
When Location-Based Services Meet Databases
Dik Lun Lee Manli Zhu Haibo Hu

Department of Computer Science, Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong

{dlee, cszhuml, haibo}@cs.ust.hk

Abstract:

As location-based services (LBSs) grow to support a larger and larger user

community and to provide more and more intelligent services, they must face a

few fundamental challenges, including the ability to not only accept coordinates as

location data but also manipulate high-level semantics of the physical environment.

They must also handle a large amount of location updates and client requests and

be able to scale up as their coverage increases. This paper describes some of our

research in location modeling and updates and techniques for enhancing system

performance by caching and batch processing. It can be observed that the

challenges facing LBSs share a lot of similarity with traditional database research

(i.e., data modeling, indexing, caching, and query optimization) but the fact that

LBSs are built into the physical space and the opportunity to exploit spatial locality

in system design shed new light on LBS research.

Keyword:

Location-based service, Databases, Mobile Devices

 1

1. Introduction

Technological advances, especially those in wireless communication and mobile

devices, have fueled the proliferation of location-based services (LBS). In return, the

demands from sophisticated applications with large user populations pose new

challenges in LBS research systems:

 As the name implies, LBSs are built on the notion of “location.” In the past,

definitions of “location” were very simple, ranging from coordinates such as

longitude and latitude to statements like “I am in New York City.” These simple

descriptions, especially those that model the physical space as a Euclidean space,

are not enough for sophisticated LBSs. For example, in an indoor environment,

doors, corridors, lifts, escalators, and staircases not only restrict physical

reachability but impose different costs and constraints on movements. Road

networks are another example where Euclidean distance does not apply.

 Mobile devices can only provide a computing environment with limited CPU,

memory, network bandwidth, and battery resources. As such, mobile clients must

be designed to balance the utilization between these resources and the loads

between the client and the server. For example, pushing more computation on the

client can reduce bandwidth consumption but increase CPU load and memory

consumption. Given the rapidly increasing capability of mobile devices, mobile

applications must make reasonable assumptions about the client’s computational

capability and be able to adapt to it.

 LBSs must be able to handle a large user population and scale up in the face of

 2

increasing demands. An LBS server must be able to process a large number of

requests simultaneously. Fortunately, requests to the servers are likely to exhibit

spatial locality and perhaps to a lesser degree temporal locality as well. For

example, there will be a large number of requests about local traffic conditions in

the morning and for shopping guides in downtown areas. The effective

scheduling and distribution of requests to LBS servers based on spatial locality

will directly improve the performance and user experience of an LBS application.

In this article, we address each issue by first reviewing existing work, then describing

some of our solutions to them, and finally pointing to some future research directions.

In the last part of this article, we describe some ongoing LBS projects involving the

research issues described in this paper.

2. Applications

Logistics management such as mobile work force and fleet management is a natural –

and arguably the first – application for LBSs. However, the most significant impact of

LBSs lies on personal applications. In the following, we summarize some promising

applications that may change our daily lives.

 Location-based instant messaging

Internet-based instant messaging (IM) has already proven to be one of the most popular

internet applications. Location-based instant messaging is a natural extension of

internet-based instant messaging that benefits from the huge existing market for IM.

In location-based messaging, each message is associated with a location, which can be

either the sender’s current location or a manually input location specification. The

 3

message will be sent to users who meet the location specification. For example, a user

who is sitting in a coffee shop may want to send a message to his friends nearby to

invite them to join him for a cup of coffee.

Many applications can be derived from location-based messaging. An example

which has quickly become popular is location-based dating. In addition to all the

traditional dating services, location-based dating provides instant and convenient

dating service to people based on their locations in real time. According to a marketing

study carried out by ComScore Networks in the United States, the number of visitors to

online personal sites grew from 20.3 million in 2002 to 26.6 million in 2003 (a 31%

increase) and the number of registered users on major dating sites including

Match.com, Yahoo’s Personals, One2onematch.com, and TerraLycos’ Matchmaker

exceeded 16 million in 2003.

 Location-based alerts

Most alerts that we use today are time-based; for example, reminding the user of the

time of a meeting. In contrast, location-based alerts remind users when specified spatial

conditions are met. For example, reminding a person to buy milk when he walks by a

supermarket, or alerting him when he walks by a jewelry store one month before his

wife’s birthday. A more serious application is family safety alerts and emergency safety

information, which is expected to account for 60 percent of location-based revenue by

2006 according to I-Pacific Partners [Web].

