

Cost Models for Overlapping and Multi-Version B-trees

Yufei Tao, Dimitris Papadias, Jun Zhang

Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{taoyf, dimitris, zhangjun}@cs.ust.hk

Abstract
Overlapping and multi-version techniques are two
popular frameworks that transform an ephemeral index
into a multiple logical-tree structure in order to support
versioning databases. Although both frameworks have
produced numerous efficient indexing methods, their
performance analysis is rather limited; as a result there is
no clear understanding about the behavior of the
alternative structures and the choice of the best one,
given the data and query characteristics. Furthermore,
query optimization based on these methods is currently
impossible. These are serious problems due to the
incorporation of overlapping and multi-version
techniques in several traditional (e.g., banking) and
emerging (e.g., spatio-temporal) applications. In this
paper, we propose frameworks for reducing performance
analysis of overlapping and multi-version structures to
that of the corresponding ephemeral structures, thus
simplifying the problem significantly. The frameworks
lead to accurate cost models that predict the sizes of the
trees, the node accesses and query selectivity. Although
we focus on B-tree-based structures, the proposed models
can be employed with a variety of indexes.

1. Introduction
Versioning are those objects whose attributes change with
time. Supporting such objects efficiently is crucial for a
large number of applications. As an example, consider a
banking system that records the historical changes of
account balances occurring as a result of withdrawals,
deposits or money transfers. Old versions of the records
are not removed, since possible queries may inquire about
any time in history. Versioning databases constitute the
core of many temporal, spatio-temporal, decision-making,
and on-line analytical systems.

We use the term features to refer to the time-varying
attributes of versioning objects, which are best modeled
as intervals in the feature-time space. Figure 1.1 shows an
example for the banking system. The vertical axis refers
to account balances (i.e., the features), while the
horizontal axis corresponds to time. Intervals a1, a2, and
a3 represent the balance changes of account a: one
withdrawal at timestamp t1 and one deposit at timestamp

t2. No change occurs to account b during the
demonstrated period. Notice that we represent records as
semi-closed intervals to emphasize that the valid period of
a record does not include the last timestamp, when a new
record becomes valid. In the sequel, we say that a record
(e.g., a2) is alive during its valid period (e.g. [t1, t2)), and
dead outside it.

 feature

time

a 1

a2

a3

b

t1 t2
Figure 1.1: Representation of versioning objects

An important type of processing in versioning databases
involves range-interval queries (interval queries for
short), which consist of two predicates: (i) the time
interval of interest and (ii) a feature range in the feature
universe. For the previous example, the feature universe
is the range defined by the minimum and maximum
possible balances. The records retrieved by an interval
query must be alive during the time interval and have
their features in the feature range, e.g., “find the accounts
with balances greater than $1000 during March 2001”.
When the time predicate involves only a single timestamp,
the query is called a range-timestamp query.

Access methods for versioning objects have been
extensively studied in temporal and spatio-temporal
databases. Most existing methods are based on multiple
logical-tree structures (MLTS). An MLTS maintains
several logical trees, each of which is an ephemeral
structure suitable for indexing objects at a single
timestamp. To avoid excessive space, consecutive logical
trees may share common branches so that these branches
are stored only once. The overlapping and multi-version
techniques are two popular frameworks for converting
ephemeral structures into corresponding MLTS.

Little work has been carried out on analytical models
for MLTS. Existing analysis merely discusses the
asymptotic optimality of overlapping and multi-version
B-trees with respect to timestamp queries. This, however,
is insufficient in practice due to several reasons. First, in
most cases asymptotic performance does not accurately

reflect the actual cost. Second, interval queries, which are
more frequent in practice, are not discussed. Third,
existing analysis cannot be used for other MLTS.

In this paper, we provide analytical models that, in
addition to B-trees, can be employed for any MLTS
provided that there exists an analytical model for the
corresponding ephemeral structure. For instance, in order
to analyze the performance of an overlapping (or multi-
version) structure based on R-trees, we only need to
incorporate the corresponding R-tree models into our
framework to obtain the cost models for the MLTS. The
proposed models can accurately predict: (i) the node
accesses in performing interval and timestamp queries; (ii)
tree sizes; (iii) query selectivity. Furthermore, the
formulae are based only on the properties of the raw data
and the underlying file system; hence, they do not require
knowledge about the structure of the trees.

The rest of the paper is organized as follows: Section
2 surveys overlapping and multi-version structures and
describes in detail the two frameworks using B-trees as
the ephemeral structures. Section 3 presents the cost
models for B-tree-based methods. Section 4 contains an
extensive experimental evaluation to prove the efficiency
of the proposed models. Section 5 concludes the paper
with future directions.

2. Overlapping and Multi-version Methods
The overlapping technique was first introduced in [BH85]
to produce a time and space efficient approach to file
sharing. The idea was applied to B-trees in [BKK+90]
and R-trees [NS98]. The resulting structures were called
overlapping B-trees (OVB-trees) and historical R-trees
(HR-trees), respectively. Tzouramanis et al. [TML99]
extended OVB-trees by integrating pointers among leaf
pages, which improve the so-called key-history queries in
temporal databases. Recently, the technique was also
applied on Linear Quadtrees [TVM00a]. In a survey
paper [ST97], Salzberg and Tsotras compared asymptotic
performance of overlapping methods with other temporal
access methods in terms of timestamp query performance,
update costs, and structure sizes. Interval query
performance was not discussed.

The multi-version framework was initiated by
[BGO+96], which proposed the Multi-version B-tree
(MVB-tree) and proved its optimal asymptotic
performance. Varman and Verma [VV97] presented a
variation of MVB-trees, which reduces the size
requirements by some constant factor. The multi-version
framework has produced many efficient access methods
in various scenarios. Methods based on R-trees include
BTR-trees to index bitemporal databases [KTF98], and
PPR-trees [KGT] and MVR-trees [TP01] for spatio-
temporal databases. Multi-version linear Quadtrees were
proposed for image processing in [TVM00b].

