
Document
Ranking and

the Vector-Space
Model

DIK L. LEE, Hong Kong University of Science and Technology
HUEI CHUANG, Information Dimensions

KENT SEAMONS, Transarc

Using several
simplifications of the
vector-space model for
text retrieval queries,
the authors seek the
optimal balance between
processing efficiency and
retrieval effectiveness
as expressed in relevant
document rankings.

fficient and effective text retrieval techniques are
critical in managing the increasing amount of
textual information available in electronic form.
Yet text retrieval is a daunting task because it is
difficult to extract the semantics of natural-
language texts. Many problems must be resolved

before natural-language processing techniques can be effectively
applied to a large collection of texts.

Most existing text retrieval techniques rely on indexing key-
words. Unfortunately, keywords or index terms alone cannot
adequately capture the document contents, resulting in poor
retrieval performance. Yet keyword indexing is widely used in
commercial systems because it is still the most viable way by far
to process large amounts of text. We face two main concerns
when indexing text files.

M A R C H / A P R I L 1 9 9 7 0 7 4 0 - 7 4 5 9 / 9 7 / $ 1 0 . 0 0 © 1 9 9 7 I E E E 6 7

E

.

♦ How do we identify index terms?
Index terms can range from single
terms (with common words such as
“the,” “and,” “to,” and so on removed),
to noun phrases, to subject identifiers
derived from syntactic and semantic
analysis.

♦ After we identify index terms, how
do we tell from them if a document match-
es a query? In the Boolean model, a
match is based on the satisfaction of a
document’s index terms to the Boolean
expression given by the user, whereas
the statistical model is based on the
similarity between the statistical prop-
erties of the document and the query.

We focus here on the second issue.
In particular, we examine several
retrieval techniques that rank the result
based on some similarity measure
between the documents and the query.
In the past, document ranking was sup-
ported only in research prototypes.
Recently, more and more systems have
begun supporting this feature because
users demand easy-to-use query lan-
guages and it helps sort out the most
important information for them.

Users are now exposed to document
ranking features in a variety of domains
through systems such as wide-area
information systems (WAIS), World
Wide Web robots, and online docu-
mentation systems. Unfortunately,
these systems rarely address the core
issue: the quality of the ranked output.
Many systems, especially commercial
ones, seldom make any performance

evaluation data available. As a result,
users often make statements like “sys-
tem A is better than system B, because
A supports ranking whereas B does
not.” Such statements are more decep-
tive than useful, because every system
produces a ranking—even a system that
simply returns a random set of docu-
ments can be said to be ranking them.
We must determine how good a sys-
tem’s ranking procedures are before
drawing conclusions regarding its value.

To establish a procedure for making
such a determination, we first assumed
that index terms are single words
extracted from documents, then
explored several ways to implement
document ranking based on the vector-
space model, which has been widely
studied in the information-retrieval
research community.1 We experiment-
ed with several simplified implementa-
tions that reduce the complexity of the
full vector-space model, focusing on
relevance feedback and the develop-
ment of methods for deriving terms
from a relevant document that allow
expansion of the original query.

The experiments we performed
were all run on BasisPlus, a commer-
cial document management system
extended with ranking and relevance
feedback.2 BasisPlus provides a conve-
nient platform for implementing and
testing new algorithms. However, the
results we present here reflect the algo-
rithms being used, not the specific
experimental platform upon which
they are implemented. Similar studies
have been reported elsewhere and their
results are consistent with the observa-
tions made in this paper.3,4 Compared
to these others, our study includes new
retrieval and feedback algorithms and a
larger document collection.

RETRIEVAL EFFECTIVENESS

The conventional way of measuring
the quality of the results returned by a
system in response to a query is to use

precision and recall. Precision is the
number of relevant documents
retrieved divided by the total number
of documents retrieved. Recall is the
number of relevant documents
retrieved divided by the total number
of relevant documents.

Ideally, the recall and precision
should both be equal to one, meaning
that the system returns all relevant docu-
ments without introducing any irrele-
vant documents in the result set.
Unfortunately, this is impossible to
achieve in practice. If we try to improve
recall (by adding more disjunctive terms
to the query, for example), precision suf-
fers; likewise, we can only improve pre-
cision at the expense of recall. Further-
more, there is often a tradeoff between
retrieval effectiveness and computing
cost. As the technology moves from key-
word matching to statistical ranking to
natural-language processing, computing
cost increases exponentially.