 Location-based advertisements

On the Internet, non-intrusive, well-targeted advertisements, as exemplified by Google

 4

Adword and Adsense, have been so successful that they have practically revived the

entire online advertisement industry. A drive on the Internet is to make the

advertisements relevant to the user’s location (e.g., Google Local). Location-based

advertisements make advertising even more targeted and relevant. For example, coffee

coupons are served to users when they walk by a coffee shop close to 9am and store

discount coupons and shopping information when they walk into a shopping mall. This

apparently simple application requires a huge network to drive the collection and

distribution of advertisements and to build in a mechanism to respect privacy and

measure the success (and billing) of ads.

3. Location Model

Location is an important element in LBSs. A location model allows us to describe the

physical space and properties of the objects contained in it. For example, it defines the

coordinate system and therefore the locations of the objects and their spatial

relationships. In addition, operations such as location sensing, object counting,

browsing, navigation, and search are affected by the location model chosen.

Existing location models can be classified into geometric or symbolic models. A

geometric model represents the physical space as a Euclidean space and the objects

therein as points, lines, shapes, and volumes in the Euclidean space. With the

coordinates of each object defined in the Euclidean space, operations such as distance

and shortest path computations can be supported. A symbolic model’s main objective

is to capture the semantics of the entities in a physical space by expressing not only

the capturing of the objects but also the relationship among them in some form of

 5

graph. For example, buildings, roads, offices, and rooms can be represented as nodes

in a graph and their relationships such as containment and accessibility as edges. Most

of the existing models are designed for outdoor applications but they are not

appropriate for indoor environments for the following reasons:

 Indoor environments are intrinsically diverse. Each environment has its own

way to describe locations. For example, a room may be described as “next to the

elevator on the 3rd floor of the academic building,” which embeds a lot of

semantics about the space. In comparison, the outdoor environment typically

adopts the universal longitude-latitude-altitude coordinate system.

 Many more entities of diverse types need to be modeled in an indoor

environment because they may be needed to describe the context of the

environment. As a system scales to millions of entities, a conventional graph is

no longer efficient in terms of storage, processing, and maintenance costs. A

more concise structure is needed to capture the entities and their relationships.

 The next generation of LBSs focuses on context awareness. The Euclidean and

graph models are not capable of capturing the rich semantics of the user’s

context.

To address these problems, we developed a semantic location model SLM for indoor

navigation [HL04]. The model is symbolic in nature, but it is unique in that it can be

derived from the geometric representation of the indoor space. The model is composed

of two types of entities: locations and exits. A location is defined as a bounded

geographic area with one or more exits. An exit is a connector between two locations.

 6

Two exits are “direct reachable” if the user can move between them without passing

through a third entity. To compute this relation from a digitalized map (e.g., a floor

plan), we developed an algorithm which uses the visibility graph in computational

geometry to perform a lossless reduction from the resulting reachability graph to a

compact exit hierarchy (CEH). The reduction is based on the observation that nearby

exits tend to be directly reachable from each other and thus they should be clustered as

a “super” exit. We proved that the topology on these super exits forms a forest and

proposed detailed algorithms to compute the CEH from the reachability graph. The

CEH can not only save the computational cost for the shortest path search but also

impose a hierarchy on the locations. Such a hierarchy explicitly describes the relations

between locations: the child location must be reached through its parent location from

outside. The location hierarchy coincides with human cognition during navigation, so it

is more suitable to be displayed on the mobile device than on a plain floor plan.

To extend our research on indoor location modeling, we focus on the following

issues:

 Our model does not fully support object moving. In other words, the position

change might drastically change the topology as the objects (the users in

particular) move. If we need to adapt it to a dynamic environment, the model

should support incremental and local updates as the positions of the objects

change.

 Our model can handle only one type of relation; that is, reachability. Nonetheless,

the context in indoor environments is more complicated than mere physical

 7

reachability. For example, we may need to know the temperature and humidity

distribution in the environments. This problem of multi-relation modeling poses a

new challenge to our research.