Furthermore, [JSL+00] and [ZMT+01] employed the idea
in branched temporal databases and temporal aggregation
respectively to obtain BT-trees and multi-version SB-
trees. To the best of our knowledge there does not exist
any work that estimates the structure sizes and
performance of multi-version methods in terms of node
accesses when performing interval queries.

In the rest of the section, we describe the overlapping
and multi-version frameworks using B-trees as the
ephemeral structure. Other MLTS can be constructed by
applying the same transformation algorithms on the
corresponding ephemeral structures.

2.1 Overlapping B-trees
The idea behind OVB-trees is to maintain a separate B-
tree for each timestamp in history, but allow consecutive
trees to share branches as long as the underlying records
do not change. Insertion and deletion are carried out in a
way similar to B-trees, except that whenever a shared
node is to be modified, we duplicate it to a new node
where the changes are applied instead. Figure 2.1
illustrates part of an OVB-tree for timestamps 0 and 1.
Assume that, at timestamp 1, account e changes from its
previous balance e0 to a new one e1. Therefore, e0 should
be removed from the B-tree at timestamp 1, while e1
should be inserted. As shown in the figure, in order not to
affect the tree at timestamp 0, the removal of e0 causes the
duplication of E0 creating node E1. Similarly, the insertion
of e1 spawns new node D1, which contains the entries of
D0 plus e1. The changes propagate upwards, creating
nodes B1 and C1. Notice that node A0 is shared by both
trees, indicating that none of the objects under A0 issue
any update at timestamp 1. Therefore, considerable space
may be saved when the number of objects that change at
each timestamp is relatively small.

timestamp 0 timestamp 1

R0 R1

C0

E0

e
A0

B0

D0

0

C1B1

E1
D1

a0 b0 c0 d 0 a0 b0 c0 d 0e1

Figure 2.1: An OVB-tree example

To keep track of the roots of the logical B+-trees, an
OVB-tree maintains a root table, with one entry per root
block. A timestamp query is directed to the corresponding
B-tree and search is performed inside this tree only. Thus,
the query degenerates into an ordinary range query on B-
trees and is handled very efficiently. An interval query
involving several timestamps should search the
corresponding trees of the related timestamps. Since a
node can be pointed to by multiple parents, it is necessary
to avoid duplicate visits to the same node via different
parents, which can be achieved via “positive and negative
pointers” proposed in [TP01].

2.2 Multi-version B-trees
In multi-version structures, each entry has the form <K, tst,
ted, pointer> where tst (the insertion time) denotes the time
that the record was inserted in the database, and ted (the
deletion time) denotes the time that it was deleted1. For
leaf entries, K denotes the features of an object (e.g., the
balances of accounts). For an intermediate entry, K
determines the minimum bounding range of features in
the subtree alive in its lifespan [tst, ted); its semantics
follow that of the corresponding ephemeral structure. For
MVB-trees [BGO+96], K equals the minimum value of
features in the subtree (the bounding range can be derived
by considering the value of K in the next entry). The field
pointer points to the actual record, or a node at the next
level, for leaf and intermediate entries respectively. When
a new entry is inserted at timestamp t, tst is set to t and ted
to “*” (denoting NOW). When an entry is logically
deleted (due to an update), ted is changed (from *) to t.
Entries with “*” as deletion time are referred to as live
entries; otherwise they are dead. Figure 2.2 illustrates an
example of an MVB-tree.

<5, 1, *, A>
<43, 1, *, B>

<5, 1, *>

<13, 1, *>
<25, 1, 3>
<27, 1, 3>

<8, 1, *>

<39, 1, 3>

<43, 1, *>

<52, 1, 2>
<59, 1, 3>
<68, 1, 3>

<48, 1, *>

A BRoot
<72, 1, *>

<83, 1, *>
<95, 1, 3>
<99, 1, *>

<78, 1, *>

C

<72, 1, *, C>

<102, 1, *>
Figure 2.2: A MVB-tree example

For each timestamp t and each node except the roots, it is
required that either none, or at least b⋅Pversion entries are
alive at t, where Pversion is a tree parameter and b the node
capacity (for the following examples Pversion=1/3 and b=6).
This weak version condition ensures that entries alive at
the same timestamp are mostly grouped together in order
to facilitate timestamp queries. A weak version underflow
occurs if this condition is violated (e.g., due to deletion at
the current time).

Insertions and deletions differ from those of the
ephemeral structure (in this case, B-trees) in that
overflows and underflows are handled differently. Block
overflow occurs when an entry is inserted into a full node,
in which case a version split is performed. To be specific,
all the live entries of the node are copied to a new node,
with their tst modified to the current time. The value of ted
of these entries in the original node is set to the deletion
time as well (in practice this step can be avoided since the
deletion time is implied by the entry in the parent node).
The insertion of <28,4,*> into node A at timestamp 4 (in
the tree of Figure 2.2) will cause node A to overflow. A
new node D is created to store the live entries of A, and A
“dies” meaning that it will not be modified any more in

1 Such temporal information is unnecessary in overlapping structures, as
each node contains entries of a single timestamp.

the future. A new entry <5,4,*,D> (pointing to the new
node) is inserted into the root node. When the root
generates a version split, the new node of the split
becomes the root of another logical tree.

In some cases, the new node may be almost full after
a version split so that a small number of insertions would
cause it to overflow again. On the other hand, if it
contains too few entries, a small number of deletions will
cause it to underflow. To avoid these problems, it is
required that the number of entries in the new node must
be in the range [b⋅Psvu, b⋅Psvo] after a version split (Psvu
and Psvo are tree parameters). A strong version overflow
(underflow) occurs when the number of entries exceeds
b⋅Psvo (becomes lower than b⋅Psvu). A strong version
overflow is handled by a key split, which is a version-
independent split according to the features of the entries
in the block, and is processed in the same way as the
ephemeral structure.