Statistical model. In the statistically
based vector-space model, a document
is conceptually represented by a vector
of keywords extracted from the docu-
ment, with associated weights repre-
senting the importance of the keywords
in the document and within the whole
document collection; likewise, a query is
modeled as a list of keywords with asso-
ciated weights representing the impor-
tance of the keywords in the query.

The weight of a term in a document
vector can be determined in many
ways. A common approach uses the so-
called tf × idf method, in which the
weight of a term is determined by two
factors: how often the term j occurs in
the document i (the term frequency
tfi,j) and how often it occurs in the
whole document collection (the docu-
ment frequency dfj). Precisely, the
weight of a term j in document i is

wi,j = tfi,j × idfj = tfi,j × log N/dfj,

where N is the number of documents
in the document collection and idf

6 8 M A R C H / A P R I L 1 9 9 7

Many systems,
especially
commercial ones,
seldom make any
performance
evaluation data
available.

.

stands for the inverse document fre-
quency. This method assigns high
weights to terms that appear frequently
in a small number of documents in the
document set.

Once the term weights are deter-
mined, we need a ranking function to
measure similarity between the query
and document vectors. A common sim-
ilarity measure, known as the cosine
measure, determines the angle between
the document vectors and the query
vector when they are represented in a
V-dimensional Euclidean space, where
V is the vocabulary size.1 Precisely, the
similarity between a document Di and
a query Q is defined as

where wQ,j is the weight of term j in the
query, and is defined in a similar way as
wi,j (that is, tfQ,j × idfj). The denomina-
tor in this equation, called the normal-
ization factor, discards the effect of
document lengths on document scores.
Thus, a document containing {x, y, z}
will have exactly the same score as
another document containing {x, x, y,
y, z, z} because these two document
vectors have the same unit vector. We
can debate whether this is reasonable
or not, but when document lengths
vary greatly, it makes sense to take
them into account.

Feedback. An important feature of
this model is relevance feedback, in
which users judge the relevance of
retrieved documents to their informa-
tion need. According to the judgment,
the system automatically adjusts the
query vector and performs another
round of retrieval, which will hopefully
yield improved results.

One major advantage of the statisti-
cal model is that users can describe
their information needs in natural lan-

guage; the important keywords can be
automatically extracted from the query
in the same way keywords are extracted
from documents. Thus, users are
relieved from specifying complex
Boolean expressions.

IMPLEMENTATION METHODS

Because the exact vector-space
model is expensive to implement, we
have developed a family of successively
simpler approximations.

Method 1. The complexity of this
method, the full vector-space model,
depends on how we implement it. The
document’s vector representation is
only conceptual. In practice, the full
vector is rarely stored internally as is
because it is long and sparse. Instead,
document vectors are stored in an
inverted file that can return the list of
documents containing a given keyword
and the accompanying frequency infor-
mation. Besides, direct comparison
between the vectors is slow because it
would incur N vector comparisons.
Vector comparison can be facilitated
with an inverted file as follows.

for every query term q in Q do
retrieve the postings list for q

from the inverted file
for each document d indexed

in the postings list do
score(d) = score(d) + tfd,q × idfq

end
end
Normalize scores.
Sort documents according to

normalized scores.

With an inverted file, the number
of postings lists accessed equals the
number of query terms. The computa-
tional cost is acceptable for queries of
reasonable size. Unfortunately, the
computation of the normalization fac-
tor is extremely expensive because the
term in the normalization factor

requires access to every document term,
not just the terms specified in the
query. Nor can the normalization fac-
tor be precomputed under the tf × idf
method, because every insertion and
deletion on the document collection
would change idf and thus the precom-
puted normalization factors.

Method 2. For this second method,
to approximate the effect of normaliza-
tion we use instead the square root of
the number of terms in a document as
the normalization factor. While this
still favors long documents, the effect
of document size is not as significant as
it is without any normalization. This
normalization factor is much easier to
compute than the original one; also,
precomputation is possible. With the
approximation, the formula becomes

Method 3. This method lets us fur-
ther simplify the computation by sim-
ply dropping the normalization factor:

That is, the document score equals the
inner product of the document and

query vectors. Instead of computing
the angle between the document and
query vectors, this formula computes
the length of the projection of the doc-

sim Q D w wi Q j i j

j

V

(,) ., ,= ×
=

∑
1

sim Q D

w w
i

j
V

Q j i j

Di

(,) .
, ,=

×=∑ 1

number of terms in

sim Q Di

j
V

Q j i j

j
V

Q j j
V

i j

w w

w w

(,)

, ,

, ,

= =

= =

×

×

∑
∑ ∑

1

1
2

1
2

wi jj
V

,
2

1=∑

I E E E S O FT W A R E 6 9

The statistical
model lets users
describe their
information needs
in natural language.