4. Query Processing: Broadcast vs. Point-to-Point

LBSs by and large assume wireless communication since both the clients and the data

(e.g., vehicles being tracked) move. Wireless communication supports two basic data

dissemination methods. In periodic broadcast, data are periodically broadcast on a

wireless channel accessible to all clients in range. A mobile client listens to the

broadcast channel and downloads the data that matches the query. In on-demand

access, a mobile client establishes a point-to-point connection to the server and

submits requests to and receives results from the server on the established channel.

The role of periodic broadcast is crucial in LBSs. This is because both the number

of clients and the amount of requests to be supported by the LBS could be huge.

Periodic broadcast can be used to disseminate information to all participants at very

low cost. Early work on data broadcast focused on non-spatial data, but in order to be

useful in LBSs, a data broadcast system must support spatial queries and spatial data.

For example, in an intelligent transportation system, the locations of all monitored

vehicles can be broadcast so that an onboard navigation system can decide

autonomously how to navigate through a crowded downtown area. Similar needs can

be envisaged in the coordination of mobile robots on a factory floor.

In this section, we investigate the spatial query processing technique in a

broadcast environment followed by location-based spatial queries processing in a

 8

demand access mode.

4.1 General Spatial Query Processing on Broadcast Data

Search algorithms and index methods for wireless broadcast channels should avoid

back-tracking. This is because, in wireless broadcast, data are available “on air” in the

sense that they are available on the channel transiently. When a data item is missed,

the client has to wait for the next broadcast cycle, which takes a lot of time. Existing

database indexes were obviously not designed to meet this requirement because data

are stored on disks and can be randomly accessed any time. Hence, they perform

poorly on broadcast data. Since most spatial queries involve searching on objects that

are close to each other, a space-filling curve such as a Hilbert Curve can be applied to

arrange objects on the broadcast so that the objects in proximity are close together.

Fig.1 shows a Hilbert Curve of order 2 which arranges the 16 spatial objects in a

1-dimensional data broadcast.

Algorithms can be developed to answer window and kNN queries on the

broadcast [ZL05]. Given a query window, we can identify the first and the last objects

within the window that the Hilbert Curve passes through. In the example shown in Fig.

1, the dashed rectangle is the query window, and objects 2 and 13 are, respectively,

the first and the last objects within the query window visited by the Hilbert Curve.

Any objects outside this range are guaranteed to not fall within the query window.

Thus, the client only needs to download and verify the objects between objects 2 and

13, inclusive, to eliminate objects that fall outside the window (i.e., objects 10, 11,

and 12). kNN queries can be answered in a similar manner by first estimating the

 9

bounds within which the k nearest neighbors can be found followed by a detailed

checking of the Euclidean distances between the candidate objects and the query.

The adoption of a space-filling curve can avoid the clients’ back-tracking the

broadcast channel several times when retrieving objects for spatial queries. This is of

essential importance to save the power consumption of the clients and improve the

response time. However, in on-demand access mode, the processing of location-based

spatial queries raises different issues due to the mobility of the clients.

5 6 9 10

4.2 Location-based Spatial Queries

In contrast to conventional spatial processing, queries in LBSs are mostly concerned

about objects around the user’s current position. Nearest neighbor queries are one

example. In a non-location-based system, responses to queries can be cached at the

clients and are reusable if the same queries are asked again. In LBSs, however, users are

moving frequently. Since the result of a query is only valid for a particular user location,

new queries have to be sent to the server whenever there is a location update, resulting

in high network transfer and server processing cost. To alleviate this problem, the

concept of validity region can be used. The validity region of a query indicates the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 12 13 3

7 11 8 4

1 15 14 0

Broadcast cycle

Downloaded data

Fig. 1: Answering Window Queries based on Hilbert Curve

 10

geographic area(s) within which the result of the query remains valid and is returned to

the user together with the query result. The mobile client is then able to determine

whether a new query should be issued by verifying whether it is still inside the validity

region. The utilization of validity region reduces significantly the number of new

queries issued to the server and thus the communication via the wireless channel.

q

The validity region of course depends on the type of queries. Methods for determining

the validity region for NN, kNN, and window queries have been developed [ZZP+03].

