
Approximate Processing of Multiway Spatial Joins in
Very Large Databases

Dimitris Papadias

Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
 dimitris@cs.ust.hk

Dinos Arkoumanis

Dept of Electrical and Computer Engineering
National Technical University of Athens

Greece, 15773
dinosar@dbnet.ece.ntua.gr

Abstract. Existing work on multiway spatial joins focuses on the retrieval of all
exact solutions with no time limit for query processing. Depending on the query
and data properties, however, exhaustive processing of multiway spatial joins
can be prohibitively expensive due to the exponential nature of the problem.
Furthermore, if there do not exist any exact solutions, the result will be empty
even though there may exist solutions that match the query very closely. These
shortcomings motivate the current work, which aims at the retrieval of the best
possible (exact or approximate) solutions within a time threshold, since fast re-
trieval of approximate matches is the only way to deal with the ever increasing
amounts of multimedia information in several real time systems. We propose
various techniques that combine local and evolutionary search with underlying
indexes to prune the search space. In addition to their usefulness as standalone
methods for approximate query processing, the techniques can be combined
with systematic search to enhance performance when the goal is retrieval of the
best solutions.

1. Introduction

Several specialized access methods have been proposed for the efficient manipulation
of multi-dimensional data. Among the most popular methods, are the R-tree [G84] and
its variations, currently used in several commercial products (e.g., Oracle, Informix).
R-trees are extensions of B-trees in two or more dimensions. Figure 1 shows an image
containing objects r1,.., r8, and the corresponding R-tree assuming capacity of three
entries per node. Leaf entries store the minimum bounding rectangles (MBRs) of the
actual objects, and nodes are created by grouping entries in a way that preserves prox-
imity, and avoids excessive overlap between nodes. In Figure 1, objects r1, r2 , and r3,
are grouped together in node e1, objects r4, r5 , and r6 in node e2, etc.

In this work we consider multimedia databases involving maps/images containing a
large number (in the order of 105-106) of objects with well-defined semantics (e.g.,
maps created through topographic surveys, VLSI designs, CAD diagrams). Each
map/image is not stored as a single entity, but information about objects is kept in
relational tables with a spatial index for each type of objects covering the same area
(e.g., an R-tree for the roads of California, another for residential areas etc). This
facilitates the processing of traditional spatial selections (e.g., find all roads inside a

query window) and spatial joins [BKS93] (e.g., find all pairs of intersecting roads and
railroad lines in California).

r

4r

3r1e

2e

3e
1 2r

3r
5r

6r

7r
7r 8r6r5r4r3r2r1r

3e2e1e

Fig. 1. R-tree example

A multiway spatial join is the natural extension of pairwise joins, combining more
than two inputs (e.g., find all triplets <c,r,a> of cities c, rivers r and industrial areas a
such that c is crossed by r which also crosses a). Multiway spatial joins constitute a
special form of content based retrieval, which focuses on spatial relations rather than
visual characteristics such as color, shape or texture. In accordance with related work
on content based retrieval, query processing mechanisms should be able to handle
approximate retrieval using some measure of similarity. Unfortunately existing tech-
niques (presented in the next section) only deal with exact retrieval, i.e., if there does
not exist some stored configuration matching exactly the query constraints, the result
will be empty (even if there exist very close matches). Furthermore, these techniques
assume that there is unlimited time for query processing. This assumption may not
always be valid, given the exponential nature of the problem and the huge amounts of
multimedia information in several applications.

This paper deals with these problems by proposing methods that can handle ap-
proximate retrieval of multiway spatial joins under limited time. The methods com-
bine well known search heuristics, such as local and evolutionary search, with spatial
indexing (R-trees) in order to quickly locate good, but not necessarily optimal, solu-
tions. In addition to their usefulness as standalone methods, they can be employed in
conjunction with systematic search to speed up retrieval of the optimal solutions by
orders of magnitude. The rest of the paper is structured as follows: section 2 over-
views related work in the context of multiway spatial joins and content-based re-
trieval; sections 3, 4 and 5, present algorithms that combine R-trees with local search,
guided local search and genetic algorithms, respectively. Section 6 contains the ex-
perimental evaluation and section 7 concludes with a discussion about future work.

2. Definitions and Related Work

Formally, a multiway spatial join can be expressed as follows: Given n multi-
dimensional datasets D1, D2, ... Dn and a query Q, where Qij is the spatial predicate
that should hold between Di and Dj, retrieve all n-tuples {(r1,w,..,ri,x,..,rj,y,..,rn,z) | ∀ i,j :
ri,x ∈ Di, rj,y ∈ Dj and ri,x Qij rj,y}. Such a query can be represented by a graph where
nodes correspond to datasets and edges to join predicates. Equivalently, the graph can
be viewed as a constraint network [DM94] where the nodes are problem variables,
and edges are binary spatial constraints. In the sequel we use the terms vari-
able/dataset and constraint/join condition interchangeably. Following the common
methodology in the spatial database literature we assume that the standard join condi-

tion is overlap (intersect, non-disjoint). Figure 2 illustrates two query graphs joining
three datasets and two solution tuples (r1,1,r2,1,r3,1) such that ri,1 is an object in Di.
Figure 2a corresponds to a chain query (e.g., “find all cities crossed by a river which
crosses an industrial area”), while 2b to a clique (“the industrial area should also inter-
sect the city”).