.

ument vector onto the query vector. It
is quite clear that the document score
is directly proportional to the length of
the document vector.

Method 4. This method only makes
use of term frequencies in the calculation
and ignores idf. It simplifies the compu-
tation as well as saving the file structure
needed for storing the df values.

Method 5. This method ignores the
term frequency (tf) information but
retains the idf values in determining

term weights:

The idf values have the same effect as
before. That is, they diminish the sig-
nificance of words that appear in a
large number of documents.

Method 6. This method is the sim-
plest in the family. It ignores both tf

and idf values and therefore measures
the number of common terms in the
document and query vectors.

PERFORMANCE EVALUATION

The methods we’ve described obvi-
ously have different computational
costs. To find their retrieval effective-
ness, we obtain the precision and recall
of these methods using a set of test col-
lections. Table 1 summarizes the char-
acteristics of the document collections.
The CACM, CISI, CRAN, MED, and
TIME collections are available with
the Smart system developed at Cornell
University.5 Although small in size,
these collections have been widely used
by researchers for evaluating retrieval
effectiveness. The TREC (Text
Retrieval Conference) subset contains
10,000 Wall Street Journal articles
extracted from the test collection used
in the first Text Retrieval Conference,
sponsored by the National Institute of
Standards and Technology and the
Advanced Research Projects Agency to
develop a comprehensive testbed.6

Each collection has a standard set of
queries and an accompanying relevance
judgment for each query. The TREC
collection has 25 standard queries,
each of which has a narrative descrip-
tion of the information needed and a
number of concept terms identified by
human experts based on the narrative

sim Q D w w

w otherwise
j Q

w otherwise
j D

i Q j i j
j

V

Q j

i j
i

(,) ,

.

, ,

,

,

= ×

= ∈

= ∈

=
∑

1

0
1

0
1

where and

sim Q D w w

w otherwise
j Q

w otherwise
idf j D

i Q j i j

j

V

Q j

i j
j i

(,) ,

 .

, ,

,

,

= ×

= ∈

=
∈

=
∑

1

0
1

0

where

sim Q D w tfi Q j i j

j

V

(,) ., ,= ×
=

∑
1

7 0 M A R C H / A P R I L 1 9 9 7

TABLE 1
TEST COLLECTION CHARACTERISTICS

Collection name Number of documents Number of queries Raw size (Mbytes)

CACM 3,204 64 1.4

CISI 1,460 112 1.2

CRAN 1,400 225 1.6

MED 1,033 30 1.0

TIME 425 83 1.5

TREC subset 10,000 25 25.9

Queries BasisPlus Ranked output for
nonzero-score documents

Standard
ranking

Evaluation

Precision and
recall data

Fill in zero-score
documents

Figure 2. Query evaluation process. Even zero-score documents are used to calculate
precision and recall.

NNaarrrraattiivvee ddeessccrriippttiioonn::

A relevant document will identify an information retrieval
system, identify the company or person marketing the system,
and identify some of the characteristics of the system.

CCoonncceepptt tteerrmmss::

information retrieval system, storage, database, data, query.

Figure 1. Query 14, a sample query from the TREC collection.

and

.

description. Figure 1 shows a sample
query. The concept terms are given by
human experts and do not necessarily
appear in the narrative text. CACM,
CISI, CRAN, and MED provide only
natural-language queries.

Query evaluation. Figure 2 outlines the
basic evaluation process. This process is
used to evaluate all six ranking meth-
ods: each method is implemented on
BasisPlus and its precision and recall
obtained. Most systems, including
BasisPlus, do not return documents
with zero scores. However, some of the
zero-score documents may be relevant
to the queries. Therefore, their ranks
are required for calculating precision
and recall. In the experiments, we
assume the worst scenario: all relevant
documents with zero scores are
assigned the lowest possible ranks. For
example, if there are n documents in
the collection, relevant documents with
zero scores are ranked as n, n-1, n-2, ...,
and so on. The other alternatives are to
rank zero-score documents randomly
or simply by document IDs, but we do
not recommend these methods because
of the small chance that zero-score
documents will receive high ranks.

