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Abstract

Over the past few years, some embedding methods have
been proposed for feature extraction and dimensional-
ity reduction in various machine learning and pattern
classification tasks. Among the methods proposed are
Neighborhood Preserving Embedding (NPE), Locality
Preserving Projection (LPP) and Local Discriminant
Embedding (LDE) which have been used in such appli-
cations as face recognition and image/video retrieval.
However, although the data in these applications are
more naturally represented as higher-order tensors, the
embedding methods can only work with vectorized data
representations which may not capture well some use-
ful information in the original data. Moreover, high-
dimensional vectorized representations also suffer from
the curse of dimensionality and the high computational
demand. In this paper, we propose some novel tensor
embedding methods which, unlike previous methods,
take data directly in the form of tensors of arbitrary or-
der as input. These methods allow the relationships be-
tween dimensions of a tensor representation to be effi-
ciently characterized. Moreover, they also allow the in-
trinsic local geometric and topological properties of the
manifold embedded in a tensor space to be naturally es-
timated. Furthermore, they do not suffer from the curse
of dimensionality and the high computational demand.
We demonstrate the effectiveness of the proposed tensor
embedding methods on a face recognition application
and compare them with some previous methods. Ex-
tensive experiments show that our methods are not only
more effective but also more efficient.

Introduction
Feature extraction and dimensionality reduction are among
the most fundamental problems studied in several related ar-
eas, including machine learning, pattern recognition, data
mining, and computer vision. Over the past few decades,
the most representative methods for feature extraction and
dimensionality reduction are Principal Component Analy-
sis (PCA) and Linear Discriminant Analysis (LDA) for the
unsupervised and supervised learning settings, respectively.
However, it is well known that both methods are optimal
only if the underlying data distribution is Gaussian (Duda,
Hart, & Stork 2000). While PCA and LDA are linear di-
mensionality reduction methods, nonlinear extensions based
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on the kernel approach (Schölkopf & Smola 2002) have also
been proposed to give nonlinear methods called kernel PCA
and kernel Fisher discriminant analysis.

Recently, there are growing interests in exploiting the
intrinsic manifold structure of the data for achieving di-
mensionality reduction. When there exists nonlinearity
in the manifold structure, Euclidean distance is incapable
of characterizing the geometric structure of the data and
hence traditional linear methods like PCA and LDA no
longer work well. Some recent nonlinear dimensionality
reduction (or called manifold learning) methods, including
Isomap (Tenenbaum, Silva, & Langford 2000), Locally Lin-
ear Embedding (LLE) (Roweis & Saul 2000), and Lapla-
cian Eigenmap (Belkin & Niyogi 2003), can preserve the
local or global geometric properties of the nonlinear mani-
fold structure. However, these methods in their original form
only work on a given set of data points but cannot be used
for embedding new data points. (Bengioet al. 2004) pro-
posed an approach based on the Nyström formula for achiev-
ing out-of-sample extension in manifold learning. However,
their approach which makes use of data-dependent kernels
is in general computationally more demanding. More re-
cently, Neighborhood Preserving Embedding (NPE) (Heet
al. 2005) and Locality Preserving Projection (LPP) (He &
Niyogi 2004) were proposed as optimal linear approxima-
tions to LLE and Laplacian Eigenmap, respectively. Since
both methods define the embedding everywhere in the ambi-
ent space but not just on a given set of data points, extension
to new data points is straightforward and efficient. More-
over, by integrating label information and neighborhood in-
formation, Local Discriminant Embedding (LDE) (Chen,
Chang, & Liu 2005) was proposed as a manifold-based em-
bedding method for classification.

These embedding methods assume that the data are in
vectorized representations. In many real-world applica-
tions, however, the data are more naturally represented as
higher-order tensors. These tensors have to be unfolded into
one-dimensional vectors first before the embedding meth-
ods can be applied. In so doing, some useful informa-
tion in the original data may not be captured well. More-
over, high-dimensional vectorized representations also suf-
fer from the curse of dimensionality and the high compu-
tational demand. Recently, extensions were proposed to
the original PCA, LDA and LPP to allow these methods
to work directly on two-dimensional (2D) matrices rather
than one-dimensional vectors (Yanget al. 2004; Ye, Janar-



dan, & Li 2005; He, Cai, & Niyogi 2006). Some attempts
have also been made to take into consideration higher-
order tensor spaces (Wanget al. 2005; Xu et al. 2005;
Vasilescu & Terzopoulos 2003), but they are only defined
based on the Euclidean distance metric.