D3

D21

r2,1

D

r1,1 r3,1

 D3

D 21

r2,1

D

r3,1

r1,1

(a) chain query (b) clique query

Fig. 2. Examples of multiway spatial joins

We use the notation vi←ri,x to express that variable vi is instantiated to rectangle ri,x
(which belongs to domain Di). A binary instantiation {vi←ri,x, vj←rj,y} is inconsistent
if there is a join condition Qij, but ri,x and rj,y do not overlap. A solution is a set of n
instantiations {v1← r1,w, .., vi←ri,x, .., vj←rj,y, ..,vn←rn,z} which, for simplicity, can be
described as a tuple of values (r1,w,..,ri,x,..,rj,y,..,rn,z) since the order of variables is im-
plied. The inconsistency degree of a solution is equal to the total number of inconsis-
tent binary instantiations, i.e., the number of join conditions violated. A solution with
zero inconsistency degree is exact; otherwise it is approximate. The lower the incon-
sistency degree, the higher the similarity of the solution.

Approximate retrieval of the solutions with the highest similarity (i.e., solutions
with the minimum number of inconsistencies / join condition violations) is desirable in
several applications (e.g., architectural and VLSI design), where queries often involve
numerous variables and the database may not contain configurations that match all the
query constraints. Furthermore, since the problem is in general exponential, even if
there exist exact solutions, there may not be enough processing time or computational
resources to find them.

As in the case of relational joins, multiway spatial joins can be processed by com-
bining pairwise join algorithms. The pairwise join method (PJM) [MP99] considers a
join order that is expected to result in the minimum cost (in terms of page accesses).
However, PJM (and any method based on pairwise algorithms) cannot be extended for
approximate retrieval since if no exact solution exists, the results of some joins should
contain non-intersecting pairs of objects. Two alternative methodologies for multiway
spatial joins, motivated by algorithms for constraint satisfaction problems (CSPs),
were proposed in [PMT99]. Synchronous traversal (ST) starts from the roots of the R-
trees and finds combinations of entries that satisfy the query constraints. For each such
combination the algorithm is recursively called, taking the references to the underlying
nodes as parameters, until the leaf level is reached. The calculation of combinations of
the qualifying nodes for each level is expensive, as their number can be as high as Cn
(where C is the node capacity, and n the number of query variables). In order to avoid
exhaustive search of all combinations, the authors use search algorithms and optimiza-
tion techniques.

The second methodology, called window reduction (WR) integrates the ideas of
backtracking and index nested loop algorithms. When the first variable gets a value v1
← r1,w, this rectangle (r1,w) is used as a query window to find qualifying entries in the
second dataset. If such entries are found, the second variable is instantiated to one of
them, i.e., v2 ← r2,w. The algorithm proceeds forward using the values of instantiated
variables as query windows. When a window query yields no results, the algorithm
backtracks to the previous variable and tries another value for it. Although ST and WR
can be applied for retrieval of approximate solutions, they are not suitable for query
processing within a time limit (see experimental evaluation), since they may initially
spend a lot of time in regions with low quality solutions, failing to quickly find some
good ones.

Also related to this paper, is previous work on spatial (or configuration) similarity
retrieval. The corresponding queries describe some prototype configuration and the
goal is to retrieve arrangements of objects matching the input exactly or approxi-
mately. Thus, these queries can be thought of as approximate multiway spatial joins
with arbitrary predicates. Petrakis and Faloutsos [PF97] solve such problems by map-
ping images (datasets) and queries into high-dimensional points, which are then in-
dexed by R-trees. Similarity retrieval is processed by nearest neighbor search. The
method, however, assumes medical images with about 10 objects and cannot be em-
ployed for even the smallest datasets normally found in spatial databases. In general,
techniques based on high-dimensional indexing and nearest neighbor search are not
applicable due to the huge number of dimensions required to represent the problem.

A number of techniques are based on several variations of 2D strings [LYC92,
LH92], which encode the arrangement of objects on each dimension into sequential
structures. Every database image is indexed by a 2D string; queries are also trans-
formed to 2D strings, and similarity retrieval is performed by applying appropriate
string matching algorithms [CSY87]. Although this methodology can handle larger
datasets (experimental evaluations usually include images with about 100 objects) it is
still not adequate for real-life spatial datasets.

In order to deal with similarity retrieval under limited time, Papadias et al.,
[PMK+99] use heuristics based on local search, simulated annealing and genetic algo-
rithms. Unlike ST and WR, which search systematically, guaranteeing to find the best
solutions, these heuristics are non-systematic (i.e., random). The evaluation of
[PMK+99] suggests that local search, the most efficient algorithm, can retrieve good
solutions even for large problems (images with about 105 objects). In the next section
we propose heuristics based on similar principles, for inexact retrieval of multiway
spatial joins. However, unlike [PMK+99] where the algorithms were a straightforward
adaptation of local and evolutionary search for similarity retrieval, the proposed
methods take advantage of the spatial structure of the problem and existing indexes to
achieve high performance.

For the rest of the paper we consider that all datasets are indexed by R*-trees
[BKSS90] on minimum bounding rectangles, and we deal with intersection joins. We
start with indexed local search in the next section, followed by guided indexed local
search and a spatial evolutionary algorithm.

3. Indexed Local Search

The search space of multiway spatial joins can be considered as a graph, where each
solution corresponds to a node having some inconsistency degree. If all n datasets
have the same cardinality N, the graph has Nn nodes. Two nodes/solutions are con-
nected through an edge if one can be derived from the other by changing the instantia-
tion of a single variable. Excluding its current assignment, a variable can take N-1
values; thus, each solution has n⋅(N-1) neighbors. A node that has lower inconsistency
degree than all its neighbors, is a local maximum. Notice that a local maximum is not
necessarily a global maximum since there may exist solutions with higher similarity in
other regions of the graph.