Strong version underflow is similar to weak version
underflow, the only difference being that the former
happens after a version split, while the latter occurs when
the weak version condition is violated after deletion. In
both cases a merge is attempted with the copy of a sibling
node using only its live entries. If the merged node strong
version overflows, a key split is performed. In [VV97],
the merging process was improved to reduce the tree size.

Each root has a jurisdiction interval, which is the
minimum bounding lifespan of all the entries in the root
(these jurisdiction intervals are mutually disjoint). The
processing of a query starts by retrieving the
corresponding roots whose jurisdiction intervals intersect
the queried interval. Then search is guided by K, tst, and
ted till the leaves. As with OVB-trees, a node may be
visited more than once since it can have multiple parents
at different timestamps. Techniques for avoiding multiple
visits during the processing of interval queries in MVB-
trees are discussed in [BS96].

As shown in [BGO+96], for n versions produced by
N objects, a multi-version structure consumes O(n) space
and answers timestamp queries in O(logN + k/b), where b
is the node capacity and k is the number of records
retrieved. In spite of the asymptotic optimality, multi-
version structures do not answer timestamp queries as
efficiently as overlapping structures, which, however,
consume O(nlogN) space [ST97].

3. Performance Analysis of MLTS
Objects in versioning databases can change with different
frequencies. For example, in traffic control systems, the
positions of a vehicle usually change much faster than the
balances of accounts in banking systems. To capture this,
we use the concept of agility for temporal datasets.
Datasets with higher agilities incur more updates and
involve more space requirements.

Def 3.1: Let N be the number of objects, and k the number
of objects that issue updates at timestamp i. Then we
define the data agility ai at timestamp i as follows:

N
kai =

In order to facilitate analysis, it is common to make some
assumptions, such as independence of predicates,
uniformity etc. In case of R-trees, for instance, cost
models usually assume that objects are uniformly
distributed in the spatial universe [PSTW93, PS96]. The
derived formulae can then be combined with statistical
information, such as histograms, to deal with real data
[TSS00]. Following the same approach, we will make
similar assumptions for MLTS and will later discuss how
they can be extended for general cases.

Without loss of generality, we consider that features
of objects distribute in a unit universe [0, 1]d, where d is
the dimensionality of the feature universe (for B-trees,
d=1). Formally, we define the problem of cost model
analysis for MLTS as follows: at the first timestamp
(timestamp 1), the features of N objects distribute in the
unit range [0, 1) by a certain distribution DIST. At each of
the subsequent timestamps i (i = 2, 3, ..., T), a% of the N
objects issue feature changes, where T corresponds to the
total number of timestamps recorded so far (i.e., the data
agility remains constant). The changes of the objects are
in such a way that (i) the distribution of objects’ features
does not change (i.e., conforms to DIST) at each
timestamp; (ii) each object has the same probability to
produce changes. We index the dataset with an
overlapping or multi-version structure, and the goal is to
predict the expected number of node accesses in
answering a query. Note that we fix the cardinality of the
dataset simply to prevent excessively complex results.
Our approach can be extended easily to support arbitrary
changes of the cardinality (i.e., the number of insertions is
different from that of deletions at one timestamp).

3.1 A Unified Cost Model
An interval query q can be represented as q(qk, qt) to
indicate its feature range predicate qk and temporal
interval predicate qt. Similar to the representation of
queries, we define a pair of ranges s(sk, st) for each node s
in OVB- or MVB-trees. The feature range sk corresponds
to the minimum bounding range of all the features of
entries in node s, while the interval projection st
corresponds to the period when s is valid in history. For a
node in MVB-trees, st encloses the lifespans of all the
entries in s. For OVB-trees, since the lifespans of the
entries are not explicitly stored, st is defined as the period
between the time that s is created and the time that it is
duplicated. Recall that objects change in such a way that
their feature distribution remains the same at any
timestamp. Therefore, the structures of each logical tree

in OVB- or MVB-trees remain approximately the same as
the suitable clustering of the objects differs very little for
each timestamp.

Nodes in MLTS are created in an “evolving” manner.
That is, after the logical tree for the first timestamp is
built, trees for subsequent timestamps are created by
generating necessary nodes from the previous trees. The
fact that an update involves a deletion followed by an
insertion, and that every object has the same probability
to issue changes leads to two important observations: (i)
live nodes at the same tree level receive approximately
the same number of insertions (deletions) at each
timestamp; (ii) the number of live entries in a node
remains constant throughout its lifespan. As a result, after
the first logical tree is constructed, node duplication and
version split become the major types of structural changes
for OVB-trees and MVB-trees respectively. This is
supported by our experiments: starting from the second
timestamp, the number of key splits (weak version
underflows and strong version overflows/underflows) is
significantly smaller than the number of node duplications
(version splits) for OVB- (MVB-) trees. Therefore, in the
cost model analysis, we may assume node duplication
(version splits) to be the only type of structural changes
for OVB- (MVB-) trees, without introducing significant
error. This allows us to focus on the factors that have the
greatest impact on query performance.

If a node s2 is created from a previous node s1
through duplication (version split), then we say that s1
evolves into s2. To represent how fast the evolution
proceeds, we define evolution rate as in Def 3.2. As
shown shortly, the evolution rate of nodes at a particular
level of an OVB- or MVB-tree does not change
significantly through history; hence, we will use the
notation Ei to denote the evolution rate for level i. Higher
values for Ei indicate that new nodes are created with
shorter cycles (smaller lifespans), resulting in larger trees.
Def 3.2: Let Mi be the average number of live nodes of a
particular tree level i at a timestamp. If on average, ni new
nodes of the same level are created at the next timestamp,
then the evolution rate Ei for level i is:

i

i
i M

n
E =

Notice that, in answering a query q, node s(sk, st) will be
visited if and only if it intersects q(qk, qt), i.e., sk intersects
qk and st intersects qt. In other words, the probability that
node s will be visited in answering query q is identical to
the probability that s(sk, st) intersects q(qk, qt). We refer to
this probability as prob(s, q). Let probfeature and probtm
denote the probability that their feature and temporal
ranges intersect respectively. Since the feature universe
and the time dimension are independent, we have:

prob(s, q) = probfeature· probtm (3.1-1)

The estimation for probfeature has been studied in multi-
dimensional access methods. If d is the dimensionality of
the feature universe, then:

∏
=

+=
d

i

i
k

i
kfeature qsprob

1
)((3.1-2)

where i
ks and i

kq are the extents along the ith dimension
for sk and qk respectively [TSS00].