In this paper, we propose three tensor embedding meth-
ods, called Tensor Neighborhood Preserving Embedding
(TNPE), Tensor Locality Preserving Projection (TLPP) and
Tensor Local Discriminant Embedding (TLDE), based on
multilinear algebra and differential geometry. Unlike pre-
vious methods (Heet al. 2005; He & Niyogi 2004; Chen,
Chang, & Liu 2005), our methods take data directly in the
form of tensors of arbitrary order as input. With the data
points sampled randomly from the manifold embedded in
an arbitrary tensor spaceRI1×···×Ik , the tensor embedding
methods find a set of transformation matrices for defining
the embedded tensor subspaces that together give an opti-
mal approximation to the manifold preserving some local
geometric and topological properties.

In summary, our tensor embedding methods possess the
following appealing properties. (1) While NPE, LPP and
LDE can only work with vectorized data representations,
TNPE, TLPP and TLDE can work with more general ten-
sor representations of arbitrary order which include vector-
ized data representations as special cases. (2) Both TNPE
and TLPP may be applied in a semi-supervised or super-
vised manner by incorporating the label information into the
neighborhood graphs. (3) The curse of dimensionality prob-
lem is effectively avoided and the computational complexity
is significantly reduced. (4) The solutions can be obtained
by solving generalized eigenvalue problems in an iterative
manner. (5) Our embedding methods explicitly discover the
intrinsic local geometric structure of the manifold in an arbi-
trary tensor space, and the low-dimensional embedding can
be found by preserving the neighborhood structure. (6) Sim-
ilar to NPE, LPP and LDE, our embedding methods define
the embedding everywhere in the ambient space but not just
on a given set of data points.

Brief Review of NPE, LPP and LDE

Given a set ofn data pointsX = {x1, . . . ,xn} ⊂ R
m,

NPE, LPP and LDE seek a transformation matrix that maps
each data pointxi to a corresponding lower-dimensional
data pointyi. Different criteria are used in different methods
for finding the transformation matrix.

NPE can be regarded as a linear approximation to LLE.
Unlike traditional PCA which focuses on preserving the
global Euclidean structure, NPE attempts to preserve the lo-
cal neighborhood structure of the manifold. Moreover, un-
like manifold learning methods such as Isomap, LLE and
Laplacian Eigenmap, NPE can be directly applied to any
data point including out-of-sample points. Similar to LLE,
NPE first constructs a neighborhood graph forX based on
either theK-nearest-neighbor orǫ-neighborhood criterion.
It then computes the affinity matrixS = [sij ]n×n which is
normalized such that each row ofS sums to one. To obtain a
linear approximation to LLE, the optimization problem for
NPE is given by:

arg min
p

X

i

(pT
xi −

X

j

sijp
T
xj)

2 = p
T
XMX

T
p, (1)

s.t. p
T
XX

T
p = 1,

wherep is the transformation vector,X = [x1, . . . ,xn],
M = (I − S)T (I − S), andI is then × n identity matrix.

Similar to NPE, LPP is an optimal linear approximation
to Laplacian Eigenmap. GivenX , it also first constructs a
neighborhood graph and then computes the affinity matrix
S. The optimization problem for LPP is given by:

arg min
p

X

ij

(pT
xi − p

T
xj)

2sij = p
T
XLX

T
p, (2)

s.t. p
T
XDX

T
p = 1,

whereL = D−S is the graph Laplacian andD is a diagonal
matrix with the diagonal entriesdii =

∑

j sij .
LDE is explicitly formulated for classification problems.

Based on the assumption that any subset of data points be-
longing to the same class lies in a submanifold, LDE seeks
to find an optimal transformation matrix by integrating the
class label information of the data points and the neighbor-
hood information between data points. The goal is to pre-
serve the within-class neighborhood relationship while dis-
sociating the submanifolds for different classes from each
other. The within-class neighborhood relationship is repre-
sented by a within-class neighborhood graphG while the
between-class neighborhood relationship is represented by a
between-class neighborhood graphG′. We then define the
affinity matricesS = [sij ]n×n andS′ = [s′ij ]n×n for G

andG′, respectively. The optimization problem for LDE is
defined as:

arg min
p

X

ij

(pT
xi − p

T
xj)

2sij , (3)

s.t.
X

ij

(pT
xi − p

T
xj)

2s′ij = 1.

Note that the original optimization problem formulated
in (Chen, Chang, & Liu 2005) is a maximization problem,
which is equivalent to the minimization problem given here.
Our preference for the latter is mainly for consistency with
the optimization problems for NPE and LPP.