Local search methods start with a random solution called seed, and then try to reach
a local maximum by performing uphill moves, i.e., by visiting neighbors with higher
similarity. When they reach a local maximum (from where uphill moves are not possi-
ble) they restart the same process from a different seed until the time limit is ex-
hausted. Throughout this process the best solutions are kept. Algorithms based on this
general concept have been successfully employed for a variety of problems. Indexed
local search (ILS) also applies this idea, but uses R*-trees to improve the solutions.
The pseudocode of the algorithm is illustrated in Figure 3.

Indexed Local Search

WHILE NOT (Time limit) {

 S := random seed

 WHILE NOT(Local_Maximum) {

 determine worst variable vi

 value := find best value (Root of tree Ri, vi)

 IF better value THEN S = S ∧ { vi ← value }

 IF S is the best solution found so far THEN bestSolution=S

 } /* END WHILE NOT Local_Maximum */

} /* END WHILE NOT Time Limit */

Fig. 3. Indexed local search

Motivated by conflict minimization algorithms [MJP+92], we choose to re-instantiate
the "worst" variable, i.e., the one whose current instantiation violates the most join
conditions. In case of a tie we select the one that participates in the smallest number of
satisfied constraints. If the worst variable cannot be improved, the algorithm considers
the second worst; if it cannot be improved either, the third worst, and so on. If one
variable can be improved, the next step will consider again the new worst one; other-
wise, if all variables are exhausted with no improvement, the current solution is con-
sidered a local maximum.

Consider, for example the query of Figure 4a and the approximate solution of Fig-
ure 4b. The inconsistency degree of the solution is 3 since the conditions Q1,4, Q2,3,
and Q3,4 are violated (in Figure 4b satisfied conditions are denoted with bold lines and
violated ones with thin lines). Variables v3 and v4 participate in two violations each;
v3, however, participates in one satisfied condition, so v4 is chosen for re-assignment.
Find best value will find the best possible value for the variable to be re-instantiated,

i.e., the rectangle that satisfies the maximum number of join conditions given the as-
signments of the other variables. In the example of Figure 4b, the best value for v4
should overlap both r1,1 and r3,1. If such a rectangle does not exist, the next better
choice should intersect either r1,1, or r3,1.

1

2 3

4

1,1r
3,1r

4,1r
2,1r

1,1r
3,1r

4,2r
2,1r 1,1r

3,1r

4,2r

2,2r

(a) example query (b) initial solution (c) re-instantiation of v4 (d) local max

Fig. 4. Example of ILS

The pseudo-code for find best value is illustrated in Figure 5; the variable to be re-
instantiated is vi. Essentially this is like a branch-and-bound window query, where
there exist multiple windows and the goal is to retrieve the rectangle that intersects
most of them. The windows are the assignments of all variables vj such that Qij=True
(for the current example there exist two windows w1=r1,1 and w3=r3,1).

maxConditions=0

bestValue=∅

Find best value (Node N, integer i)
FOR EACH entry ex of N

 FOR EACH Qij such that Qij = True

 IF ex intersects wj THEN conditionsx=conditionsx+1

Sort all entries ex such that conditionsx>0 with respect to conditionsx

IF N intermediate node

 FOR each ex in the sorted list

 IF conditionsx > maxConditions THEN

 Find best value (ex, i)
 ELSE //leaf node

 FOR each ex in the sorted list

 IF conditionsx > maxConditions THEN

 maxConditions=conditionsx

 bestValue=ex

Fig. 5. Find best value algorithm

The algorithm starts from the root of the corresponding tree and sorts the entries ac-
cording to the conditions they satisfy (i.e., how many windows they overlap). The
entries with the maximum number are visited first because their descendants are more
likely to intersect more windows. At the leaf level, an entry is compared with the
maximum number of conditions found so far (maxConditions). If it is better, then this
is kept as bestValue, and maxConditions is updated accordingly. Notice that if an
intermediate node satisfies the same or a smaller number of conditions than maxCon-
ditions, it cannot contain any better solution and is not visited.

Figure 6 illustrates this process for the example of Figures 4a and b. Find best
value will retrieve the rectangle (in the dataset corresponding to v4) that intersects the
maximum number of windows, in this case w1=r1,1 and w3=r3,1. Suppose that the node
(of R-tree R4) considered has three entries e1, e2 and e3; e1 is visited first because it
overlaps both query windows. However, no good values are found inside it so max-
Conditions remains zero. The next entry to be visited is e2 which contains a rectangle
(r4,2) that intersects w3. MaxConditions is updated to 1 and e3 will not be visited since
it may not contain values better than r4,2 (it only satisfies one condition). r4,2 becomes
the new value of v4 and the inconsistency degree of the new solution (Figure 4c) is 2
(Q3,4 is now satisfied). At the next step (Figure 4d), a better value (let r2,2) is found for
v2 using find best value (R2,2). At this point, the algorithm reaches a local maximum.
The violation of Q1,4 cannot be avoided since, according to Figure 6, there is no object
in the fourth dataset that intersects both r1,1 and r3,1.

w
3w

4,1r

1

4,2r

1e

2e

3e

Fig. 6. Example of find best value

4. Guided Indexed Local Search

There have been many attempts to include some deterministic features in local search
and achieve a more systematic exploration of the problem space. “Memory” mecha-
nisms guarantee that the algorithm will not find the same nodes repeatedly by keeping
a list of visited nodes [GL97]. These nodes become forbidden (tabu) in the graph,
forcing the algorithms to move to new neighborhoods. A limitation of this approach
for the current problem is the huge number of nodes, since there exist Nn solutions a
significant percentage of which may be visited. Other approaches [DTW+94] try to
avoid revisiting the same maxima by storing their features (e.g., the route length in
traveling salesman problem). Solutions matching these features, are not rejected, but
“punished”. As a result, the probability of finding the same maximum multiple times is
decreased. The trade-off is that unrelated nodes that share features with visited local
maxima are avoided too, and good solutions may be missed.