For the special case, when the dimensionality is 1,
the estimation for probfeature becomes:

probfeature = sk + qk (3.1-3)
On the other hand, probtm is closely related to the
evolution rate of nodes. Let Pi be the total number of level
i nodes whose lifespans intersect qt, and Ki be the total
number of level i nodes ever created. We have:

i

i
tm K

Pprob = (3.1-4)

Assuming that the number of level i nodes alive at each
timestamp is Mi, Ki can be estimated as:

Ki = Mi + Ei Mi (T – 1) (3.1-5)
where T denotes the total number of timestamps in history.
The reasoning behind equation (3.1-5) is that initially
there exist Mi level i nodes, all of which are alive. Then, at
each subsequent timestamp Ei·Mi nodes are created. When
a new node is created, the previous one dies, so the
lifespans of these two nodes are disjoint and continuous.
Figure 3.1 shows a query whose temporal interval
intersects the lifespans of 4 nodes, where a2 and a3 were
created when a1 and a2 died respectively.

tim e

a 1 a 2 a 3

b

q t

Figure 3.1: Time evolution of nodes

The number of nodes whose lifespans intersect qt is
computed as follows: First, two nodes (a1 and b) are alive
at the first timestamp of qt; then, during qt, another two
nodes, i.e., a2 and a3, are created; hence Pi equals 4. In
general, there are Mi=2 nodes alive at the first timestamp
(let time i) of qt. Then, at each of the subsequent
timestamp i + j (1 ≤ j ≤ |qt| − 1), Ei·Mi nodes are created.
Hence, we have the following estimation for Pi:

Pi = Mi + Ei Mi (qt – 1) (3.1-6)
Combining equations (3.1-4), (3.1-5), (3.1-6), we have:

)1(1
)1(1

−+
−+

=
TE
qEprob

i

ti
tm

 (3.1-7)

Extending equations (3.1-1) and (3.1-3), we derive:

)1(1
)1(1)(),(

−+
−+

+=
TE
qEqsqsprob

i

ti
kk

 (3.1-8)

Recall that prob(s, q) states the probability for a node to
be accessed in answering query q; thus, the expected
number of node accesses NA(q) in answering query q is
given by the following equation:

∑=
snodeevery

qsprobqNA),()(

If si(sik, sit) are the average range and temporal extents of
nodes at level i, the above equation can be written as
equation (3.1-9), where h denotes the height of a logical
tree and Ki denotes the total number nodes at level i.
Again, we emphasize that this equation applies to general
MLTS as well, except that equation (3.1-2) should be
used for probfeature.

[]∑
−

=

⋅=
1

0
),()(

h

i
ii qsprobKqNA (3.1-9)

where prob(si, q) is given by equation (3.1-8).
In this work, we assume each node in the trees

occupies a single disk page; hence equation (3.1-9) also
gives the expected number of disk accesses. Obviously,
the equation can be easily adapted to general cases where
a node can occupy multiple pages. This cost model,
however, is “qualitative”, in the sense that it must refer to
the corresponding tree to obtain values for the relevant
variables. In the sequel, we aim at representing sik, Ei, Ki
and h using the properties of the dataset indexed and the
underlying file system.

3.2 A Cost Model for OVB-trees
In this section, we present the derivation of the cost
model for OVB-trees through several steps. In each step,
we focus on rewriting a particular component in equation
(3.1-9) as the function of variables whose values are
obtainable without referring to the actual tree.
• Estimating h
The height of a B-tree that indexes N keys is estimated as
in equation (3.2-1), where f is the fanout of the tree. The
commonly adopted value for f is ln2·b≈0.69b [Yao77],
where b is the node capacity. Note that since the node
capacity is decided by the page size of the underlying file
system, the value of f is independent of the dataset
indexed. Further, since each logical tree indexes the same
number of objects, the height of each tree is expected to
be the same.

h =1+ log f (N/b) (3.2-1)
• Estimating Ei
We start with the estimation for E0, the evolution rate at
the leaf level. Let us consider a leaf node s of a logical
tree at an arbitrary timestamp i. Recall that s will be
copied to a new node at timestamp (i + 1) if and only if
any change (i.e., insertion or deletion) occurs in the node.
For a dataset with agility a, the total number of changes
per dataset equals 2aN because each object update
involves one deletion and one insertion. E0 corresponds to

the probability that a leaf node is affected by any of these
2aN changes. A leaf node contains on average fN /
entries. Given an update, every node has the same
probability Nf / to be affected; thus the probability for a
node NOT to be affected by a single change is Nf /1− .
Since all the changes are independent, the probability for
a node not to be updated by any of these changes is

aNNf 2)/1(− . Thus, we have:

aN

N
fE 2

0)1(1 −−= (3.2-2)

In general, the number of nodes at level i is 1/ +ifN ;
hence the likelihood for a level i node to be affected by a
change is Nf i /1+ . Following the derivation of (3.2-2),
we obtain:

aN
i

i N
fE 2

1

)1(1
+

−−= (0 ≤ i ≤ h – 1) (3.2-3)

As a side product of the estimation for Ei, we have the
following lemma for the expected number of timestamps
sit that a node at level i remains alive in history.
Lemma 1: iit Es /1=
Proof: Consider a node s of level i that is created at
timestamp k. Since the probability that s is copied at one
timestamp is Ei, it follows that the probability that node s
is valid for j timestamps (i.e., it is copied at timestamp k +
j) is (1 – Ei)j-1· Ei. Therefore, the expected number of
timestamps that node s is valid in history is given by:

[]{ }∑
∞

=

− ⋅−
1

1)1(
j

j
ii jEE

The above series converges to 1/Ei. ■
• Estimating Ki
Since, at level i, the number of live nodes at one
timestamp is 1/ +ifN , the number of new nodes created at
each timestamp is 1/ +⋅ i

i fNE . Hence, the total number
of level i nodes is:

)1(11 −+= ++ T
f
NE

f
NK iiii

 (3.2-4)

Note that a corollary of equation (3.2-4) is that we can
estimate the size of an OVB-tree as follows:

∑∑
−

=
++

−

=

−+==

1

0
11

1

0
)1()(

h

i
iii

h

i
i T

f
NE

f
NKOVBSize (3.2-5)

• Estimating sik
Now it remains to estimate sik, the average key range of
nodes at level i. Notice that, since each logical tree is
simply an ordinary B-tree, this estimation is directly
obtainable from the analysis of B-trees. In fact, when
DIST is uniform (existing analysis usually focuses on
uniform distribution), the key ranges of nodes at the same
level are roughly the same. Given that there

are 1/ +ifN nodes at level i in a B+-tree, we have:

N
fs

i

ik

1+

= (0 ≤ i ≤ h – 1) (3.2-6)

So far we have rewritten all the components of equation
(3.1-9) as functions of f, N, a, D, and T. The final number
of node accesses during query processing, is presented in
Equation (3.2-7), where Ei is given by equation (3.2-3).
Note that when Ei is 0, the above equation degenerates
into a cost model for conventional B+-trees.
NA(q)= (3.2-7)

∑
−

=

+

++ −+
−+

+

−+

1

0

1

11)1(1
)1(1

)()1(
h

i i

ti
k

i

iii TE
qE

q
N

fT
f
NE

f
N

3.3 A Cost Model for MVB-trees
In the sequel, we carry out a similar analysis for MVB-
trees based on equation (3.1-9).
• Estimating h
Let fl be the average number of live entries at a single
timestamp in node s. Note that fl is different from f, which
equals the total number of entries in s. Thus, the height of
a logical tree is given by equation (3.3-1):

h =1+ log fl (N/b) (3.3-1)
Meanwhile, let Mi denote the average number of level i
nodes that are alive at a single timestamp in a logical tree:

1+= i
l

i f
NM (0 ≤ i ≤ h – 1)

The estimation for fl deserves further elaboration. Recall
that, in MVB-trees, if a node consists of only entries at
the same timestamp, then the number of the entries cannot
exceed b⋅Psvo; otherwise a strong version overflow occurs
and the node will be key split. Thus, fl should
approximate the fanout of a B-tree whose node capacity is
b⋅Psvo. Hence, we estimate fl as ln2⋅ b⋅Psvo, which is shown
to be accurate through experiments.
• Estimating Ei
We first present the estimation for E0. A node s contains fl
entries when it is created from a version split; thus, s will
receive (b – fl) insertions before it generates a version
split, which in turn leads to the creation of a new node. At
each timestamp, as there are a·N insertions, each leaf
node can receive on average 0/ MaN insertions. As a
result, s will generate a version split after

)/()(0 aNMfb l− timestamps. Since lfNM /0 = , the
number of timestamps s0t that a leaf level node remains
alive before it is version split, can be estimated as follows:

l

ll
t af

fb
aN

Mfb
s

−
=

−
= 0

0
)(

Let Vi be the total number of version splits at level i, and
vi the average number of version splits per timestamp at
level i. For the leaf level, V0 and v0 are estimated as:

lt fb
TaN

s
TMV

−
−

=
−

=
)1(1

0
00

lfb
aN

T
Vv

−
=

−
=

)1(
0

0

Recall that the evolution rate is defined as the number of
new nodes, over the total number of live nodes at a
timestamp. Since version splits are the only type of
structural changes considered, we have:

l

l

fb
af

M
vE

−
==

0

0
0

Whenever a leaf node generates a version split, an entry
will be inserted into its parent node at level 1. Hence, the
average number of insertions at level 1 is v0, and every
level 1 node receives on average 10 / Mv entries. Similar
to our analysis above, a node at level 1 will generate a
version split 01 /)(vMfb l− timestamps after its
creation. Therefore, the lifespan of the node, s1t is:

2

2

0

1
1

)()(

l

ll
t af

fb
v

Mfbs −
=

−
=

The estimation for V1 is as follows:

2
1

11)(
)1(1

lt fb
TaN

s
TMV

−
−

=
−

=

In the same way, we obtain the equations for nodes at
higher levels:

1

1)(
+

+−
= i

l

i
l

it af
fbs (0 ≤ i ≤ h – 1)

1)(
)1(
+−

−
= i

l
i fb

TaNV (0 ≤ i ≤ h – 1) (3.3-2)

Hence, we have:

1)()1(+−
=

−
= i

l

i
i fb

aN
T
Vv

1

1

)(+

+

−
== i

l

i
l

i

i
i fb

af
M
vE (3.3-3)

• Estimating Ki
Given that the total number of version splits at level i is
provided by equation (3.3-2), the total number Ki of nodes
created through history is:

11)(
)1(
++ −

−
+=+= i

l
i

l
iii fb

TaN
f
NVMK (0 ≤ i ≤ h – 1) (3.3-4)

As a corollary of equation (3.3-4), the size of an MVB-
tree can be estimated as:

∑∑
−

=
++

−

=

−

−
+==

1

0
11

1

0)(
)1()(

h

i
i

l
i

l

h

i
i fb

TaN
f
NKMVBSize (3.3-5)

• Estimating sik
As mentioned above, a node contains fl live entries at the
same timestamp. Therefore, replacing f in equation (3.2-6)
for OVB-trees with fl, we obtain the following equation

for the average key range of nodes at level i:

N
f

s
i

l
ik

1+

= (0 ≤ i ≤ h – 1) (3.3-6)

Equation (3.3-7) presents the final model, which predicts
the node disk accesses for range-interval queries based on
the properties of the dataset indexed and the underlying
file system (Ei is estimated by equation (3.3-3)).
NA(q)= (3.3-7)