Our Tensor Embedding Methods
Basic Terminology on Tensor Operations
Before devising our tensor embedding methods, we first re-
view some basic terminology on tensor operations.

Let A be a tensor of sizeI1 × · · · × Ik. The order of
A is k and thef th dimension (or mode) ofA is of sizeIf .
In addition, we denote the index of a single entry within a
tensor by subscripts, such asAi1...ik

.
Definition 1 The scalar product〈A,B〉 of two tensorsA,B ∈

R
I1×···×Ik is defined as〈A,B〉

def
=

P

i1
· · ·

P

ik
Ai1...ik

B∗

i1...ik
,

where∗ denotes complex conjugation. Furthermore, the Frobenius

norm of a tensorA is defined as‖A‖F
def
=

p

〈A,A〉.

Definition 2 The f -mode product of a tensorA ∈ R
I1×···×Ik

and a matrixU ∈ R
Jf×If is an I1 × · · · × If−1 × Jf ×

If+1 × · · · × Ik tensor denoted asA ×f U, where the corre-

sponding entries are given by(A ×f U)i1...if−1jf if+1...ik

def
=

P

if
Ai1...if−1if if+1...ik

Ujf if
.



Definition 3 LetA be anI1×· · ·× Ik tensor and(π1, . . . , πk−1)
be any permutation of the entries of the set{1, . . . , f − 1, f +
1, . . . , k}. The f -mode unfolding of the tensorA into an
If × Πk−1

l=1 Iπl
matrix, denoted asA(f), is defined byA ∈

R
I1×···×Ik ⇒f A(f) ∈ R

If×Πk−1

l=1
Iπl , whereA

(f)
if j = Ai1...ik

with j = 1 +
Pk−1

l=1 (iπl
− 1)

Ql−1

l̂=1
Iπ

l̂
.

In general, the goal of linear dimensionality reduction in
a tensor space can be described as follows. Givenn data
pointsA1, . . . ,An in the tensor spaceRI1×···×Ik , a linear
tensor embedding method seeks to findk transformation ma-
tricesUi ∈ R

li×Ii (li < Ii, i = 1, . . . , k) such thatn cor-
responding embedded data pointsB1, . . . ,Bn ∈ R

l1×···×lk

can be obtained asBi = Ai ×1 U1 ×2 · · · ×k Uk (i =
1, . . . , n).

Tensor Neighborhood Preserving Embedding
Givenn data pointsA1, . . . ,An from an unknown manifold
M embedded in a tensor spaceR

I1×···×Ik , TNPE findsk
optimal projectionsUi ∈ R

li×Ii (i = 1, . . . , k) such that
the local topological structure ofM is preserved and the
intrinsic geometric property is effectively captured. Ourfor-
mulation of TNPE is essentially based on that of NPE.

We construct a neighborhood graphG to capture the in-
trinsic geometric structure ofM and apply the heat kernel
to define the affinity matrixS = [sij ]n×n as:

sij =



exp(−‖Ai −Aj‖
2
F /t), if Aj ∈ O(K,Ai);

0, otherwise.

whereO(K,Ai) denotes the set ofK nearest neighbors
of Ai and t is a positive constant. Alternatively,G may
be constructed based on theǫ-neighborhood.S is normal-
ized such that each row sums to one. In case label infor-
mation is partially or fully available, it can be incorporated
into the neighborhood graph so that embedding can be done
in a semi-supervised or supervised manner. Based on thek

transformation matricesUi ∈ R
li×Ii (i = 1, . . . , k), let Bi

denote the point in the embedded tensor space correspond-
ing to Ai. In order to preserve the local structure explic-
itly, we define the following objective function based on the
Frobenius norm of a tensor:

arg min Q(U1, . . . ,Uk) =
X

i

‖Bi −
X

j

sijBj‖
2
F (4)

=
X

i

‖Ai ×1 · · · ×k Uk −
X

j

sijAj ×1 · · · ×k Uk‖
2
F .

To eliminate an arbitrary scaling factor in the transformation
matrices, we impose the following constraint:

∑

i ‖Bi‖
2
F =

∑

i ‖Ai ×1 · · ·×k Uk‖
2
F = 1. Hence the optimization prob-

lem for TNPE can be expressed as:

arg min Q(U1, . . . ,Uk) (5)

=
X

i

‖Ai ×1 · · · ×k Uk −
X

j

sijAj ×1 · · · ×k Uk‖
2
F ,

s.t.
X

i

‖Ai ×1 · · · ×k Uk‖
2
F = 1.