Guided indexed local search (GILS) combines the above ideas by keeping a mem-
ory, not of all solutions visited, but of the variable assignments at local maxima. When
a local maximum (r1,w,..,ri,x,..,rj,y,.., rn,z) is found, some of the assignments v1←r1,w, ..,
vi←ri,x, .., vj←rj,y, .., vn←rn,z get a penalty. In particular, GILS penalizes the assign-
ments with the minimum penalties so far; e.g., if v1←r1,w already has a punishment
from a previous maximum (while the others do not), only the other assignments are
penalized in order to avoid over-punishing v1←r1,w.

The code for GILS (Figure 7) is similar to ILS since both algorithms re-instantiate
the worst variable for improving the current solution. Their difference is that GILS

only generates one random seed during its execution and has some additional code for
penalty assignment. The penalty is used to increase the inconsistency degree of the
current local maximum, and to a lesser to degree of solutions that include a subset of
the assignments. In particular, for its similarity computations GILS applies the effec-
tive inconsistency degree which is computed by adding the penalties

)penalty(,
1

xi

n

i
i rv∑

=

←⋅λ

to the actual inconsistency degree (i.e., the number of condition violations) of a solu-
tion. The penalty weight parameter λ is a constant that tunes the relative importance
of penalties and controls the effect of memory in search. A large value of λ will punish
significantly local maxima and their neighbors causing the algorithm to quickly visit
other areas of the graph. A small value will achieve better (local) exploration of the
neighborhoods around maxima at the expense of global graph exploration.

Guided Indexed Local Search

S := random seed

WHILE NOT (Time limit) {

 WHILE NOT(Local_Maximum) {

 determine worst variable vi

 value := find best value (Root of tree Ri, vi)

 IF better value THEN S = S ∧ {vi ← value}

 IF S is the best solution found so far THEN bestSolution=S

 /* END WHILE NOT Local_Maximum */

 P = among the assignments of the current local maximum, select the

 ones with the minimum penalty

 FOR EACH assignment vi ← ri,x in P

 penalty(vi ← ri,x)= penalty(vi ← ri,x) + 1

/* END WHILE NOT Time limit */

Fig. 7. Guided indexed local search

The results of this punishment process are:
• search does not restart from various random seeds but continues from local

maxima. This is because the penalty increases the effective inconsistency de-
gree of the current local maximum (sometimes repeatedly) and eventually
worse neighbors appear to be better and are followed by GILS. The intuition
behind this is to perform some downhill moves, expecting better local
maxima in subsequent steps.

• solutions that share many common assignments with one or more local
maxima have high effective inconsistency degrees and usually are not chosen
during search. Thus, possible visits to the same regions of the search space
are avoided.

Like ILS, GILS uses find best value, to select the new object for the variable to be re-
instantiated. The process is modified in order to deal with penalties as follows: after
the calculation of the inconsistency degree of a leaf object, the penalty value of this

assignment is added, and compared with the best found so far. Find best value is iden-
tical with the one for ILS when it operates at intermediate nodes.

For small problems, the penalties are kept in a two dimensional (n⋅N) array where
the cell (i,j) stores the penalty of assigning the ith variable with the jth value in its do-
main (vi ← ri,j). This array is, in general, very sparse since only a small subset of the
possible assignments are penalized (most of the cells contain zeros). For large prob-
lems, where there is not enough main memory to keep such an array, a hash table
(which only stores the assignments with positive penalties) can be built in-memory.

5. Spatial Evolutionary Algorithm

Evolutionary algorithms are search methods based on the concepts of natural mutation
and the survival of the fittest individuals. Before the search process starts, a set of p
solutions (called initial population P) is initialized to form the first generation. Then,
three genetic operations, selection, crossover and mutation, are repeatedly applied in
order to obtain a population (i.e., a new set of solutions) with better characteristics.
This set will constitute the next generation, at which the algorithm will perform the
same actions and so on, until a stopping criterion is met. In this section we propose a
spatial evolutionary algorithm (SEA) that takes advantage of spatial indexes and the
problem structure to improve solutions.

Selection mechanism: This operation consists of two parts: evaluation and off-
spring allocation. Evaluation is performed by measuring the similarity of every solu-
tion; offspring generation then allocates to each solution, a number of offspring pro-
portional to its similarity. Techniques for offspring allocation include ranking, pro-
portional selection, stochastic remainder etc. The comparison of [BT96] suggests that
the tournament method gives the best results for a variety of problems and we adopt it
in our implementation. According to this technique, each solution Si competes with a
set of T random solutions in the generation. Among the T+1 solutions, the one with the
highest similarity replaces Si. After offspring allocation, the population contains mul-
tiple copies of the best solutions, while the worst ones are likely to disappear.

Crossover mechanism is the driving force of exploration in evolutionary algo-
rithms. In the simplest approach [H75], pairs of solutions are selected randomly from
the population. For each pair a crossover point is defined randomly, and the solutions
beyond it are mutually exchanged with probability µc (crossover rate), producing two
new solutions. The rationale is that after the exchange of genetic materials, the two
newly generated solutions are likely to possess the good characteristics of their parents
(building-block hypothesis [G89]). In our case randomly swapping assignments will
most probably generate multiple condition violations. Especially for latter generations,
where solutions may have reached high similarities, random crossover may lead to the
removal of good solutions.