∑
−

=

+

++ −+
−+

+

−
−

+
1

0

1

11)1(1
)1(1

)(
)(

)1(h

i i

ti
k

i
l

i
l

i
l TE

qE
q

N
f

fb
TaN

f
N

3.4 Estimation for Query Selectivity
A record i with feature ik and lifespan it, will be retrieved
by a query q, if and only if q(qk, qt) intersects i(ik, it). The
probability prob(i, q) for i(ik, it) and q(qk, qt) to intersect is
calculated according to equation (3.1-8), except that (i)
the evolution rate of the objects now corresponds to the
agility a of the dataset; (ii) ik is set to 0 because the
feature of each entry indexed in an OVB- or MVB-tree
contains only a single value. Hence, we have:

)1(1
)1(1),()(

−+
−+

==
Ta
qaqqiprobqsel t

k
 (3.4-1)

As a result, the number NUM(q) of intervals retrieved by
query q is estimated as follows:

[]
[])1(1

)1(),()(
−+⋅=

−+=

tk qaqN
TaNNqiprobqNUM (3.4-2)

3.5 Predicting the Behaviour of MLTS
The proposed models can answer two important questions:
(i) when it is worth using a MLTS instead of ephemeral
structures (e.g., an independent B-tree for each
timestamp); (ii) which MLTS is preferable in terms of
structure size and query performance considerations.
Regarding the first question, notice that when the agility
exceeds a certain threshold (which we call degradation
agility), all the live nodes will be duplicated (version split)
in an overlapping (multi-version) structure, at each
timestamp; i.e., both structures will degenerate into
independent trees. To calculate the degradation agility,
notice that a MLTS degrades completely when the
evolution rate Ei approaches 1 for all levels, where Ei is
defined in (3.2-3) and (3.3-3) for OVB- and MVB-trees
respectively. Solving these equations, we obtain the
degradation agilities for OVB- and MVB-trees as follows:

deg-agility(OVB)
)/1log(

1
NfN −

−
≈ (3.5-1)

deg-agility(MVB)
svo

svo

l

l

P
P

f
fb

⋅
⋅−

=
−

≈
2ln

2ln1 (3.5-2)

For OVB-trees the estimated degradation agility is very
low (around 5% for our experimental settings), which
severely limits their applicability. In order to intuitively

explain this phenomenon, consider a typical situation
where the average fanout of OVB-trees is f = 83.82 (this
number is used in our experiments). Even if one (out of f)
object in a node issues a change, the node must be copied
(which leads to replication of all f entries). Furthermore,
the update may lead to an insertion in another node,
which will lead to duplication of that node as well.
Therefore, in the worst case, even if less than 1/f objects
issue updates at a timestamp, an OVB-tree may
degenerate to independent B-trees.

On the other hand, although the estimated
degradation agility of MVB-trees is more than an order of
magnitude higher (81% for our settings) this does not
mean that MVB-trees are better than ephemeral B-trees
up to this value of agility. Recall, that each entry in a
multi-version structure contains additional information
about its lifespan, which lowers the node fanout. As a
result, although an MVB-tree may have not degraded,
above an agility threshold, which we call multi-tree point
(MTP, for short), it consumes more space than the
equivalent ephemeral B-trees. The MTP can be predicted
by equation (3.5-3), which compares the size of an MVB-
tree to that of independent B-trees.

∑

−

=
+⋅=

1log

0
1)(

N

i
i

f

f
NTMVBSize (3.5-3)

where Size(MVB) is given in equation (3.3-5), and f is
equal to the fanout of a B- (or OVB-) tree. For our
settings the estimated MTP is 33%, meaning that above
this agility it is preferable to build ephemeral B-trees.

As mentioned, the OVB-tree is applicable only for
very low agilities. Even below the degradation agility, its
size is expected to be much larger than that of the
corresponding MVB-trees due to extensive replication.
The only reason for using OVB-trees (or overlapping data
structures, in general) is when the workload consists
mainly of timestamp queries. OVB-trees are more
efficient than MVB-trees for timestamp queries because
of their higher fanout. On the other hand, MVB-trees are
more efficient for interval queries, and the performance
gain increases with the query length (for the same qk).
This can be explained by observing equations (3.2-7) and
(3.3-7). Let NAi(OVB) and NAi(MVB) denote the number
of node accesses at level i in answering query q with an
OVB- and MVB-tree respectively. Then, by (3.2-7) and
(3.3-7), we have:

C
qE
qE

MVBNA
OVBNA

tMi

tOi

i

i ⋅
−+
−+

=
)1(1
)1(1

)(
)(

where C is a constant, and Eoi and EMi correspond to the
evolution rates at level i for the OVB- and MVB-tree
respectively. Given that typically Eoi is an order of
magnitude larger than EMi, the ratio in the above equation
increases with qt. These observations are experimentally
evaluated in the next section.

4. Experimental Evaluation
In this section, we demonstrate the efficiency of the
proposed models through experimental results. Datasets
were created as follows. At the first timestamp, the 1D
features (each feature is a single value) of 20,000 objects
are uniformly generated in the universe [0,1). Then, at
each of the following 200 timestamps, a% of the objects
are selected to produce feature changes so that the
distribution of the keys is still uniform at each timestamp.
The agility varies for different datasets; we refer to a
dataset with agility a as DSa%.

Query performance is measured by the average node
accesses in answering workloads, each consisting of 500
queries. All the queries in a workload involve a feature
range of the same length qk and an interval range with the
same number of timestamps qt. The left end points of the
feature and time ranges of query q are uniformly
distributed in ranges [0, 1–qk) and [1, 201–qt] respectively.
In the sequel, we denote a workload as WRKLDqk,qt to
indicate its parameters.