Note that this optimization problem is a high-order non-
linear programming problem with a high-order nonlinear
constraint, making direct computation of the transformation

matrices infeasible. In general, this type of problems can
be solved approximately by employing an iterative scheme
which was originally proposed for low-rank approximation
of second-order tensors (Ye 2004) and later extended for
higher-order tensors (Wanget al. 2005). In what follows, we
will discuss how to solve the problem in (5) by such an itera-
tive scheme. Assuming thatU1, . . . ,Uf−1,Uf+1, . . . ,Uk

are known, we denoteAi ×1 U1 · · · ×f−1 Uf−1 ×f+1

Uf+1 · · ·×k Uk by the tensorYf
i . Then, by the correspond-

ing f -mode unfolding, we haveYf
i ⇒f Y

(f)
i . In addition,

we haveYf
i ×f Uf = UfY

(f)
i . From the property of trace,

we havetr(HHT ) = ‖H‖2
F for any matrixH. The objec-

tive function and the constraint in (5) can thus be rewritten
in the following alternative form based on trace:
Pf (Uf ) =

P

i
‖Yf

i ×f Uf −
P

j
sijY

f
j ×f Uf‖

2
F =

P

i
‖UfY

(f)
i −

P

j
sijUfY

(f)
j ‖2

F =
P

i
tr

˘

Uf (Y
(f)
i −

P

j
sijY

(f)
j )(Y

(f)
i −

P

j
sijY

(f)
j )T UT

f

¯

= tr
˘

Uf

`
P

i
(Y

(f)
i −

P

j
sijY

(f)
j )(Y

(f)
i −

P

j
sijY

(f)
j )T

´

UT
f

¯

and
P

i
‖Yf

i ×f

Uf‖
2
F =

P

i
‖UfY

(f)
i ‖2

F =
P

i
tr

˘

UfY
(f)
i Y

(f)T
i UT

f

¯

=

tr
˘

Uf

`
P

i
Y

(f)
i Y

(f)T
i

´

UT
f

¯

.
Thus, the optimization problem in (5) can be reformulated

as:

arg min Pf (Uf ) = (6)

tr
˘

Uf

`

X

i

(Y
(f)
i −

X

j

sijY
(f)
j )(Y

(f)
i −

X

j

sijY
(f)
j )T

´

U
T
f

¯

,

s.t. tr
˘

Uf

`

X

i

Y
(f)
i Y

(f)T
i

´

U
T
f

¯

= 1.

The unknown transformation matrixUf can be found
by solving for the eigenvectors corresponding to thelf
smallest eigenvalues in the generalized eigenvalue equa-
tion

(
∑

i(Y
(f)
i −

∑

j sijY
(f)
j )(Y

(f)
i −

∑

j sijY
(f)
j )T

)

u =

λ
(
∑

i Y
(f)
i Y

(f)T
i

)

u. The other transformation matrices can
be obtained using a similar iterative procedure by solving
the corresponding generalized eigenvalue problems. Algo-
rithm 1 summarizes the complete TNPE algorithm.

Tensor Locality Preserving Projection
Similar to Laplacian Eigenmap and LPP, TLPP provides
a way to linearly approximate the eigenfunctions of the
Laplace Beltrami operator in a tensor space. Therefore it
can model the geometric and topological properties of an
unknown manifold embedded in a tensor space with some
data points sampled randomly from the manifold.

Based onn data pointsA1, . . . ,An from a manifold
M ⊂ R

I1×···×Ik , we first construct a neighborhood graph
G to represent the local geometric structure ofM. The cor-
responding affinity matrixS = [sij ]n×n is defined based on
the heat kernel as:

sij =

8

<

:

exp(−‖Ai −Aj‖
2
F /t), if Aj ∈ O(K,Ai)

or Ai ∈ O(K,Aj);
0, otherwise.

Let Ui ∈ R
li×Ii (i = 1, . . . , k) be the corresponding trans-

formation matrices. Based on the neighborhood graphG,



Algorithm 1 TNPE

Input : A1, . . . ,An from M ⊂ R
I1×···×Ik andl1 × · · · × lk.