In order to limit the number of violations, we propose a variable crossover point c
(1≤c<n) which is initially 1 and increases every gc generations. When a solution S is
chosen for crossover, c variables will retain their current assignments, while the re-
maining n-c will get the assignments of another solution. A small value of c means
that S will change dramatically after crossover, while a value close to n implies that

only a small part will be affected (e.g., if c=n-1 only one variable will change its as-
signment). This leads to the desired result that during the early generations, crossover
has a significant effect in generating variety in the population, but this effect dimin-
ishes with time in order to preserve good solutions.

Given the value of c, a greedy crossover mechanism uses a set X to store the c best
variables in S, i.e., the ones that have relatively low inconsistency degrees and should
not change their assignment during crossover. Initially variables are sorted according
to the number of satisfied join conditions in S. In case of ties the variable with the
smallest number of violations has higher priority. The first variable in the ordered list
is inserted into X. From this point on, the variable inserted, is the one that satisfies the
largest number of conditions with respect to variables already in X. Ties are resolved
using the initial order. The process stops when c variables are in X. The rest of the
variables are re-instantiated using the corresponding values of a another solution.

Figure 8 illustrates a solution where satisfied (violated) conditions are denoted with
bold (thin) lines. Assume that c=3, meaning that three variables will keep their current
assignments. The initial sorting will produce the order (v6,v4,v2,v1,v3,v5). The insertion
order in X is v6, then v4 (because of Q4,6) and finally v1 (because of Q1,6 and Q1,4).
Intuitively this is a very good splitting because the sub-graph involving v1,v4 and v6 is
already solved. Now another solution is chosen at random and v2,v3 and v5 obtain the
instantiations of this solution.

1

2

3

4

5

6

Variable Conditions Satisfied Conditions Violated
v6 4 0
v4 3 1
v2 2 1
v1 2 2
v3 2 2
v5 1 2

Fig. 8. Example of solution splitting during crossover

Mutation mechanism: Although it is not the primary search operation and sometimes
is omitted, mutation is very important for SEA and the only operation that uses the
index. At each generation, mutation is applied to every solution in the population with
probability µm, called the mutation rate. The process is similar to ILS; the worst vari-
able is chosen and it gets a new value using find best value. Thus, in our case mutation
can only have positive results.

Figure 9 illustrates the pseudo-code for SEA. The algorithm first computes the simi-
larity of the solutions, and then performs offspring allocation (using the tournament
approach), crossover and mutation (following the methods described above) in this
order. During the initial generations crossover plays an important role in the formation
of new solutions. As time passes its role gradually diminishes and the algorithm be-
haves increasingly like ILS, since mutation becomes the main operation that alters
solutions.

Spatial Evolutionary Algorithm

P := generate initial set of solutions {S1,..,Sp}

WHILE NOT (Time limit) {

 compute crossover point c /* increase c every gc generations */

 FOR EACH Si in P /*evaluation */

 evaluate Si

 IF Si is the best solution found so far THEN keep Si

 FOR EACH Si in P /* offspring allocation */

 compare Si with T other random solutions in P

 replace Si with the best among the T+1 solutions

 FOR EACH Si in P /*crossover*/

 with probability µc change Si as follows
 determine set of c variables to keep their current values

re-instantiate the remaining variables using their values in an-

other solution Sj (Sj ∈ P)
 FOR EACH Si in P /* mutation */

 with probability µm change Si as follows
 determine worst variable vk

 vk ← find best value (Root of tree Rk, vk)

}/* END WHILE NOT Time limit */

Fig. 9. Spatial evolutionary algorithm

Unlike ILS (which does not include any problem specific parameters), and GILS
(which only contains λ), SEA involves numerous parameters, namely, the number T of
solutions participating in the tournament, the crossover (µc) and mutation (µm) rates,
the number of generations gc during which the crossover point remains constant, and
the number p of solutions in each population. Furthermore, these parameters are inter-
related in the sense that the optimal value for one depends on the rest. Careful tuning
of the parameters is essential for the good performance of SEA, and evolutionary algo-
rithms in general [G86].

 Based on extensive experiments (described in the long version of this paper [PA])
we chose the following set of parameters to be used in the subsequent experimental
comparison: λ=10-10⋅s, T=0.05⋅s, µc= 0.6, gc=10⋅s, µm=1, and p=100⋅s, where s is the
size of a problem and corresponds to the number of bits required to represent the
search space [CFG+98], i.e., the number of bits needed to express all possible solu-
tions:

s = ∏
=

⋅
n

i
iN

1
2log

The tuning of parameters as a function of s, provides good performance independently
of the problem size. Although even better parameter values could be obtained for
specific problem instances, the above set achieves good overall performance for a
variety of query graphs and datasets.

6. Experimental Evaluation

In this section we compare the proposed techniques, according to the common CSP
and optimization methodology, using problem instances in the, so-called, hard region.
It is a well known fact, that over-constrained problems do not have exact solutions and
it is usually easy to determine this. On the other hand, under-constrained problems
have numerous solutions which can be easily found. Between these types occurs a
phase transition. Several studies on systematic [CA93] and non-systematic search
[CFG+98] in a variety of combinatorial problems, experimentally demonstrate that the
most difficult problems to solve are in the (hard) region defined by the phase transi-
tion. This hard region occurs when the expected number of exact solutions is small,
i.e., in the range [1,10].

