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Abstract

In this paper, we propose a novel learning-based method
for image hallucination, with image super-resolution be-
ing a specific application that we focus on here. Given a
low-resolution image, its underlying higher-resolution de-
tails are synthesized based on a set of training images. In
order to build a compact yet descriptive training set, we
investigate the characteristic local structures contained in
large volumes of small image patches. Inspired by recent
progress in manifold learning research, we take the as-
sumption that small image patches in the low-resolution and
high-resolution images form manifolds with similar local
geometry in the corresponding image feature spaces. This
assumption leads to a super-resolution approach which re-
constructs the feature vector corresponding to an image
patch by its neighbors in the feature space. In addition,
the residual errors associated with the reconstructed im-
age patches are also estimated to compensate for the infor-
mation loss in the local averaging process. Experimental
results show that our hallucination method can synthesize
higher-quality images compared with other methods.

1. Introduction

Image super-resolution refers to the process by which
a higher-resolution enhanced image is synthesized from
one or more low-resolution images. It finds a number
of real-world applications, which include restoring historic
photographs, enlarging “thumbnail” images on web pages,
and image-based rendering for high-quality display pur-
poses. Practical super-resolution methods may make use
of a single still image or a sequence of consecutive video
frames with sub-pixel translation for synthesizing a higher-
resolution image. In this paper, we focus on the problem
of single-image “hallucination” with the goal of inferring
some high-resolution details missing in the original image
that cannot be achieved by simple sharpening.

In recent years, there has been a good deal of research
into learning-based approaches for image hallucination as
well as other related low-level vision problems [2, 4, 5, 6,
7, 11]. These learning-based methods share the common
characteristic of using a training set of image (observation)
and scene (state) pairs to build a co-occurrence model. With
the learnt model, one can then predict the missing details in
the observed input image by “borrowing” information from
some similar examples in the training set.

Due to the contiguous nature of objects and surfaces in
visual environments, images from natural scenes only con-
stitute a minuscule fraction of the space of all possible im-
ages [9]. However, it is difficult, if not totally impossi-
ble, to precisely model the probability distribution of nat-
ural images for the generic super-resolution task. Instead,
what we can do is to study the distribution of small im-
age patches and see what kinds of local image structures
(e.g., edges or corners) are likely to occur in the image.
These local image patches, from either the low-resolution
or high-resolution image, are the building blocks of our
super-resolution or image hallucination approach. They are
expected to lie along a continuous nonlinear manifold em-
bedded in a high-dimensional image space. Inspired by a
well-known manifold learning method called locally linear
embedding (LLE) [10], we assume that small image patches
in the low-resolution and high-resolution images form man-
ifolds with similar local geometry in the corresponding im-
age spaces. This assumption generally holds as long as the
image patches are associated with image primitives and the
feature descriptions for the two corresponding images are
both isometric. Our contribution is to devise an effective
method for generic image hallucination using locally linear
fitting and a learnt image primitive model.

A flowchart of our image hallucination approach is
shown in Figure 1. We highlight the major steps of our ap-
proach here. In the learning phase, large volumes of image
primitive patches are extracted from both the low-resolution
and high-resolution images used for training. A training set
is constructed by analyzing the local neighborhood relation-
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ships between the low-resolution and high-resolution image
patches and keeping only the isometric regions along the
two manifolds. During the synthesis phase, a low-resolution
image is presented to the system. Each element in the target
high-resolution image comes from an optimal linear recon-
struction by its nearest neighbors in the training set. More-
over, the residual errors associated with the reconstructed
image patches are also estimated to compensate for the in-
formation loss in the local averaging process. Finally, we
enforce the local compatibility and smoothness constraints
between patches in the target high-resolution image through
overlapping.

Local neighbor 

embedding

Residual error 

esimation
Training Set

Figure 1. Flowchart of our image hallucination approach.

The rest of this paper is organized as follows. In Sec-
tion 2, we give a brief overview of the background and some
related work. The problem setting and detailed algorithm
are described in Sections 3 and 4, respectively. Section 5
presents some experimental results, demonstrating the ef-
fectiveness and efficiency of our method. Finally, we con-
clude our paper in Section 6.

