog 0.3478(0.1059) 0.3348(0.1070) 0.3108(0.0901) 0.3758(0.0914)
0.3517(0.1458) 0.3375(0.1366) 0.3091(0.0989) 0.3442(0.1226)

ionosphere 0.3525(0.0539) 0.3260(0.0527) 0.3340(0.0902) 0.3185(0.0719)
0.2245(0.0697) 0.2266(0.0732) 0.2705(0.0969) 0.2905(0.0933)

hayes-roth 0.6633(0.0149) 0.6608(0.0261) 0.4833(0.0824) 0.5225(0.0466)
0.5550(0.0737) 0.5500(0.0516) 0.4901(0.0705) 0.5104(0.0711)

iris 0.3175(0.1390) 0.2708(0.1474) 0.0650(0.0516) 0.0525(0.0437)
0.3049(0.1426) 0.2741(0.1473) 0.0772(0.0508) 0.0593(0.0379)

mfeat-pixel 0.1488(0.0236) 0.1359(0.0257) 0.1578(0.0268) 0.1420(0.0249)
0.2252(0.0187) 0.2075(0.0181) 0.1555(0.0263) 0.1427(0.0183)

pendigits 0.2571(0.0379) 0.2368(0.0312) 0.1856(0.0226) 0.1697(0.0245)
0.2539(0.0334) 0.2377(0.0283) 0.1866(0.0244) 0.1735(0.0217)

vehicle 0.4713(0.0449) 0.4921(0.0460) 0.4219(0.0623) 0.4645(0.0770)
0.4758(0.0477) 0.5007(0.0452) 0.4181(0.0600) 0.4641(0.0777)

BCI 0.4805(0.0551) 0.4695(0.0612) 0.4515(0.0543) 0.4665(0.0479)
0.4631(0.0456) 0.4562(0.0390) 0.4752(0.0362) 0.4864(0.0372)

COIL 0.5414(0.0496) 0.5855(0.0617) 0.5028(0.0576) 0.5030(0.0488)
0.5421(0.0497) 0.5864(0.0598) 0.5057(0.0533) 0.5062(0.0423)

PIE 0.2561(0.0311) 0.3405(0.0227) 0.4096(0.1600) 0.2497(0.0313)
0.2671(0.0235) 0.3523(0.0151) 0.4160(0.1575) 0.2556(0.0235)

Next we compare our methods with some representative semi-supervised learning
methods. The experimental settings are the same as those in the first experiment. There
are many popular semi-supervised learning methods, such as Co-Training [17], TSVM
[18, 19], methods in [21, 22], LapSVM and LapRLS [20]. Co-Training requires two
independent and sufficient views for the data, but data used in our experiment can not
satisfy this requirement. TSVM has high computation cost and hence cannot be used for
large-scale problems. Thus it is not included in our experiment. The methods in [21,22]
can only work under the transductive setting, in which the test data, in addition to the
training data, must be available during model training and the learned model cannot be
applied to unseen test data easily. So these methods can not satisfy our experimental set-
tings and are excluded in our experiments. LapSVM and LapRLS, which also adopt the
manifold assumption, have efficient solutions and can work under the inductive setting.
So we have included them in our experiment for performance comparison. The standard
LapSVM and LapRLS algorithms are for two-class problems. For multi-class problems,
we adopt the one vs. rest strategy as in [20] for LapSVM and LapRLS. Since the meth-
ods used here are all linear methods, we use a linear kernel for LapSVM and LapRLS.
The experimental results are shown in Table 5. From the experimental results, we can
see that the performance of SSDACCCP and M-SSDACCCP is comparable to or even
better than that of LapSVM and LapRLS. Moreover, One advantage of SSDACCCP
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and M-SSDACCCP is that their formulation and optimization procedure are the same
for two-class and multi-class problems. However, this is not the case for LapSVM and
LapRLS which require training the models multiple times for multi-class problems.

5 Conclusion

In this paper, we have presented a new approach for semi-supervised discriminant anal-
ysis. By making use of both labeled and unlabeled data in learning a transformation for
dimensionality reduction, this approach overcomes a serious limitation of LDA under
situations where labeled data are limited. In our future work, we will investigate kernel
extensions to our proposed methods in dealing with nonlinearity. Moreover, we will
also apply the ideas here to some other dimensionality reduction methods.
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