The example in Figure 3 shows how
the system calculates precision and
recall values given the relevance judg-
ment for a query. The retrieved docu-
ment set is examined from the top.
When the first relevant document is
reached, the system calculates precision
and recall. In the example, the precision
would be 50 percent (one of the two
retrieved documents is relevant) and
the recall would be 33 percent (one of
the three relevant documents is
retrieved). Likewise, when the second
relevant document is encountered (doc-
ument 974 with rank 5), the precision
and recall rise to 40 percent and 66 per-
cent, respectively. If document 123 is
not retrieved at all, it is assigned the
lowest possible rank. For the CACM
collection, the last rank would be 3,204.
Therefore, the precision is 0.094 per-

cent, whereas the recall is 100 percent.
The precision values are then interpo-
lated to obtain precision values at each
recall value between 0 and 1 for every
0.05 increment, inclusively. The preci-
sion values for all queries at each recall

point are then averaged to obtain the
final precision–recall graph. For clarity,
the precision–recall graph is further
reduced to a single average precision
over the 21 recall points, as shown in
Figure 4. Interested readers may con-
tact us to obtain the individual preci-
sion–recall graphs.7

Comparing methods. We intend the
comparison shown in Figure 4 to hint
at our methods’ relative performance
and hence their order of merit. The
experimental results reflect system per-
formance only at a particular operating
point. For example, document collec-
tions (especially older ones) are built
mostly based on availability of the doc-
uments; the collection developers typi-

cally capture queries over a narrow
period of time. The TREC collection
is better than others in this respect, but
still doesn’t represent every aspect of a
live operational environment. Fur-
thermore, when taking averages and
interpolations on the experimental
data, some information is inevitably
lost. However, this loss won’t affect the
conclusion if a weak interpretation of
the results is taken. Because of the
nonrandomness of the system parame-
ters, the applicability of statistical-sig-
nificance tests is doubtful.8,9 Thus, the
procedure we have outlined remains a
common method for evaluating
retrieval effectiveness.

We have made the following obser-
vations regarding the different simpli-

I E E E S O FT W A R E 7 1

Rank

Ranked output

ID
...
2
...
5
...

...
523
...

974
...

Ranked output Standard

ID
123
523
974

Figure 3. Computing precision and
recall values. Each document is ranked
according to relevance. If a query does
not retrieve a document (123 in this
example), it receives the lowest ranking
possible.

Av
er

ag
e

pr
ec

is
io

n

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
123456

CACM
narrative

123456
CISI

narrative

123456
CRAN

narrative

123456
MED

narrative

123456
TIME

narrative

123456
TREC/

narrative

123456
TREC/

concept

Key:
1
2
3
4
5
6

Exact normalization
Approximate normalization
Inner product
tf only
idf only
No tf and no idf

Figure 4. Average precision for the six ranking methods on each of the seven sample
document collections.

.

fications of the space-vector model.
♦ The approximate normalization

factor works just as well as the exact
normalization factor. In fact, it is bet-
ter than the exact normalization factor
in four of the seven collections and
almost tied with it in two of the
remaining three. Only in one case, the
TIME collection, is approximate nor-
malization slightly worse than the exact
normalization factor. This result indi-
cates that vector lengths should not be
completely discarded in calculating
document scores.

♦ The inner product (no normal-
ization) is not as good as the first two
methods, but provides a reasonable
compromise given that it does not
require explicit computation and stor-
age of the normalization factor.

♦ The last three methods ignore
some or all of the frequency informa-
tion. In general, this group is not as
good as the first three methods for nat-
ural-language queries. In particular,
method 4, which ignores idf without
ignoring tf, is consistently worse than
any of the first three methods.

♦ Methods 5 and 6, which try to

measure the overlap between the docu-
ment and query terms, perform
extremely well for the concept query,
although they perform relatively poor-
ly for natural-language queries. This
could be attributed to the concept
terms being very precise content
descriptors. Thus, the appearance of a
concept term in a document will
almost always reveal the document’s
relevance, regardless of the term fre-
quency information.

♦ For concept queries, method 5,
which takes idf into account, is better
than method 6. This confirms that a
concept that appears in many docu-
ments should be given a small weight.