1. ConstructG and computeS;
2. Compute the embedding as follows:
Initialize U0

1 = II1 , . . . ,U0
k = IIk

;
for t = 1, . . . , Tmax do

for f = 1, . . . , k do
Yf

i = Ai ×1 U1 · · · ×f−1 Uf−1 ×f+1 Uf+1 · · ·×k Uk;
Yf

i ⇒f Y
(f)
i ;

H1 =
P

i
(Y

(f)
i −

P

l
sijY

(f)
j )(Y

(f)
i −

P

l
sijY

(f)
j )T ;

H2 =
P

i Y
(f)
i Y

(f)T
i ;

H1U
t
f = H2U

t
fΛk, Ut

f ∈ R
lf×If ;

if ‖Ut
f −Ut−1

f ‖F < ε for eachf then
break;

end if
end for

end for
Output : Ui = Ut

i ∈ R
li×Ii (i = 1, . . . , k).

the optimization problem for TLPP can be expressed as:

arg min Q(U1, . . . ,Uk) (7)

=
X

i,j

‖Ai ×1 · · · ×k Uk −Aj ×1 · · · ×k Uk‖
2
F sij ,

s.t.
X

i

‖Ai ×1 · · · ×k Uk‖
2
F dii = 1.

In general, the larger the value ofdii =
∑

j sij is, the more
important is the data pointBi in the embedded tensor space
for representing the data pointAi. It is easy to see that the
objective function will give a high penalty if neighboring
pointsAi andAj are mapped far apart. Thus if two points
Ai andAj are close to each other, then the corresponding
pointsBi andBj in the embedded tensor space are also ex-
pected to be close to each other. Similar to TNPE, we solve
this optimization problem by applying an iterative scheme.
Assuming thatU1, . . . ,Uf−1,Uf+1, . . . ,Uk are known,
we denoteAi ×1 U1 · · ·×f−1 Uf−1×f+1 Uf+1 · · ·×k Uk

by Yf
i . In addition, sinceYf

i ⇒f Y
(f)
i and based on the

properties of tensor and trace, we reformulate the optimiza-
tion function in (7) as follows:

arg min Pf (Uf ) = (8)

tr
˘

Uf

`

X

i,j

(Y
(f)
i − Y

(f)
j )(Y

(f)
i − Y

(f)
j )T sij

´

U
T
f

¯

,

s.t. tr
˘

Uf

`

X

i

Y
(f)
i Y

(f)T
i dii

´

U
T
f

¯

= 1.

The unknown transformation matrixUf can be ob-
tained by solving for the eigenvectors corresponding to
the lf smallest eigenvalues in the generalized eigenvalue

equation
(
∑

i,j(Y
(f)
i − Y

(f)
j )(Y

(f)
i − Y

(f)
j )T sij

)

u =

λ
(
∑

i Y
(f)
i Y

(f)T
i dii

)

u. The other transformation matrices
can be obtained in a similar manner. Algorithm 2 summa-
rizes the complete TLPP algorithm.

Tensor Local Discriminant Embedding
Unlike TNPE and TLPP which can be used for unsuper-
vised, semi-supervised or supervised learning tasks, TLDE

Algorithm 2 TLPP

Input : A1, . . . ,An from M ⊂ R
I1×···×Ik andl1 × · · · × lk.

1. ConstructG and computeS;
2. Compute the embedding as follows:
Initialize U0

1 = II1 , . . . , U0
k = IIk

;
for t = 1, . . . , Tmax do

for f = 1, . . . , k do
Yf

i = Ai ×1 U1 · · ·×f−1 Uf−1 ×f+1 Uf+1 · · · ×k Uk;
Yf

i ⇒f Y
(f)
i ;

H1 =
P

i,j
(Y

(f)
i − Y

(f)
j )(Y

(f)
i − Y

(f)
l )T sij ;

H2 =
P

i
Y

(f)
i Y

(f)T
i dii;

H1U
t
f = H2U

t
fΛk, Ut

f ∈ R
lf×If ;

if ‖Ut
f − Ut−1

f ‖F < ε for eachf then
break;

end if
end for

end for
Output : Ui = Ut

i ∈ R
li×Ii (i = 1, . . . , k).

is only defined for supervised learning tasks. As in (Chen,
Chang, & Liu 2005), givenn data pointsA1, . . . ,An ∈
R

I1×···×Ik and the corresponding labelsy1, . . . , yn ∈
{1, . . . , c}, we assume that any subset of data points belong-
ing to the same class lies in a submanifoldM ⊂ R

I1×···×Ik .
TLDE aims to findk transformation matricesU1, . . . ,Uk

by integrating the class label information and the neigh-
borhood information to dissociate the submanifolds for dif-
ferent classes from each other. Like LDE, we first con-
struct within-class and between-class neighborhood graphs
G andG′ to represent the local within-class and between-
class neighborhood relationships, respectively. The corre-
sponding affinity matricesS = [sij ]n×n andS′ = [s′ij ]n×n

are then defined based on the heat kernel:

sij =

8

>

<

>

:

exp(−‖Ai −Aj‖
2
F /t), if (Aj ∈ O(K,Ai)

or Ai ∈ O(K,Aj))
andyi = yj ;

0, otherwise.

and

s′ij =

8

>

<

>

:

exp(−‖Ai −Aj‖
2
F /t), if (Aj ∈ O(K,Ai)

or Ai ∈ O(K,Aj))
andyi 6= yj ;

0, otherwise.