Fig. 2 (c) illustrates the validity region of NN queries which are the same as Voronoi

cells. The representation scheme for validity regions should (i) be as small as possible

to reduce the network cost (provided that it captures accurately the shape of the

validity region) and (ii) facilitate the validity checking which is performed on a client

with limited computational capability. Representing a validity region as a polygon

may cause a high overhead. A better way is to identify the influence objects of a query

Server

R

Client perpendicular bisector
of a and o a

q
Server

<R,V(q)>

Client

(a) Non-location-based queries

Fig. 2: An Example of Single Nearest-Neighbor Query

o

q
b

c

d

(b) Location-based queries
(c) Validity region for a NN query

 11

q as the data points that contribute at least one to the validity region V(q). In other

words, the influence set is the minimal set of objects which determines the validity

region. In Fig. 2, the influence objects of query q are those whose perpendicular

bisectors with object o constitute the edges of the Voronoi cell. Finally, the server

returns the query result to the client along with the influence objects. The validity

checking at the client side is performed by examining whether the new user location is

inside the half-plane formed with respect to each influence point, which is equivalent

to checking whether the query focus lies in the Voronoi cell of the result.

5. Scheduling and Monitoring Spatial Queries

5.1 Scheduling Spatial Queries Processing

One unmistakable challenge that LBSs have to face is the huge user population and the

resulting large workload generated. Traditional spatial database research focuses on

optimizing the I/O cost for a single query. However, in LBSs where a large spatial

locality could be expected, queries received in an interval may access the same portion

of the database and thus share some common result objects. For instance, users in a

busy shopping area may want to display on their PDAs a downtown map with shopping

malls overlaid on it. These are equivalent to a number of window queries around the

users’ positions. Although the windows are different, they likely overlap, resulting in

the accessing of overlapping objects from the map database. Inter-query optimization

can be utilized at the server to reduce the I/O cost and response time of the queries.

To achieve this objective, multiple spatial window queries can be parallelized,

 12

decomposed, scheduled, and processed under a real-time workload in order to enhance

system runtime performance; for example, I/O cost and response time. Query locality

can be used to decompose and group overlapping queries into independent jobs, which

are then combined to minimize redundant I/Os. The essential idea is to eliminate

duplicate I/O accesses to common index nodes and data pages. In addition, jobs may be

scheduled to minimize the mean query response time. In principle, processing queries

close to one another will save more I/O cost because there is a high chance that they can

share some MBRs in the R-tree index as well as data objects. An innovative method to

quantify the closeness and degree of overlapping in terms of I/O has been developed

based on window query decomposition in [HZL03]. In addition, in a practical

implementation where a fair amount of main memory is available, caching can be used

to reduce the I/O cost. For spatial data indexed by an R-tree, high-level R-tree nodes

can be cached in memory.

5.2 Monitoring Continuous Queries on Moving Objects

Most of the existing LBSs assume that data objects are static (e.g., shopping malls and

gas stations) and the location-based queries are applied on these static objects. As

discussed in Section 2, applications such as location-based alerts and surveillance

systems require continuous monitoring of the locations of certain moving objects, such

as cargos, security guards, children, and so on. For instance, we may issue a window

query, monitor the number of security guards in the window, and send out an alert if the

number falls below a certain threshold. Likewise, we can issue several nearest neighbor

queries centered around the major facilities and monitor the nearest police patrols so

 13

that they can be dispatched quickly should any problem arise. Generally, we are

interested in the result changes over time for some spatial queries. This is the problem

known as “monitoring continuous spatial queries.”

Most of the existing work assumed that clients are autonomous in that they

continuously measure their positions and report location updates to the server

periodically. Thus, server-side indexing and processing methods have been devised to

minimize the CPU and I/O costs for handling these updates and re-evaluating the query

results [ISS03,MXA04,YPK05]. In these methods, the update frequency is crucial in

determining the system performance – high update frequency would overload both the

clients and servers in terms of high communication and processing costs while low

update frequency would introduce errors into the monitored results.

An alternative to periodic location update is to let the clients be aware of the spatial

queries that are being monitored so that they would update their locations on the server

only when the query results were about to change. The main idea is that the server

maintains a “safe region” for each moving client. The “safe region” is created to

guarantee that the results of the monitoring queries remain unchanged and as such need

not be re-evaluated as long as the clients are moving within their own safe regions.

Once a client moves out of its safe region, it initiates a location update. The server

identifies the queries being affected by this update and re-evaluates them incrementally.