We experimented with a wide range of parameters.
To demonstrate the effects of several factors on
performance, the settings for the following experiments
are chosen as follows: (i) The values for a are 0.5%, 1%,
2%, ..., 5%, 10%, 15%, and 20%, resulting in datasets
with 40,000 to 800,000 records; (ii) values for qk range
from 0.1 to 0.5 (i.e., 10% to 50% of the feature space); (iii)
values for qt range from 1 to 20 timestamps (0.5% to 10%
of the entire history).

OVB-trees and MVB-trees were implemented as
described in [ST97] and [BGO+96] respectively. The
parameters for MVB-trees are as follows: Pversion = 0.2,
Psvo = 0.8, and Psvu = 0.4. The page size is set to 1,024
bytes in all cases. With this size, the node capacities of
OVB- and MVB-trees are 122 and 62 entries. Hence, for
OVB-trees, f = 83.82, while, for MVB-trees, fl = 34.3.
These values are used for the corresponding cost models.

We first evaluate equations (3.2-5) and (3.3-5) on the
sizes of the MLTS. Figures 4.1 (a) and (b) show the sizes
of OVB- and MVB-trees as a function of agility. OVB-
trees initially grow very fast, and their size stabilizes after
the degradation agility (5%) where they degenerate into
independent trees. On the other hand, MVB-trees are
much more space-efficient for normal agilities (up to
20%). In both cases the estimation is accurate.

In order to verify the estimated degradation agility
for MVB-trees (81%), we increased the agility 5% at a
time while checking if there is noticeable increase in the
tree sizes. We found that the sizes of MVB-trees stabilize
at around 130 megabytes when the agility becomes 80%.
Above 35% agility, MVB-trees consume more space than
independent B-trees (i.e., around 50 megabytes in Figure
5.1), which is consistent with the estimated value of MTP
(33%) obtained by equation (3.5-3).

0

10

20

30

40

50

60

0.5 1 2 3 4 5 10 15 20

size(mega bytes)

agiliy (%)

Actual
 Estimated

size (mega bytes)

0

10

20

30

40

1 5 10 15 20
agility (%)

Actual
 Estimated

(a) Sizes of OVB-trees (b) Sizes of MVB-trees
Figure 4.1: Sizes of MLTS as a function of agility

To evaluate the estimation of node accesses (NA),
provided by equations (3.2-7) and (3.3-7), with respect to
different query parameters, we fix the agility of the
datasets indexed by OVB- and MVB-trees to 2% and
10% respectively. Note that the selected agility for the
dataset indexed by the OVB-tree is relatively lower to
prevent its degradation (in which case the cost estimation
is trivial). Then, we performed the following two sets of
queries: (i) for workloads in the first set we fix qk to 0.3
(30% of the feature space), and vary qt from 1 to 20
timestamps; (ii) for workloads in the second set we fix qt
to 10, and vary qk from 0.1 to 0.5. Figures 4.2 (a) and (b)
demonstrate the results for OVB-trees with respect to the
two sets of workloads respectively. The node accesses
measured are averaged over the total number of queries
for each workload. Figures 4.3 (a) and (b) show the
corresponding results for MVB-trees.

0

500

1000

1500

0.1 0.2 0.3 0.4 0.5

node accesses

feature range

Actual
 Estimated

0

500

1000

1500

2000

1 5 10 15 20

node accesses

number of timestamps involved

Actual
 Estimated

a) NA for WRKLD0.1~0.5, 10 (b) NA for WRKLD0.3, 1~20
Figure 4.2: Query cost for OVB-trees (agility = 2%)

0

200

400

600

800

0.1 0.2 0.3 0.4 0.5

node accesses

feature range

Actual
 Estimated

1 5 10 15 20

800

400

200

600

0

node accesses

number of timestamps

Actual
 Estimated

(a) NA for WRKLD0.1~0.5, 10 (b) NA for WRKLD0.3, 1~20
Figure 4.3: Query cost for MVB-trees (agility = 10%)

Notice that the query cost increases linearly with both the
number of timestamps involved and the lengths of the
feature ranges, as predicted by equations (3.2-7) and (3.3-
7). As expected, OVB-trees are more efficient than MVB-
trees only for timestamp queries. The superiority of
MVB-trees increases with the query length.

The next set of experiments evaluates the cost models
when the dataset agility varies. Specifically, we measured
the query performance of WRKLD0.3,10 for the
corresponding OVB- and MVB-trees using datasets with
agilities from 1% to 20%. According to Figures 4.4 (a)
and (b) the query costs follow similar trends with the tree
sizes and MVB-trees perform better than OVB-trees for
the agilities demonstrated. Notice, however, that the cost
of MVB-trees increases linearly with the agility, while
that of OVB-trees is stable after their degradation, since
each query accesses the same number of independent B-
tress (i.e., 10), independently of the agility. Above the
MTP, the query cost of MVB-trees exceeds that of
degraded OVB-trees.

Actual
 Estimated

0

200

400

600

800

1000

0.5 1 2 3 4 5 10 15 20

node accesses

agility (%)

0

200

400

600

800

1 5 10 15 20
agility (%)

Actual
 Estimated

node accesses

(a) OVB-trees (b) MVB-trees

Figure 4.4: Query vs. agilities (for WRKLD0.3, 10)
For most of the cases above, the cost models slightly
underestimate the actual results. This is expected because
the analysis focuses on the major structural changes.
Consider the size of MVB-trees as an example. If a node
incurs a strong version overflow after a version split, two
new nodes are generated, instead of one as assumed by
the cost models. Similarly, when an OVB-node that has
already been duplicated at the current timestamp incurs an
overflow, it will be key split rather than duplicated.
However, as shown, structural changes other than those
considered in the analysis are very infrequent; ignoring
them does not introduce significant error.

Finally, we evaluate the efficiency of equation (3.4-2)
towards the selectivity estimation. In Figures 4.5 (a) and
(b), the dataset agility is fixed to 10% and we vary qk and
qt. The y-axis of all the figures corresponds to the number
of interval records retrieved in the query. The
experimental and estimated results are almost identical.