The optimization problem for TLDE can be expressed in
the following form:

arg min Q(U1, . . . ,Uk) (9)

=
X

i,j

‖Ai ×1 · · · ×k Uk −Aj ×1 · · · ×k Uk‖
2
F sij ,

s.t.
X

i,j

‖Ai ×1 · · · ×k Uk −Aj ×1 · · · ×k Uk‖
2
F s′ij = 1.

From this optimization problem, it is easy to note that neigh-
boring points in the original space with the same class label
tend to remain close to each other in the embedded tensor
space, while preventing points of other classes from enter-
ing the neighborhood.

We again apply an iterative scheme to solve this optimiza-
tion problem. We assume thatU1, . . . ,Uf−1,Uf+1, . . . ,



Algorithm 3 TLDE

Input : A1, . . . ,An from M ⊂ R
I1×···×Ik , {yi | yi ∈

{1, . . . , h}}n
i=1 andl1 × · · · × lk.

1. Construct neighborhood graphsG andG′ and compute affin-
ity matricesS andS′ for G andG′, respectively;
2. Compute the embedding as follows:
Initialize U0

1 = II1 , . . . ,U0
k = IIk

;
for t = 1, . . . , Tmax do

for f = 1, . . . , k do
Yf

i = Ai ×1 U1 · · · ×f−1 Uf−1 ×f+1 Uf+1 · · ·×k Uk;
Yf

i ⇒f Y
(f)
i ;

H1 =
P

i,j
sij(Y

(f)
i − Y

(f)
j )(Y

(f)
i −Y

(f)
j )T ;

H2 =
P

i,j
s′ij(Y

(f)
i − Y

(f)
j )(Y

(f)
i −Y

(f)
j )T ;

H1U
t
f = H2U

t
fΛk, Ut

f ∈ R
lf×If ;

if ‖Ut
f −Ut−1

f ‖F < ε for eachf then
break;

end if
end for

end for
Output : Ui = Ut

i ∈ R
li×Ii (i = 1, . . . , k).

Uk are known and denoteAi ×1 U1 . . . ×f−1 Uf−1 ×f+1

Uf+1 . . .×k Uk byYf
i . We can rewrite the Frobenius norm

in (9) in terms of the trace and express the optimization prob-
lem as:

arg min Pf (Uf ) (10)

= tr
˘

U
T
f

`

X

i,j

sij(Y
(f)
i − Y

(f)
j )(Y

(f)
i − Y

(f)
j )T

´

Uf

¯

,

s.t. tr{UT
f

X

i,j

s′ij(Y
(f)
i − Y

(f)
j )(Y

(f)
i − Y

(f)
j )T

Uf} = 1.

It can be seen that the columns of the unknown trans-
formation matrixUf are the eigenvectors corresponding
to the lf smallest eigenvalues in the generalized eigen-

value problem
(
∑

i,j sij(Y
(f)
i −Y

(f)
j )(Y

(f)
i −Y

(f)
j )T

)

u =

λ
(
∑

i,j s′ij(Y
(f)
i − Y

(f)
j )(Y

(f)
i − Y

(f)
j )T

)

u. So all the
transformation matricesU1, . . . ,Uk can be found in an iter-
ative manner. Algorithm 3 summarizes the complete TLDE
algorithm.

Experimental Results
While the proposed tensor embedding algorithms are very
general in that they can be applied to many problems, we
conduct some face recognition experiments in this paper
as an illustrative example to demonstrate the advantages
of these embedding methods. Face recognition is a suit-
able domain for illustration because research in the past few
years shows that face images generally correspond to low-
dimensional manifolds embedded in the ambient space.