2. Related work
Image super-resolution is intrinsically an ill-posed prob-

lem since, theoretically, many high-resolution images can
give rise to the same low-resolution image through some
operations such as smoothing and subsampling. Traditional
pixel interpolation methods with smoothness priors, such as
pixel replication and cubic-spline interpolation, introduce
artifacts and blurred edges. Reconstruction-based methods
[8] aim to restore the lost image details by requiring the
down-sampled version of the high-resolution reconstructed
image to be as close to the original low-resolution image
as possible. However, in the absence of additional infor-
mation, these generic constraints are not every effective
for synthesizing perceptually plausible images which are of

higher quality than the original low-resolution images.
Over the past few years, learning-based approaches have

produced compelling results for various low-level vision
tasks, including image hallucination [2, 4, 5, 7, 11], im-
age analogy [6], and texture synthesis [3]. Despite some
implementation-level differences, these algorithms are all
similar in spirit. In the learning stage, they learn the un-
derlying scene details that correspond to different image re-
gions observed in the input. During the inference stage, they
use those learned relationships to predict missing details in
another image, which is the target high-resolution image for
super-resolution problems. Thus each element in the target
image comes from only one “best” example in the training
set. The neighbor embedding method proposed by [2] intro-
duces a more general way of using the training examples. In
their method, multiple training examples can contribute si-
multaneously to the generation of each image patch in the
high-resolution image. The underlying assumption of the
method is that small image patches in the low-resolution
and high-resolution images form manifolds with similar lo-
cal geometry in the two corresponding image spaces. How-
ever, they use uniformly sampled image patches from sev-
eral training images to build a medium-sized training set,
which may not satisfy the manifold assumption and hence
may not lead to good generalization.

Motivated by the work of [11] in applying primal sketch
priors for image hallucination, we conjecture that the image
patches associated with the image primitives (e.g., edges,
corners, and blobs, similar to the primal sketches in [11])
are of greater significance for building a good training
set. This conjecture will be verified empirically in Sec-
tion 4 through statistical analysis, showing that these im-
age patches preserve well the local isometric relationships
between the manifolds for the low-resolution and high-
resolution image patches.

Our method also benefits from the face hallucination
work of [7], in which the relationships between the low-
resolution and high-resolution residues are learnt by cou-
pled PCA to refine the final hallucinated face image. In our
case, the residual error vectors of neighboring examples are
consistent, since they are expected to lie on a subspace per-
pendicular to the linear tangent plane of the curved mani-
fold. Adding a simple average of these residues is sufficient
for error compensation.

In the next two sections, we will formulate the problem
more precisely and then present details of different compo-
nents of our method.

3. Problem setting
The single-image super-resolution problem that we want

to solve can be formulated as follows. Given a low-
resolution image Lt as input, we estimate the target high-
resolution image Ht with the help of a training set of one or



more low-resolution images Ls and the corresponding high-
resolution images Hs. We represent each low-resolution or
high-resolution image as a set of small overlapping image
patches.

Ideally, each patch generated for the high-resolution im-
age Ht should not only be related appropriately to the corre-
sponding patch in the low-resolution image Lt, but should
also preserve some inter-patch relationships with adjacent
patches in Ht. The former determines the accuracy while
the latter determines the local compatibility and smoothness
of the high-resolution image. To satisfy these requirements
as much as possible, our method has the following proper-
ties: (a) Each patch in Ht is associated with multiple patch
transformations learned from the training set. (b) Local re-
lationships between patches in Lt should be preserved in
Ht. (c) Neighboring patches in Ht are constrained through
overlapping to enforce local compatibility and smoothness.

4. Details of our method
4.1. Preprocessing

In the preprocessing step, a high-resolution natural im-
age H (Figure 2(c)) is blurred and sub-sampled to generate
a corresponding low-resolution image L (Figure 2(a)). Ap-
plying an initial enhancement through bilinear interpolation
to L, we obtain an image H l (Figure 2(b)) which has the
same size as H but lacks the high-resolution details. In the
training set, we only need to store the differences between
H and H l (Figure 2(e)), which correspond to the missing
high-frequency components caused by the image degrada-
tion process. Through band-pass filtering, we further de-
compose each interpolated image H l into the sum of two
images containing the medium and low spatial frequencies,
respectively. Following the assumption in [5] that the high-
est spatial-frequency components of the low-resolution im-
age are most important for predicting the extra details of H ,
we only store the example patches from the medium fre-
quency layer (Figure 2(d)). Finally, to achieve good gener-
alization, the high- and medium-frequency image pairs are
contrast normalized by a local measure of energy in the im-
age. We undo this normalization step later when we re-
construct the high-resolution image. The final output is the
sum of the interpolated low-resolution image and the high-
frequency predictions.