♦ However, method 5 performs
extremely poorly for natural-language
queries. This may be attributed to the
inconsistent use of frequency infor-
mation. In other words, idf and tf each
represent only half of the equation in
computing term weights; therefore
neither should be used alone. The
poor performance of method 4 sup-
ports this observation.

As to which method we recommend
using, our experiments provide strong

evidence that method 2, using the
approximate normalization factor, is
best for natural-language queries,
whereas method 5 (closely followed by
method 6) works best for concept
queries. This suggests that for a gener-
al information retrieval system, both
methods should be supported.

The inner product should be used
only for compatibility reasons, since
most Boolean systems, including
BasisPlus, do not keep enough infor-
mation for computing the normaliza-
tion factor easily. Method 1 is infeasi-
ble for implementation as explained
before, while there is no particular sit-
uation in which method 4 would excel.

RELEVANCE FEEDBACK

Relevance feedback is an important
strength of the vector-space model.
The idea is that queries specified by
end users typically fail to describe com-
pletely what those users want. Thus,
typical queries miss many relevant doc-
uments. However, if the user can iden-
tify some retrieved documents as rele-
vant, then the system can use this
information to reformulate the original
query into a new one that may capture
some of the concepts not explicitly
specified in the original query. For
example, if the original query contains
“commodity price” and the user marks
a document containing “gold price” as
relevant, the feedback process may
include the term “gold price” in the
reformulated query. This might
retrieve articles on “gold futures, “gold
index,” and so on.

The main problem with relevance
feedback is that including a large piece
of text indiscriminately in the original
query will adversely affect effective-
ness. Doing so also incurs the typical
high cost of processing long queries.
Continuing with our example, if the
relevant document contains “gold price
in the London market,” then “Lon-
don” and “market” may also be includ-

7 2 M A R C H / A P R I L 1 9 9 7

BasisPlus
Original
query Q

Standard judgment

F
Ranked output

G
Relevant document

Reformulated
query Q

Figure 5. Relevance feedback process using standard relevance judgment from the
document sets.

Key:
Adjusted base performance
Adjusted feedback performance

Av
er

ag
e

pr
ec

is
io

n

0.3

0.25

0.2

0.15

0.1

0.05

0
High (50)

Context units ignored
High (20) High (10) High (5) Mid (50) Mid (10) Low (50) Low (10)

Figure 6. Feedback performance with context units ignored. The Mid and Low
options actually degrade performance.

.

ed in the reformulated query, resulting
in retrieval of irrelevant articles men-
tioning “London.” Therefore, criteria
must be carefully set up to select terms
from the relevant texts for query
expansion. We define three methods—
High, Mid, and Low—that select high-,
medium-, and low-frequency terms,
respectively, from the relevant text for
query expansion.

Because BasisPlus supports the
notion of context units, which are user-
defined logical units of a document (for
example, a sentence, a paragraph, or
even the entire document), we can ask
the system to select terms only from
context units containing at least one
hit—a match between a document term
and a query term—and ignore the oth-
ers. This is called the Context method.

The terms in the selected context
units will then be filtered according to
the frequency criterion specified by the
user as High, Mid, or Low. When con-
text units are used, we further allow
one more way of selecting terms: terms
in the neighborhood of the hits in the
relevant text (denoted as the Hits
method). Thus, combinations can be
specified as follows:

No Context and High, Mid, or Low
Context and High, Mid, Low, or Hits

For each option, the number of terms to
be selected can be specified. For exam-
ple, <Context, High(10)> means the 10
most frequent terms from the context
units containing at least one hit will be
included in the original query, whereas
<Hits(10)> includes 10 terms from the
left and right neighborhood of a hit.

Because this is a large array of
options, we conducted an experiment to
find out which ones work better. Since
relevance feedback involves user inter-
vention and it is infeasible to run many
experiments manually, we simulated the
feedback action in the experiment.
Figure 5 shows that after a retrieval is
performed process F takes as input the
relevance judgment provided with the

queries, scans down the retrieved list,
and pulls out the first relevant docu-
ment, which is then selected as the feed-
back document in the feedback process.
This simulates the user’s feedback
action. That is, if the user is indeed
given the ranked output and is patient
enough to examine each document
from the beginning, he or she would
have identified the same document as
selected in the experiment, assuming
that the standard judgment is complete
and correct and that the user does not
make an erroneous judgment.