Our experiments are based on the FERET face database
which has become thede factobenchmark for evaluating
face recognition algorithms. We randomly select 47 sub-
jects from the FERET database with 10 different gray-scale
images for each subject. The images have been subsam-
pled to a resolution of56 × 46. They can be encoded in

either a 2576-dimensional vectorized representation for tra-
ditional methods or a second-order tensor representation of
size56 × 46 for tensor embedding methods. Moreover, we
also apply 40 Gabor filters corresponding to five scales and
eight orientations. Similarly, the images can be encoded in
either a 103040-dimensional vectorized Gabor representa-
tion for traditional methods or a third-order tensor represen-
tation of size56 × 46 × 40 for tensor embedding methods.
Our data set is randomly partitioned into two disjoint sub-
sets for training and testing. To compare the recognition
performance with different training set sizes,r images per
subject are randomly selected for training and the rest for
testing. For each value ofr, we repeat the experiments 10
times on different randomly selected training sets and the
average classification results based on the nearest neighbor
classifier are reported.

Since traditional methods such as PCA and LDA can be
reformulated as special cases of manifold learning meth-
ods, the experiments reported here only compare TNPE,
TLPP and TLDE with NPE, LPP and LDE. For simplic-
ity, all neighborhood graphs are constructed based on the
K-nearest-neighbor criterion. As discussed above, while
the neighborhood graphs for NPE, LPP, TNPE and TLPP
are constructed without incorporating any label information,
the within-class and between-class neighborhood graphs for
LDE and TLDE are constructed based on the sameK-
nearest-neighbor criterion by incorporating label informa-
tion. In addition, in order to reduce the computational de-
mand in NPE, LPP and LDE, PCA is employed as an inter-
mediate step.

0 20 40 60 80
40

50

60

70

80

Dimension d

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

NPE
NPE:Gabor
TNPE:2nd order
TNPE:3rd order

(a)
0 20 40 60 80

40

50

60

70

80

Dimension d

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

LPP
LPP:Gabor
TLPP:2nd order
TLPP:3rd order

(b)
0 20 40 60 80

60

65

70

75

80

85

Dimension d

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy
 (%

)

LDE
LDE:Gabor
TLDE:2nd order
TLDE:3rd order

(c)

2 4 6 8 10
60

65

70

75

80

Value of K

To
p 

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy
 (%

)

NPE
NPE:Gabor
TNPE:2nd order
TNPE:3rd order

(d)
2 4 6 8 10

55

60

65

70

75

80

Value of K

To
p 

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy
 (%

)

LPP
LPP:Gabor
TLPP:2nd order
TLPP:3rd order

(e)
2 4 6 8 10

70

75

80

84

Value of K

To
p 

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy
 (%

)

LDE
LDE:Gabor
TLDE:2nd order
TLDE:3rd order

(f)

2 3 4 5 6 7 8
45

55

65

75

85

90

Value of r

To
p 

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

NPE
NPE:Gabor
TNPE:2nd order
TNPE:3rd order

(g)
2 3 4 5 6 7 8

45

55

65

75

85

90

Value of r

To
p 

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy
 (%

)

LPP
LPP:Gabor
TLPP:2nd order
TLPP:3rd order

(h)
2 3 4 5 6 7 8

50

60

70

80

90

95

Value of r

To
p 

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy
 (%

)

LDE
LDE:Gabor
TLDE:2nd order
TLDE:3rd order

(i)
Figure 1: Comparative study based on the FERET database.
(a)∼(c) Classification accuracy (%) vs. dimensionalityd,
with K = 10, r = 5; (d)∼(f) Top classification accuracy
(%) vs. neighborhood sizeK, with r = 5; (g)∼(i) Top clas-
sification accuracy (%) vs. training set sizer, with K = 10.

Figure 1 shows the comparative results for NPE, LPP,
LDE, TNPE, TLPP and TLDE. For simplicity, for a given



d, we perform our tensor embedding methods on the ten-
sor spaceRl1×···×lk with li = d (i = 1, . . . , k). From Fig-
ure 1(a)∼(c), we can see that our tensor embedding methods
outperform NPE, LPP and LDE over a wide range of dimen-
sionality choices. The advantages persist even by varying
the neighborhood size and the training set size, as shown
in Figure 1(d)∼(f) and Figure 1(g)∼(i), respectively. While
the second-order tensor representation and third-order ten-
sor representation already outperform the original vector-
ized representation and vectorized Gabor representation,re-
spectively, the third-order tensor representation gives even
better classification results.