In order to generate such problem instances we need analytical formulae for the
number of exact solutions. The general formula for the expected output size of multi-
way spatial joins is: Sol = #(possible tuples)⋅Prob(a tuple is a solution), where the first
part of the product equals the cardinality of the Cartesian product of the n domains,
while the second part corresponds to multiway join selectivity. According to [TSS98]
the selectivity of a pairwise join over two uniform datasets Di and Dj that cover a unit
workspace is (|ri|+|rj|)2, where |ri| is the average MBR extent in each dimension for Di.
For acyclic graphs, the pairwise probabilities of the join edges are independent and
selectivity is the product of pairwise join selectivities. Thus, in this case the number of
exact solutions is:

()∏∏
=∀=

+⋅=
TRUEjiQji

n

i
i ji

rrNSol
),(:,

2

1
||||

When the query graph contains cycles, the pairwise selectivities are not independent
anymore and the above equation is not accurate. Based on the fact that if a set of rec-
tangles mutually overlap, then they must share a common area, [PMT99] propose the
following estimation for Sol, in case of clique joins:

2

1 11
||

⋅= ∑∏∏
=

≠
==

n

i

n

ij
j

j

n

i
i rNSol

The above formulae are applicable for queries that can be decomposed to acyclic and
clique graphs. For simplicity, in the rest of the paper we assume that all (uniform)
datasets have the same cardinality N and MBR extents |r|. Under these assumptions,
and by substituting average extents with density1 values, the formulae can be trans-
formed as follows. For acyclic queries, there are n-1 join conditions. Thus, the number

1 The density d of a dataset is the average number of rectangles that contain a point in the

workspace. Equivalently, d can be expressed as the ratio of the sum of the areas of all rectan-
gles over the area of the workspace. Density is related with the average rectangle extent |r| by
the equation d= N⋅|r|2 [TSS98]. Obviously the number of solutions increases with density
(since larger MBRs have a higher chance to overlap) and decreases with the number of join
conditions in the query.

of solutions is: Sol = Nn⋅(2⋅|r|)2⋅(n-1)= N⋅22⋅(n-1)⋅dn-1. Similarly, for cliques the number of
solutions is: Sol = Nn⋅n2⋅|r|2⋅(n-1) = N⋅n2⋅dn-1. The importance of these equations is that
by varying the density of the datasets we can create synthetic domains such that the
number of solutions can be controlled. In case of acyclic graphs, for instance, the
value of density that produces problems with one expected solution is d = 141 −⋅ n N ,

while for cliques this value is d = 1 21 − ⋅n nN .
The following experiments were executed by Pentium III PCs at 500 MHz with

512MB Ram. For each experimental result we measure the average of 100 executions
for each query (since the heuristics are non-deterministic the same query/data combi-
nation usually gives different results in different executions). In order to have a uni-
form treatment of similarity, independent of the number of the constraints, similarity is
computed as 1-(#violated constraints/#total constraints).

The first experiment measures the quality of the solutions retrieved by the algo-
rithms as a function of the number of query variables. In particular we constructed
uniform datasets of 100,000 objects and executed acyclic and clique queries involving
5, 10, 15, 20 and 25 variables2. Depending on the number of variables/datasets in-
volved and the query type, we adjusted the density of the datasets so that the expected
number of solutions is 1. The time of every execution is proportional to the query size
and set to 10⋅n seconds. Figure 10a illustrates the similarity of the best solution re-
trieved by the algorithms as a function of n, for chain and clique queries (average of
100 executions). The numbers in italics (top row) show the corresponding density
values.

The second experiment studies the quality of the solutions retrieved over time.
Since all algorithms start with random solutions which probably have very low simi-
larities, during the initial steps of their execution there is significant improvement. As
time passes the algorithms reach a convergence point where further improvement is
very slow because a good solution has already been found and it is difficult for the
algorithms to locate a better one. In order to measure how quickly this point is
reached, we used the data sets produced for the 15-variable case and allowed the algo-
rithms to run for 40 (chains) and 120 (cliques) seconds. Since chain queries are under-
constrained, it is easier for the algorithms to quickly find good solutions. On the other
hand, the large number of constraints in cliques necessitates more processing time.
Figure 10b illustrates the (average) best similarity retrieved by each algorithm as a
function of time.

The third experiment studies the behavior of algorithms as a function of the ex-
pected number of solutions. In particular, we use datasets of 15 variables and gradu-
ally increase the density so that the expected number of solutions grows from 1, to 10,
100 and so on until 105. Each algorithm is executed for 150 seconds (i.e., 10⋅n). Fig-
ure 10c shows the best similarity as a function of Sol.

2 We used synthetic datasets because, to the best of our knowledge, there do not exist 5 or more

real datasets covering the same area publicly available. The query types were chosen so that
they represent two extreme cases of constrainedness: acyclic queries are the most under-
constrained, while cliques the most over-constrained.

The ubiquitous winner of the experiments is SEA which significantly outperforms
ILS and GILS in most cases. The solutions retrieved by the algorithm are often perfect
matches. This is very important since as we will see shortly, systematic search for
exact solutions may require several hours for some problem instances. According to
Figure 10c the performance gap does not decrease considerably as the number of
solutions increases, meaning that the structure of the search space does not have a
serious effect on the relative effectiveness of the algorithms.

SEAGLSILS

Chains Cliques

0.00

0.20

0.40

0.60

0.80

1.00

5 10 15 20 25

Query Size

similarity
0.014 0.069 0.109 0.1550.136

density values

0.00

0.20

0.40

0.60

0.80

1.00

5 10 15 20 25

Query Size

similarity
0.025 0.167 0.298 0.4740.398

density values

(a) Best similarity retrieved as a function of the number (n) of query variables

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30 35 40

Time (sec)

similarity

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (sec)