0

5000

10000

15000

20000

0.1 0.2 0.3 0.4 0.5
feature range

number of objects retrieved

Actual
 Estimated

0

5000

10000

15000

20000

1 5 10 15 20

number of objects retrieved

number of timestamps

Actual
 Estimated

(a) WRKLD0.1~0.5, 10 (b) WRKLD0.3, 1~20

Figure 4.5: Selectivity estimation

5. Conclusion
Our approach reduces the cost analysis of MLTS to that
of the corresponding ephemeral structures, which means
that our framework is applicable to a variety of different
access methods. Extensive experimentation proves the
accuracy of the models for a wide range of conditions. To
the best of our knowledge, this is the first work that
attempts to provide systematic analysis for these types of
structures. Given, the ever increasing availability and
importance of historical data in numerous applications,
accurate analysis of related structures is crucial for the
development of efficient systems.

In addition to their usefulness for query optimization,
the proposed models provide significant insights into the
behavior of overlapping and multi-version structures. Our
analysis predicts, and the experimentation verifies that: (i)
OVB-trees are meaningful only very small agilities (about
5% for our settings), since they quickly degenerate into
multiple trees. Even below their degradation agility, they
perform better than MVB-trees only for timestamp (or
very short interval) queries. (ii) MVB-trees are best for
agilities up to about 30%, since they consume less space
than OVB-trees (or ephemeral B-trees) and perform better
for mixed workloads. (iii) For agilities above the MTP,
the best choice is to build an independent structure for
each timestamp. The proposed models can accurately
estimate the above agility thresholds depending on the
system characteristics

Future work can deal with skewed data, possibly with
the aid of statistics. As an example, histograms have been
widely employed for traditional and spatial data. In our
case, the application of histograms is not straightforward,
since in addition to the total number of records and the
distribution of the key values per timestamp, we may need
to keep additional information regarding how the values
change. For example, 1000 insertions plus 500 deletions
at one timestamp have very different impact from 500
insertions without deletion on the tree structures, though
both cases lead to an increment of 500 in object
cardinality. Furthermore, although we only focused on
range queries, this work can serve as the basis for
performance analysis of other more complex queries,
such as temporal joins.

Acknowledgments
This work was supported by grants HKUST
6081/01E and HKUST 6070/00E from Hong Kong RGC.

References
[BGO+96] Becker, B., Gschwind, S., Ohler, T., Seeger, B.,

Widmayer, P. An Asymptotically Optimal
Multiversion B-Tree. VLDB Journal, Vol. 5(4), pp.
264-275, 1996.

[BH85] Burton, F.W., Huntbach, M.M. Multiple Generation
Text Files Using Overlapping Tree. The Computer
Journal, Vol. 28, No. 4, pp. 414-416, 1985.

[BKK+90] Burton, F.W., Kollias, J.G., Kollias, V.G.,
Matsakis, D.G. Implementation of Overlapping B-
trees for Time and Space Efficient Representation
of Collection of Similar Files. The Computer
Journal, Vol. 33(3), pp. 279-280, 1990.

[BS96] Bercken, J.v.d., Seeger, B. Query Processing
Techniques for Multiversion Access Methods.
VLDB, 1996.

[JSL+00] Jiang, L., Salzberg, B., Lomet, D., Barrena, M. The
BT-Tree: A Branched and Temporal Access
Method. VLDB, 2000.

[KF93] Kamel, I., Faloutsos, C. On Packing R-trees. CIKM,
1993.

[KGT] Kollios, G., Gunopulos, D., Tsotras, V., Delis, A.,
Hadjieleftheriou, M. Indexing Animated Objects
Using Spatiotemporal Access Methods. To appear
in IEEE TKDE.

[KTF98] Kumar, A., Tsotras, V.J., Faloutsos, C. Designing
Access Methods for Bitemporal Databases. IEEE
TKDE, Vol. 10, No. 1, pp. 1-20, 1998.

[NS98] Nascimento, M., Silva, J. Towards Historical R-
trees. ACM SAC, 1998.

[PS96] Pagel, B., Six, H. Are Window Queries
Representative for Arbitrary Range Queries?
PODS, 1996.

[PSTW93] Pagel, B.-W., Six, H., Toben, H., Widmayer, P.
Towards an Analysis of Range Query Performance.
PODS, 1993.

[ST97] Salzberg, B., Tsotras, V. A Comparison of Access
Methods for Temporal Data. ACM Computing
Surveys, 31(2): 158-221, 1997.

[TML99] Tzouramanis, T., Manolopoulos, Y., Lorentzos,
Overlapping B+-trees: An Implementation of a
Transaction Time Access Method. Data Knowledge
and Engineering, Vol. 29, pp. 381-404, 1999.

[TP01] Tao, Y., Papadias, D. The MV3R-Tree: A Spatio-
Temporal Access Method for Timestamp and
Interval Queries. VLDB, 2001.

[TSS00] Theodoridis, Y., Stefanakis, E., Sellis, T. Efficient
Cost Models for Spatial Queries Using R-Trees.
IEEE TKDE, Vol. 12, (1), pp. 19-32, 2000.

[TVM00a] Tzouramanis, T., Vassilakopoulos, M.,
Manolopoulos, Y. Overlapping Linear Quadtrees
and Spatio-Temporal Query Processing. The
Computer Journal. Vol. 43(4), pp. 325-343, 2000.

[TVM00b] Tzouramanis, T., Vassilakopoulos, M.,
Manolopoulos, Y. Multiversion Linear Quadtree for
Spatio-Temporal Data. DASFAA, 2000.

[VV97] Varman, P., Verma, R. An Efficient Multiversion
Access Structure. IEEE TKDE, Vol. 9(3), pp. 391-
409, 1997.

[Yao77] Yao, S. Approximating Block Accesses in Database
Organizations. Communications of the ACM, Vol.
20, No. 4, pp. 260-261, 1977.

[ZMT+01] Zhang, D., Markowetz, A., Tsotras, V., Gunopulos,
D., Seeger, B. Efficient Computation of Temporal
Aggregates with Range Predicates. PODS, 2001.