At the same time, the server re-computes a new safe region of this client and sends it

back to the client. Fig. 3 (a) shows four window queries, Q1 through Q4. The number of

clients inside each window is being monitored. It is clear that when a client (shown as a

 14

dot in the figure) moves within the shaded rectangle S1, it will not affect the results of

the four queries. However, when it moves out of S1, its new location must be sent to the

server in order to re-evaluate the queries and re-compute a new safe region for the

client accordingly.

S1

Q1

Q3

Q2

Q4

S2

Q1

Q3

Q2

Q4

(a) Computing Safe Regions (b) Mobility Pattern Effect

Fig. 3: Computing the Safe Region to Reduce Location Update Workload

For kNN queries, the exact locations of the clients must be known in order to determine

which client is closer to the query point. However, since a client can move freely inside

a safe region without informing the server, the safe regions can only be used to identify

a number of potential candidates and the server still needs to probe these candidates to

request their exact positions.

In order to reduce the communication cost between the clients and the server, we

need to reduce the number of location updates and server probes during monitoring. As

such, we need to find the largest possible safe regions for the clients to reduce the

number of location updates and devise efficient algorithms for re-evaluating the query

results to reduce the number of server probes. When computing the safe regions, we

also need to consider the effect of the client’s mobility pattern. This is because a safe

 15

region does not have to occupy the largest area to be the best. For example, in Fig. 3 (a),

S1 is the largest safe region for the client. However, as shown in Fig. 3 (b), if we know

that the client is moving toward the west, S2 is a better safe region than S1 because it

takes longer for the client to move out of S2 and thus defer the next location update.

6. System Prototypes

In this section, we describe two location-based prototypes that incorporate most of the

research ideas described in this paper. The first prototype is essentially a location-based

messaging platform called i-surround. It provides users with context-aware services

that allow them to communicate with each other and to obtain relevant information

based on their current locations. i-surround supports interaction with buddies,

location-aware personal reminder, and information publishing and intelligent filtering.

Several screen dumps are shown in Fig. 4. i-surround was designed to support

various kinds of client devices, such as PDAs, cell phones, smart phones, and PCs.

Therefore, it is required to support different location update schemes, such as

automatic location updates for the clients equipped with location sensing devices and

manual location updates for users without location sensing devices. For the latter,

i-surround allows users to specify their locations by drawing on the map. In order to

protect user privacy (i.e., disclosure of user location and profile) when he/she is using

the buddy-finding service, a two-way-hand-shaking technique is employed. The

system allows a user to set his/her profile and mode, based on which type of

information can be filtered. In addition, the “smart” interface on the client side keeps

track of the user’s recent actions on various types of messages and accordingly ranks

 16

the messages so that the most relevant are displayed first.

(a) Personal reminder
when the user passes by a
predefined location

(b) Interface for buddy
finder (specify location,
activities, and the time
duration)

(c) Display the location of
a buddy on the map

Fig. 4: Screen-dumps of i-surround

The second prototype is an indoor location navigation system for PDAs. It is based on

the semantic location model described in Section 3. The client module on the PDA

can display a context-aware floor map, which shows only the locations the user can

reach directly from his/her current location (ref. Fig. 5 (a)). This map is more suitable

for a small screen size than the traditional static map as it helps the user focus on

those locations that are more relevant to the current navigation. We implement this

feature by only drawing the current location with its parent, siblings, and children in

the location hierarchy of the semantic location model described in Section 3. In Fig. 5

(a), since the user is in Room 3201, only this room and the neighboring corridors are

displayed while all the other rooms are in shadow as they are not directly reachable.

 17

Therefore, the user can concentrate on all the exits that are available to him/her.

(a) Client side (b) Location model creation

Fig. 5: Indoor Navigation System on a Mobile PDA

The second characteristic of this prototype is the shortest path search. By applying the

CEH of the semantic location model, the client can efficiently compute the shortest

path to the destination. In Fig. 5 (a), the dashed arrows show the path that has been

passed through and the solid arrows show the next exit along the shortest path. An

interesting feature of our prototype is that the shortest path is recomputed every time

the user moves to a new location so that the user can adjust his/her movement at

anytime, even after he/she goes the wrong way. The CPU cost for recomputation is

reasonable thanks to the efficiency of the CEH.