similarity

(b) Best similarity retrieved as a function of time

0.00

0.20

0.40

0.60

0.80

1.00

1 10 100 1000 10000 100000

Solutions

similarity
0.109 0.129 0.152 0.2120.18

density values
0.25

0.00

0.20

0.40

0.60

0.80

1.00

1 10 100 1000 10000 100000

Solutions

similarity 0.298 0.352 0.415 0.5760.489
density values

0.679

(c) Best similarity retrieved as a function of the expected number of solutions

Fig. 10. Comparison of algorithms

The poor performance of ILS (and GILS) is rather surprising considering that local
search significantly outperformed a genetic algorithm in the experimental evaluation
of [PMK+99] for configuration similarity. This can be partially caused by the different
images sizes (on the average, about an order of magnitude smaller than the datasets
used in our experiments), version of the problem (soft spatial constraints that can be

partially violated), implementation and parameter choices. The main reason, however,
is that the current approach has some substantial improvements that affect relative
performance: (i) we use indexes to re-assign the worst variable with the best value in
its domain, while in [PMK+99] variables were re-assigned with random values, and
(ii) we apply a sophisticated crossover mechanism that takes into account the quality
of assignments in order to split solutions, while the genetic algorithm of [PMK+99]
involves a random crossover mechanism. The first improvement enhances the per-
formance of both local and evolutionary search, since indexes are used by SEA, for
mutation, and by ILS (and GILS) for variable re-instantiation. Therefore, the main
difference in relative efficiency is generated by the crossover mechanism. The careful
swapping of assignments between solutions produces some better solutions which in
subsequent generations will multiply through offspring allocation and mutate to better
solutions.

 ILS and GILS are still useful in cases where there is very limited time for process-
ing since, as shown in Figure 10b, they reach their convergence point before 5 and 10
seconds for chains and cliques respectively (for chains, within 5 seconds ILS visits
about 60,000 local maxima!). Although SEA will eventually outperform them, it re-
quires longer time to reach high quality solutions due to the application of the genetic
operations on a large population of solutions. Especially in the case of cliques, the
crossover mechanism is not as efficient as for chains, because the constraints between
all pairs of variables are very likely to generate large numbers of inconsistencies dur-
ing the early steps where solutions have low similarities. ILS, in general, performs
better than GILS, except for queries involving 20 and 25 variables. For large queries
the similarity difference between a local maximum and its best neighbors is relatively
small (due to the large number of constraints, each violation contributes little to the
inconsistency degree of the solution), and good solutions are often found in the same
neighborhood. So while ILS will retrieve one of them and then restart from a com-
pletely different point, the punishment process of GILS leads to a more systematic
search by achieving gradual transitions between maxima and their neighbors.

In addition to their usefulness as standalone retrieval techniques, the above heuris-
tics can be applied as a preliminary step to speed up systematic algorithms. In order to
demonstrate this, we implemented a variation of the WR technique [PMT99], that
finds the best approximate solutions, if no exact solutions exist. The resulting algo-
rithm, Indexed Branch and Bound (IBB), instantiates variables by applying window
queries in the corresponding tree. If there does not exist an object satisfying all join
conditions with respect to already instantiated variables, the algorithm does not back-
track, but continues searching if the existing partial solution can potentially lead to a
higher similarity than the best solution found so far. As in the case of find best value
(Figure 5), objects that satisfy the largest number of join conditions are tried first (for
details see [PA]).

IBB, and similar systematic search algorithms, can quickly discover the best solu-
tions, if they have some "target" similarity to prune the search space. Otherwise, they
may initially spend a lot of time exhaustively exploring areas of the search space with
low quality solutions. A good value for this target similarity is very difficult to esti-
mate because it depends on the dataset and the query characteristics. The proposed
heuristics can be applied as a pre-processing step to provide such a value. In the next

experiment we test the effectiveness of methods that first apply some search heuristic
(ILS and SEA) to find a solution with high similarity, which is then input to IBB.

Figure 11 compares these two-step methods with the direct application of IBB. In
particular we use "clique" queries over the datasets presented in Figure 10a. The data-
sets are such that the actual number of exact solutions is 1, and we measure the time
(in seconds) that it takes for each method to retrieve the exact solution. The results are
averaged over 10 executions because the target similarity returned by the heuristics
differs each time due to their non-deterministic nature. Notice that often, especially for
small queries, the exact solution is found by the non-systematic heuristics (usually
SEA) in which case systematic search is not performed at all. The threshold for SEA is
again 10⋅n (i.e., 150) seconds which are sufficient for its convergence (see Figure
10b), while ILS is executed for 1 second (during this time it visits about 12,000
maxima and returns the best).

10

100

1000

10000

100000

1000000

5 10 15 20 25

Query Size

Time (sec) SEA-IBBILS-IBBIBB

Fig. 11. Combinations of systematic with heuristic search

An important observation about Figure 11, refers to the processing time required for
systematic search. IBB needs more than 100 minutes to process the smallest query (5
datasets). Cliques involving 25 variables take several days to terminate! This moti-
vates the need for efficient retrieval of sub-optimal solutions through heuristic search.
But, even when the optimal solutions are required, the incorporation of SEA speeds up
IBB 1-2 orders of magnitude with respect to simple systematic search. This improve-
ment is not so significant for ILS due to the lower similarity of the solutions retrieved.

7. Discussion

In this paper we propose several heuristics for multiway spatial join processing when
the goal is retrieval of the most similar solutions within limited time. The best algo-
rithm, SEA, can usually find optimal solutions even for difficult problems. In addition,
we integrate systematic and non systematic search in a two-step processing method
that boosts performance up to two orders of magnitude. To the best of our knowledge,
our techniques are the only ones applicable for inexact retrieval of very large prob-
lems without any restrictions on the type of datasets, query topologies, output similari-
ties etc. As such, they are useful in a variety of domains involving multiway spatial
join processing and spatial similarity retrieval, including VLSI design, GIS and satel-
lite imagery etc. Another potential application is the WWW, where the ever increasing
availability of multimedia information will also require efficient mechanisms for

multi-dimensional information retrieval. The methods are easily extensible to other
spatial predicates, such as northeast, inside, near etc. Furthermore, they can be applied
for cases where the image contains several types of objects and the query asks for
configurations of objects within the same image (i.e., self-joins).