After the relevant document is identi-
fied, process G combines the terms from
the original query and those from the
relevant document to form a new query:

Q′ = Q + aR − bI,

where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, R is the set of
relevant documents, and I is the set of
irrelevant documents as judged by the
user. The effect of aR is to expand the
original query with terms from the rele-
vant documents and to increase the
weights of those terms already in the
original query. bI does exactly the oppo-
site for irrelevant documents.

In the experiment, we set a to 1, b to
0, and |R| = 1. This is equivalent to ask-
ing the user to identify one relevant doc-
ument and to ignore the irrelevant ones.

PERFORMANCE EVALUATION

We ran three sets of experiments to
evaluate the effectiveness of each feed-
back method. The first set ignores con-
text units; the second set uses sentences
as context units. The last set uses para-
graphs as context units but it only uses
the Hits and High options, because the
first two experiment sets showed that
Mid and Low are not good term selec-
tion methods. These experiments use
only the TREC subset because the doc-
uments in it are long enough to allow
the range of tests performed.

The documents identified as relevant

during the feedback process must be
discarded when evaluating relevance
performance. This is crucial and must
be done or these documents will be
ranked very high—if not highest—in
subsequent iterations, either because a
large portion of the terms in them are
included in the reformulated query or
because the system automatically puts
them at the top without further process-
ing. These documents, if not removed
when precision and recall are computed,
will inflate the performance of the feed-
back query, since they are actually
picked by the users and not the system.

Suppose that D1 and D2 are the doc-
ument sets retrieved by the original
and reformulated queries, respectively,
that R is the standard set of relevance
documents, and that D′ is the set of
documents identified by the user as
relevant in the feedback process. The
adjusted baseline performance is the
precision and recall obtained based on
D1 − D′ and R − D′. The adjusted feed-
back performance is based on D2 − D′
and R − D′ . These two performance
values indicate, respectively, how good
the original and reformulated queries
are in ranking the relevant documents
in R − D′, and thus provide a common
basis for comparison.

From the results shown in Figure 6,
we can see that the Mid and Low
options actually make the feedback
performance worse in all cases, where-
as the High(10) and High(5) options
improve performance. Mid and Low
options produce poor results because
the terms with low or middle frequen-

I E E E S O FT W A R E 7 3

Queries specified
by end users
typically fail
to describe
completely what
those users want.

.

cies are unlikely to represent the main
concepts in a document. Thus, includ-
ing these terms in the query will result
in only irrelevant documents being
retrieved. On the contrary, high-
frequency terms tend to be important
terms, so they are good candidates for
expanding the original query. But too
many of them would degrade perfor-
mance, which argues against arbitrarily

expanding the query with a large num-
ber of terms.10

We repeated the experiments using
sentences and paragraphs as context
units. For the former, we tested all
methods, whereas we used only the
High and Hits methods for the latter.
The average precisions are shown in
Figures 7 and 8. Figure 7 shows that
the Mid and Low options still give poor

feedback performance, which is consis-
tent with our previous observation.
However, the feedback performance
shows significant improvement over the
baseline performance for both the High
and Hits options. The best case for
Hits is Hits(20) and the best for High is
High(50). The performance gain is as
much as 25 percent over baseline. With
context units used, more terms can be
used to expand the query before the
performance starts to degrade. This
shows that context units containing one
or more hits tend to contain words rel-
evant to the search topic.

The results show that selecting
terms from context units containing at
least one hit is better than picking
them from the entire document. Also,
high-frequency terms and terms
around hits are good indicators of the
document contents. However, there is
no overwhelming evidence to indicate
which combination works best. In
practice, the context unit is usually dic-
tated by other aspects of the retrieval
system, so the only decision for the
user to make is the choice between the
High and Hits options.

e have described a family of six
implementations for the vec-

tor-space model and their retrieval
effectiveness. For concept queries, we
find it best to use only inverse docu-
ment frequencies while ignoring term
frequencies, but for natural-language
queries both frequencies are needed—
ignoring either one will produce poor
results. Furthermore, the approximate
normalization factor we suggest here
gives the best performance and is com-
putationally efficient.