To create the location model, the prototype system has a floor plan editing tool to

allow the user to create a floor plan by drawing rooms, corridors, or other types of

locations, and connecting them through exits. The “direct reachable” relation between

 18

the exits is obtained on the fly so that the tool can automatically maintain the up-to-date

location hierarchy and the exit hierarchy (see Fig. 5 (b)). The resulting location model

is stored in a MySQL database and is accessed wirelessly by the client module.

7. Conclusion and Future Research Direction

This paper has reviewed some of our research on location modeling, location updates,

caching of location-dependent data, and batch processing of spatial queries. A couple

of prototypes were briefly described to illustrate where the research may be applied in

real-life applications. LBSs draw from many different research areas, ranging from

systems to applications to user modeling. Research in these different areas must cope

with the “location” aspects of LBSs. Regarding the system architecture, while most

traditional research is based on the client-server architecture, the mobility and limited

communication ranges of the clients make it natural to consider LBSs on peer-to-peer

and mobile ad-hoc architectures. The monitoring of the moving peers and the dynamic

formation of mobile communities to accomplish a common goal will be a major

research challenge to us. In terms of data dissemination, data broadcast has been a

cornerstone technology in mobile computing. Work on scheduling, caching and

indexing of broadcast data will allow LBSs to efficiently push data to users who need

them. Techniques for distributing location-based data to access points and scheduling

them for broadcast according to local interests are essential to the efficient utilization of

bandwidth and reduction of access time. At the backend, LBSs must be able to acquire

and model, among other things, the location properties of all concerned objects and be

able to do so in a large scale. This will require a distributed and collaborative

 19

infrastructure where “spheres of interest” can be developed and maintained locally and

at the same time collaborate globally. These research issues are definitely very difficult

by themselves but to integrate the results synergistically to meet the demands of the fast

evolving LBS marketplace is even more challenging to researchers and application

builders alike.

References

[HL04] H. Hu and D.L. Lee, Semantic Location Modeling for Location Navigation

in Mobile Environment, Proceedings of the 5th International Conference

on Mobile Data Management 2004 (MDM’04), pp. 52-61.

[HZL03] H. Hu, M. Zhu, and D.L. Lee, Towards Real-time Parallel Processing of

Spatial Queries, Proceedings of the 2003 International Conference on

Parallel Processing, pp. 565-572.

[ISS03] G.S. Iwerks, H. Samet, and K. Smith, Continuous K-Nearest Neighbor

Queries for Continuously Moving Points with Updates, Proceedings of the

29th International Conference on Very Large Data Bases (VLDB’ 03), pp.

512-523.

[MXA04] M.F. Mokbel, X. Xiong, and W.G. Aref, SINA: Scalable Incremental

Processing of Continuous Queries in Spatio-temporal Databases,

Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD’04), pp. 623-634.

 20

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iwerks:Glenn_S=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Samet:Hanan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Smith:Ken.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mokbel:Mohamed_F=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/x/Xiong:Xiaopeng.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Aref:Walid_G=.html

[Web] http://www.wavemarket.com

[YPK05] X. Yu, K.Q. Pu, and N. Koudas. Monitoring K-Nearest Neighbor Queries

Over Moving Objects, Proceedings of the 21st International Conference on

Data Engineering (ICDE’ 05), to appear.

[ZL05] B. Zheng and D.L. Lee, Information Dissemination via Wireless Broadcast,

Communications of the ACM, 2005, to appear.

[ZZP+03] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D.L. Lee, Location-Based

Spatial Queries, Proceedings of ACM SIGMOD Conference on Management

of Data, 2003, pp. 443-454.

 21

http://www.wavemarket.com/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yu:Xiaohui.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pu:Ken_Q=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Koudas:Nick.html
http://www.cs.ust.hk/~dlee/Papers/mobile/cacm-baihua-overview.pdf
http://ihome.ust.hk/~zhangjun/papers/LBSQ.pdf
http://ihome.ust.hk/~zhangjun/papers/LBSQ.pdf

	Keyword:
	Location-based service, Databases, Mobile Devices
	1. Introduction
	2. Applications
	3. Location Model
	4. Query Processing: Broadcast vs. Point-to-Point
	4.1 General Spatial Query Processing on Broadcast Data
	4.2 Location-based Spatial Queries

	5. Scheduling and Monitoring Spatial Queries
	5.1 Scheduling Spatial Queries Processing
	5.2 Monitoring Continuous Queries on Moving Objects

	6. System Prototypes
	7. Conclusion and Future Research Direction