4.2. Image primitives for training

An essential factor attributing to the success of learning-
based approaches is how to construct a good training set,
which is descriptive enough in giving useful information
about the image-scene relationships and is also compact
enough for computational efficiency and good generaliza-
tion. The patches extracted from the preprocessed images
can be regarded as points in a vector space with each dimen-

Figure 2. Image preprocessing steps. (a) low-resolution image;
(b) initial interpolation of (a) to a higher resolution; (c) original
high-resolution image; (d) band-pass filtered and contrast normal-
ized version of (b); (e) high-pass filtered and contrast normalized
version of (c).

sion corresponding to one pixel in the patch. As natural im-
ages contain characteristic statistical regularities, we expect
these feature points to lie on a continuous nonlinear man-
ifold. Different regions of the manifold may correspond
to characteristic image primitives such as edges, corners,
blobs, etc. When building our training set, we put empha-
sis on the patches associated with these image primitives
for two main reasons. First, the missing high-frequency
details to be estimated are densely distributed over the re-
gions of image primitives, as shown in Figure 3(b) and 3(c).
Focusing on these regions can lead to significant speedup
as fewer patches need to be transformed. Second, we be-
lieve the local neighborhood relationships between low-
resolution and high-resolution primitive patches in the two
feature spaces are more consistent than those between gen-
eral image patches. This is supported by our experimental
investigation to be reported in Section 4.

The primitive patches are extracted by convolving the
interpolated low-resolution image H l with a bank of max-
imum response (MR) filters (Figure 3(a)) [13]. The filter
bank consists of a Gaussian kernel and a Laplacian of Gaus-
sian kernel, which are arranged in three scales and six ori-
entations each. To achieve scale invariance, the outputs are
“collapsed” by recording only the maximum filter response
across all scales. This reduces the number of responses
for each pixel from 36 (six orientations at three scales for
each of two oriented filters) to 12 (six orientations for each
of two filters). Figure 3(c) depicts the magnitude map of
the filtered responses for a low-resolution image. Com-
pared with the high-frequency difference image shown in
Figure 3(b), we can clearly see the consistent relationships
between them.

To sum up, each example in the training set is in the form



Figure 3. (a) Filter bank used for primitive extraction; (b) high-
frequency difference image to be estimated; (c) magnitude map of
the filtered responses for the low-resolution image.

of a pair of primitive patches. These pairs capture the sta-
tistical relationships that we are interested in. We represent
each image primitive by a 7 × 7 image patch, which is se-
lected from the region in Figure 3(c) with high magnitude
value or energy level.

4.3. Local neighbor embedding

The manifold structure of image patches characterizes
the smooth variation corresponding to some regular trans-
formations in natural images. For instance, we can expect
that the manifold coordinates of the edge structure corre-
spond to its orientation, translation, and blurring variations.
In super-resolution problems, we further assume that man-
ifolds of the small patches in the low-resolution and high-
resolution images bear similar local geometry in the two
spaces. This assumption holds as long as the patches are
associated with image primitives and the two feature de-
scriptions are isometric.

In recent years, manifold learning (or nonlinear dimen-
sionality reduction) methods have emerged as powerful
tools for discovering a “faithful” low-dimensional repre-
sentation of the original data embedded in some high-
dimensional observation space [1, 10, 12, 14]. The main
computations for these methods are based on tractable,
polynomial-time optimizations, such as shortest path prob-
lems, least squares fits, semidefinite programming, and ma-
trix diagonalization. Our super-resolution method to be de-
scribed below has been inspired by the LLE algorithm [10].
Its key idea is that the local geometry in the neighborhood
of each data point can be characterized by linear coefficients
that reconstruct the data point from its neighbors.