Regarding future directions, first we believe that the excellent performance of SEA,
could be further improved in many aspects. An idea is to apply variable parameter
values depending on the time available for query processing. For instance, the number
of solutions p in the initial population may be reduced for very-limited-time cases, in
order achieve fast convergence of the algorithm within the limit. Other non-systematic
heuristics can also be developed. Given that using the indexes, local search can find
local maxima extremely fast, we expect its efficiency to increase by including appro-
priate deterministic mechanisms that lead search to areas with high similarity solu-
tions. Furthermore, several heuristics could be combined; for instance instead of gen-
erating the initial population of SEA randomly, we could apply ILS and use the first p
local maxima visited as the p solutions of the first generation. Although we have not
experimented with this approach, we expect it to augment the quality of the solutions
and reduce the convergence time. For systematic search, we believe that the focus
should be on two-step methods, like SEA-IBB, that utilize sub-optimal solutions to
guide search for optimal ones. Finally another interesting direction is the application
of our techniques to other (e.g., direction, distance) spatial predicates [ZSI01], as well
as the incorporation of optimization heuristics similar to the ones that have been pro-
posed for exhaustive processing of multiway spatial joins [PLC00].

Acknowledgments

This work was supported by grants HKUST 6081/01E and HKUST 6070/00E from
Hong Kong RGC.

References

[BKS93] Brinkhoff, T., Kriegel, H., Seeger B. Efficient Processing of Spatial
Joins Using R-trees. ACM SIGMOD, 1993.

[BKSS90] Beckmann, N., Kriegel, H. Schneider, R., Seeger, B. The R*-tree: an
Efficient and Robust Access Method for Points and Rectangles. ACM
SIGMOD, 1990.

[BT96] Blickle, T., Thiele, L. A Comparison of Selection Schemes used in Ge-
netic Algorithms. TIK-Report No. 11, ETH, Zurich, 1996.

[CA93] Crawford, J., Auton, L. Experimental Results on the Crossover Point in
Satisfiability Problems. AAAI, 1993.

[CFG+98] Clark, D., Frank, J., Gent, I., MacIntyre, E., Tomov, N., Walsh, T. Lo-
cal Search and the Number of Solutions. Constraint Programming,
1998.

[CSY87] Chang, S, Shi, Q., Yan C. Iconic Indexing by 2-D String. IEEE PAMI
9(3), 413-428, 1987.

[DM94] Dechter R., Meiri I. Experimental Evaluation of preprocessing algo-
rithms for constraint satisfaction problems. Artificial Intelligence, 68:
211-241, 1994.

[DTW+94] Davenport, A., Tsang, E., Wang, C., Zhu, K. GENET: A Connectionist
Architecture for Solving Constraint Satisfaction Problems by Iterative
Improvement. AAAI, 1994.

[G84] Guttman, A. R-trees: A Dynamic Index Structure for Spatial Searching.
ACM SIGMOD, 1984.

[G86] Grefenstette, J. Optimization of Control Parameters for Genetic Algo-
rithms. IEEE Trans. on Systems, Man and Cybernetics, 16 (1), 1986.

[G89] Goldberg, D. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, Mass., 1989.

[GL97] Glover F., Laguna, M. Tabu Search. Kluwer, London, 1997.
[H75] Holland, J. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, Michigan, 1975.
[LH92] Lee, S, Hsu, F. Spatial Reasoning and Similarity Retrieval of Images

using 2D C-Strings Knowledge Representation. Pattern Recognition,
25(3), 305-318, 1992.

[LYC92] Lee, S, Yang, M, Chen, J. Signature File as a Spatial Filter for Iconic
Image Database. Journal of Visual Languages and Computing, 3, 373-
397, 1992.

[MJP+92] Minton, S. Johnston, M., Philips, A., Laird P. Minimizing Conflicts: A
Heuristic Repair Method for Constraint Satisfaction and Scheduling
Problems. Artificial Intelligence 58(1-3), 161-205, 1992.

[MP99] Mamoulis, N, Papadias, D., Integration of Spatial Join Algorithms for
Processing Multiple Inputs. ACM SIGMOD, 1999.

[PA] Papadias, D., Arkoumanis D. Search Algorithms for Multiway Spatial
Joins. To appear in the International Journal of Geographic Informa-
tion Science (IJGIS). Available at: http://www.cs.ust.hk/~dimitris/

[PF97] Petrakis, E., Faloutsos, C. Similarity Searching in Medical Image Data-
bases. IEEE TKDE, 9 (3) 435-447, 1997.

[PLC00] Park, H-H., Lee, J-Y., Chung, C-W. Spatial Query Optimization Utiliz-
ing Early Separated Filter and Refinement Strategy. Information Sys-
tems 25(1): 1-22, 2000.

[PMK+99] Papadias, D., Mantzourogiannis, M., Kalnis, P., Mamoulis, N., Ahmad,
I. Content-Based Retrieval Using Heuristic Search. ACM SIGIR, 1999.

[PMT99] Papadias, D., Mamoulis, N., Theodoridis, Y. Processing and Optimiza-
tion of Multiway Spatial Joins Using R-trees. ACM PODS, 1999.

[TSS98] Theodoridis, Y., Stefanakis, E., Sellis, T., Cost Models for Join Queries
in Spatial Databases, ICDE, 1998.

[ZSI01] Zhu, H, Su, J, Ibarra, O. On Multi-way Spatial Joins with Direction
Predicates. SSTD, 2001.