Let us consider the space requirements of different algo-
rithms in the original forms. Without considering the affinity
matrices which are typically very sparse, it is easy to notice
the following. For56 × 46 tensors, the maximum matrix
size involved in NPE, LPP and LDE is2676 × 2676 while
that in our methods is only56 × 56. On the other hand, for
56 × 46 × 40 tensors, the maximum matrix size involved in
NPE, LPP and LDE is103040 × 103040 while that in our
methods is only56 × 1840. More generally, we compare
the space complexity and time complexity of our methods
with the previous methods in the original forms. For sim-
plicity, we assume that the number of iterations in the algo-
rithms of our tensor embedding methods is a small constant
value which does not depend on the experimental settings.
Our experiments show that this is a reasonable assumption
to adopt. We letH = Πk

i=1Ii wherek is the order of the
tensors andImax = max{I1, . . . , Ik}. Table 1 compares
the space complexity and time complexity of our methods
with the previous methods. Since the number of data points
n is usually far less thanH in many real-world applications,
it is clear that our tensor embedding methods are more ap-
pealing in terms of both complexity measures.

Table 1: Comparison of our tensor embedding methods with
NPE, LPP and LDE in terms of the space complexity and
time complexity.

NPE, LPP & LDE TNPE, TLPP & TLDE
SPACE O(H2) O(nH)
TIME O(H3) O(k(n2HImax + I3

max))

Conclusion
Based on some recently proposed embedding methods, we
have developed generalizations which can take data directly
in the form of tensors of arbitrary order as input. Not only
do our methods inherit the attractive characteristics of the
previous methods in terms of exploiting the intrinsic local
geometric and topological properties of the manifold, they
are also appealing in terms of significant reduction in both
space complexity and time complexity. Face recognition ex-
periments based on the FERET database demonstrate that
our tensor embedding methods give very impressive results.

Acknowledgments
This research has been supported by Competitive Earmarked
Research Grant HKUST621305 from the Research Grants
Council of the Hong Kong Special Administrative Region,
China.

References
Belkin, M., and Niyogi, P. 2003. Laplacian eigenmaps for
dimensionality reduction and data representation.Neural
Computation15(6):1373–1396.
Bengio, Y.; Delalleau, O.; Roux, N.; Paiement, J.; Vincent,
P.; and Ouimet., M. 2004. Learning eigenfunctions links
spectral embedding and kernel PCA.Neural Computation
16(10):2197–2219.
Chen, H.; Chang, H.; and Liu, T. 2005. Local discrim-
inant embedding and its variants. InProceedings of the
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 846–853.
Duda, R.; Hart, P.; and Stork, D. 2000.Pattern Classifica-
tion. Wiley.
He, X., and Niyogi, P. 2004. Locality preserving pro-
jections. InAdvances in Neural Information Processing
Systems 16.
He, X.; Cai, D.; Yan, S.; and Zhang, H. 2005. Neighbor-
hood preserving embedding. InProceedings of the Tenth
IEEE International Conference on Computer Vision, 1208–
1213.
He, X.; Cai, D.; and Niyogi, P. 2006. Tensor subspace
analysis. InAdvances in Neural Information Processing
Systems 18.
Roweis, S., and Saul, L. 2000. Nonlinear dimen-
sionality reduction by locally linear embedding.Science
290(5500):2323–2326.
Schölkopf, B., and Smola, A. 2002.Learning with Kernels.
Cambridge, MA: MIT Press.
Tenenbaum, J.; Silva, V.; and Langford, J. 2000. A global
geometric framework for nonlinear dimensionality reduc-
tion. Science290(5500):2319–2323.
Vasilescu, M., and Terzopoulos, D. 2003. Multilinear sub-
space analysis for image ensembles. InProceedings of the
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 93–99.
Wang, H.; Wu, Q.; Shi, L.; Yu, Y.; and Ahuja, N. 2005.
Out-of-core tensor approximation of multi-dimensional
matrices of visual data.ACM Transactions on Graphics
24(3):527–535.
Xu, D.; Yan, S.; Zhang, L.; Zhang, H.; Liu, Z.; and Shum,
H. 2005. Concurrent subspaces analysis. InProceedings
of the IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, 203–208.
Yang, J.; Zhang, D.; Frangi, A.; and Yang, J. 2004. Two-
dimensional pca: A new approach to appearance-based
face representation and recognition.IEEE Transactions on
Pattern Analysis and Machine Intelligence26(1):131–137.
Ye, J.; Janardan, R.; and Li, Q. 2005. Two-dimensional
linear discriminant analysis. InAdvances in Neural Infor-
mation Processing Systems 17.
Ye, J. 2004. Generalized low rank approximations of matri-
ces. InProceedings of the Twenty-First International Con-
ference on Machine Learning.