For convenience, we use lps , hp
s , lqt and hq

t to denote the
feature vectors as well as the corresponding low- and high-
resolution image patches, and Ls, Hs, Lt and Ht to denote
the sets of feature vectors as well as the corresponding im-

ages. The neighbor embedding algorithm of our method can
be summarized as follows:

Algorithm - Local neighbor embedding

Input: low-resolution test patches Lt = {l1t , l2t · · · , lnt
t }

Output: high-resolution patches Ht = {h1
t , h

2
t · · · , hnt

t }
Begin

1. For each patch lqt in image Lt:

(a) Find the set Nq of K nearest neighbors in Ls.
(b) Compute the reconstruction weights of the neigh-

bors that minimize the error of reconstructing lqt .
(c) Compute the initial high-resolution embedding

hq
t using the appropriate high-resolution features

of the K nearest neighbors and the reconstruction
weights.

(d) Estimate the high-resolution residual error vector
eq
t using the average residual error vector of the

K nearest neighbors in Nq, and update hq
t with

hq
t + eq

t .

2. Construct the target high-resolution image Ht by en-
forcing the local compatibility and smoothness con-
straints between adjacent patches obtained in step 1(d).

End

We implement step 1(a) by using Euclidean distance to
define neighborhood. Based on the K nearest neighbors
identified, step 1(b) seeks to find the best reconstruction
weights for each patch lqt in Lt. Optimality is achieved by
minimizing the local reconstruction error for lqt

εq = ‖lqt −
∑

lps∈Nq

ωqpl
p
s‖2 (1)

which is the squared distance between lqt and its recon-
struction, subject to the constraints

∑
lps∈Nq

ωqp = 1 and
ωqp = 0 for any lps 6∈ Nq. Minimizing εq subject to the con-
straints is a constrained least squares problem. We define a
local Gram matrix Gq for lqt as

Gq = (lqt 1
T − L)T (lqt 1

T − L) (2)

where 1 is a column vector of ones and L is a D × K
matrix with its columns being the neighbors of lqt . More-
over, we group the weights of the neighbors to form a K-
dimensional weight vector wq by reordering the subscript p
of each weight ωqp. The constrained least squares problem
has the following closed-form solution:

wq =
G−1

q 1

1T G−1
q 1

(3)

Instead of inverting Gq, we apply a more efficient method
by solving the linear system of equations Gqwq = 1 and



then normalizing the weights so that
∑

lps∈Nq
ωqp = 1. Af-

ter repeating steps 1(a) and 1(b) for all Nt patches in Lt,
the reconstruction weights obtained form a weight matrix
W = [ωqp]Nt×Ns

.
Step 1(c) computes the initial value of hq

t based on W :

hq
t =

∑

lps∈Nq

ωqph
p
s (4)

Step 1(d) estimates the high-resolution residual error
vector eq

t of the linear reconstruction

eq
t =

1
K

∑

lps∈Nq

ep
s

=
1
K

∑

lps∈Nq

(hp
s −

∑

hr
s∈Np

ωrph
r
s) (5)

where ep
s is the residual error of the neighboring patch

lps ∈ Nq. It is calculated in the learning phase and stored
together with its associated lps . We use the average of ep

s

to estimate eq
t , with the assumption that these neighboring

residual error vectors are in approximately the same direc-
tion which is perpendicular to the tangent plane at hq

t .
In step 2, we use a simple method to enforce inter-

patch relationships by averaging the feature values in re-
gions where adjacent patches overlap. Other more sophisti-
cated methods may also be used.

4.4. Training set revisited

An essential assumption of our local neighbor embed-
ding method is that the linear reconstruction weight of lps
and that of its corresponding hp

s should be approximately
the same in the two corresponding image spaces. In this
subsection, we evaluate this assumption by computing the
standard linear correlation coefficient R(wl, wh) between
two groups of weight vectors, wl and wh. Evaluation is per-
formed based on two settings, either using a randomly sam-
pled patch set or using an image primitive patch set. Each
data set contains around 25,000 pairs of low-resolution and
high-resolution patches. Figure 4 shows the histograms
of the correlation coefficient under the two settings, with
its value ranging from −1 to 1. From this comparison,
we can clearly see that the local neighborhood relation-
ships between low-resolution and high-resolution primitive
patches are more consistent than those between general im-
age patches.