We have found that high-frequency
terms or terms in the neighborhood of
hits selected from context units contain-
ing at least one hit give the best feed-
back performance. In some cases, the
gain in average precision is as much as
20–25 percent. On the other hand,
although the data shows slight improve-
ment in using terms around hits over

7 4 M A R C H / A P R I L 1 9 9 7

Key:
Adjusted base performance
Adjusted feedback performance

Av
er

ag
e

pr
ec

is
io

n

0.3

0.25

0.2

0.15

0.1

0.05

0
Hits
(50)

Sentences as context units

Hits
(20)

Hits
(10)

Hits
(5)

High
(50)

High
(20)

High
(10)

High
(5)

Mid
(50)

Mid
(10)

Low
(50)

Low
(10)

Figure 7. Feedback performance using sentences as context units. Mid and Low
options still cause poor performance. The Hits(20) and High(50) options offer the best
performance.

Key:
Adjusted base performance Adjusted feedback performance

Av
er

ag
e

pr
ec

is
io

n

0.3

0.25

0.2

0.15

0.1

0.05

0
Hits (50)

Paragraphs as context units
Hits (20) Hits (10) Hits (5) High (50) High (20) High (10) High (5)

Figure 8. Feedback performance using paragraphs as context units. The Hits(10)
and High(50) options offer the best performance.

W

.

high-frequency terms, the evidence is
not overwhelming.

To develop an efficient and effec-
tive retrieval system, many implemen-
tation issues must be considered. For
example, index structures suitable for
terabytes of data must be developed;

query processing methods that search
the index based on the semantics and
relative importance of the query terms
can potentially reduce the processing
time dramatically. Furthermore,
query models that treat a query as a
semantic hierarchy of concepts, not

merely as a bunch of independent
keywords, hold great promise for
improving retrieval effectiveness and
are increasingly used in information
filtering for Internet-based informa-
tion dissemination systems.

I E E E S O FT W A R E 7 5

Address questions about this article to Lee at The Hong Kong University of Science & Technology, Department of Computer Science, Clear Water Bay,
Hong Kong; dlee@cs.ust.hk.

REFERENCES
1. G. Salton and M.J. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, New York,

1983.
2. “The Complete FIND Handbook,” The BASISplus Document Set, Information Dimensions,

Dublin, Ohio, Nov. 1992.
3. G. Salton and C. Buckley, “Term-Weighting Approaches in Automatic Text Retrieval,” Information

Processing and Management, Vol. 24, No. 5, 1988, pp. 513-523.
4. G. Salton and C. Buckley, “Improving Retrieval Performance by Relevance Feedback,” J. Amer. Soc.

for Information Science, Vol. 41, No. 4, 1990, pp. 288-297.
5. C. Buckley, “Implementation of the SMART Information Retrieval System,” TR 85-686, Cornell

Univ., Ithaca, N.Y., May 1985.
6. D. Harman, “Overview of the First Text Retrieval Conference,” Proc. 16th Int’l ACM/SIGIR Conf.

Research and Development in Information Retrieval, Pittsburgh, June 1993, pp. 36-47.
7. D.L. Lee, “Document Ranking in BASISplus,” Information Dimensions, Dublin, Ohio, 1993.
8. E.M. Keen, “Presenting Results of Experimental Retrieval Comparisons,” Information Processing and

Management, Vol. 28, No. 4, 1992, pp. 491-502.
9. Information Retrieval Experiment, K. Sparck-Jones, ed., Butterworths, London, 1981.

10. C. Stanfill and B. Kahle, “Parallel Free-Text Search on the Connection Machine System,” Comm.
ACM, Dec. 1986, pp. 1229-1239.

Huei Chuang is a technical staff member of Information Dimensions,
where he developed the BasisPlus system.

Chuang received a PhD in computer science from Ohio State University.

Dik Lun Lee is Reader of
computer science at the
Hong Kong University of
Science and Technology.
Prior to this he was associ-
ate professor of computer
and information science at
Ohio State University. His
research interests include
document retrieval, object-
oriented systems, informa-

tion discovery and management, and mobile com-
puting. He has served as the editor and guest editor
for several technical publications and has been an
ACM lecturer.

Lee received a BS in electronics from the
Chinese University of Hong Kong and an MS and
PhD in computer science from the University of
Toronto. He is a member of the IEEE, IEEE
Computer Society, and ACM.

Kent E. Seamons is a member of the group conduct-
ing research in wide-area information systems at
Transarc Corporation. He has held technical positions
at Information Dimensions and the National Center
for Supercomputing Applications. His research inter-
ests include database systems, information retrieval,
and parallel I/O.

Seamons received a BS in computer science from
Brigham Young University and a PhD in computer sci-
ence from the University of Illinois at Urbana-
Champaign. He is a member of the IEEE and ACM.

◆

.