However, since the image primitives are extracted us-
ing a hard threshold on the filtered low-resolution image,
it is inevitable that some “noisy” patches will be included
in the training set, resulting in the low correlation part of
Figure 4(b). In our experiment, we only keep those primi-
tive patches and their K nearest neighbors if their correla-
tion coefficients are greater than 0.7. These patches form a

compact training set which can characterize well the mani-
fold structure of natural images.

Figure 4. Histograms of correlation coefficient R(wl, wh) be-
tween reconstruction weight vectors for lps and hp

s in the two image
spaces under two settings: (a) randomly sampled image patches;
(b) image primitive patches. The red arrows indicate the median
values.

5. Experiments
We build training sets for the super-resolution algorithm

from band-pass and high-pass pairs taken from a set of
training images (see Figure 5). All the eight representative
natural images were downloaded from a public web site.1

They were taken with a Canon EOS D60 digital camera with
a resolution of 500 × 433 pixels. About 400,000 primitive
examples have been extracted from these training images.

Figure 5. Eight training images (downloaded from http://www.the-
digital-picture.com/Gallery/) used in our experiments.

Our method has only three parameters to determine. The
first parameter is the number of nearest neighbors K for
neighbor embedding. Our experiments show that the super-
resolution result is not very sensitive to the choice of K.
We set K to 5 for all our experiments. The second and third
parameters are the patch size and the degree of overlap be-
tween adjacent patches. For both the low-resolution and
high-resolution images, we use 7 × 7 pixel patches and let
the overlap between adjacent patches be 4 pixels. The corre-
sponding low-resolution and high-resolution image patches
are properly aligned by their geometrical centers in the
image plane. Principal component analysis (PCA) is per-
formed on the low-resolution patch set to reduce its dimen-
sionality to 15, which covers more than 98% of the total

1http://www.the-digital-picture.com/Gallery/



variance. The high-resolution feature vector is represented
by concatenating all 7× 7 pixels in the patch, since we can-
not find an ‘elbow’ at which the eigenvalue curve ceases
to decrease significantly with added dimensions. Note that
we perform hallucination on the image intensity only be-
cause humans are more sensitive to the brightness informa-
tion. The color channels are simply interpolated by a bilin-
ear function.

We compare our approach with bicubic interpolation and
the neighbor embedding method of Chang et al. [2] on dif-
ferent super-resolution examples, all with a magnification
factor of 3 (Figure 6). When implementing the method in
[2], we use uniformly sampled patches in the training im-
ages to build a training set with the same size as ours. It
is clear to see that bicubic interpolation gives the smoothest
result. Chang et al.’s method gives better result for some de-
tails in the images. On the other hand, sharper and smoother
contours are hallucinated by our approach (e.g., see the
edges of the leaf in the first example).2

We also calculate the RMS error between the super-
resolution image generated and the ground-truth image as
the number of nearest neighbors K varies over a range.
Figure 7 shows the results for the four examples discussed
above. As we can see, the RMS error attains its lowest value
when K is between 4 and 6, showing that using multiple
nearest neighbors (as opposed to only one nearest neighbor
as in the existing methods) does give improved results.

6. Conclusion

In this paper, we have proposed a learning-based method
for image hallucination based on local neighbor embedding
of the image primitive manifold constructed from an in-
put image. In particular, we study image hallucination in
the context of the single-image super-resolution problem.
A compact yet descriptive training set is constructed from
characteristic regions in images where the manifold as-
sumption holds well. Compared with other generic single-
image super-resolution methods, our method can synthesize
higher-quality images. In our future work, we will apply a
similar approach to other image hallucination problems.
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(a) (b) (c) (d)

Figure 6. Test images magnified by three times using (a) bicubic interpolation, (b) Chang et al.’s method, and (c) our approach; (d) original
high-resolution image.
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Figure 7. RMS error between the super-resolution image generated and the ground-truth image as a function of the number of nearest
neighbors used: (a) leaf image; (b) flower image; (c) face image; (d) pattern image.


