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Overlapping and multiversion techniques are two popular frameworks that transform an ephemeral
index into a multiple logical-tree structure in order to support versioning databases. Although both
frameworks have produced numerous efficient indexing methods, their performance analysis is
rather limited; as a result there is no clear understanding about the behavior of the alternative
structures and the choice of the best one, given the data and query characteristics. Furthermore,
query optimization based on these methods is currently impossible. These are serious problems
due to the incorporation of overlapping and multiversion techniques in several traditional (e.g.,
financial) and emerging (e.g., spatiotemporal) applications. In this article, we reduce performance
analysis of overlapping and multiversion structures to that of the corresponding ephemeral struc-
tures, thus simplifying the problem significantly. This reduction leads to accurate cost models that
predict the sizes of the trees, the node/page accesses, and selectivity of queries. Furthermore, the
models offer significant insight into the behavior of the structures and provide guidelines about
the selection of the most appropriate method in practice. Extensive experimentation proves that
the proposed models yield errors below 5 and 15% for uniform and nonuniform data, respectively.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—indexing methods

General Terms: Theory

Additional Key Words and Phrases: Database, temporal, spatiotemporal, index, overlapping and
multiversion structures

1. INTRODUCTION

Supporting objects whose attributes change with time (i.e., versioning objects)
is crucial for a large number of applications. As an example, consider a banking
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Fig. 1. Representation of versioning objects.

system that records the historical changes of account balances occurring as a
result of withdrawals, deposits, or money transfers. Old versions of the records
are not removed since possible queries may occur regarding any time in history,
and the DBMS should provide efficient access paths to all recorded versions.
Such versioning databases constitute the core of many temporal, spatiotempo-
ral, decision-making, and online analytical systems.

We use the term features to refer to the time-varying attributes of version-
ing objects, which are best modeled as intervals in the feature–time space.
Figure 1 shows an example for a banking system. The vertical axis refers
to account balances (i.e., the features), and the horizontal axis corresponds
to transaction time. Intervals a1, a2, and a3 represent the balance changes
of account a: one withdrawal at timestamp t1 and one deposit at times-
tamp t2. No change occurs to account b during the demonstrated period. No-
tice that we represent records as semiclosed intervals to emphasize that the
valid period of a record does not include the last timestamp, when a new
record becomes valid. In the sequel, we say that a record is alive during its
valid period, and dead outside it. For example, record a2 is alive in interval
[t1, t2).

An important type of processing in versioning databases involves range-
interval queries (interval queries, for short), which consist of two predicates:
the time interval of interest and a feature range in the feature universe. For
the previous example, the feature universe is the range defined by the min-
imum and maximum possible balances. As another scenario consider traffic
control systems that monitor and record movements of vehicles. In this case,
the feature universe is a 2-D region that involves all the locations to which
any vehicle can ever travel. The records retrieved by a query must be alive
during the time interval and have their features in the feature range. In-
stances of range-interval queries are: “Find the accounts with balances greater
than $1000 during March 2001,” and “Which cars appeared in the campus
yesterday 8 am to 6 pm?” When the time predicate involves only a single
timestamp, the query is called a range-timestamp query (timestamp query, for
short).

Access methods for versioning databases have been extensively studied in
temporal and spatiotemporal databases. Most existing methods are based on
multiple logical-tree structures (MLTS). A MLTS maintains several logical trees,
each of which is an ephemeral structure suitable for indexing objects at a
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single timestamp. To avoid excessive space storage, consecutive logical trees
may share common branches so that these branches are stored only once. The
overlapping and multiversion techniques are two popular frameworks for con-
verting ephemeral structures (such as B-trees, R-trees [Guttman 1984], linear
quadtrees [Gargantini 1982], etc.) into efficient temporal and spatiotemporal
access methods.

Despite the large number of MLTS that have been proposed, little work has
been carried out on their performance analysis. Existing models mainly focus
on the overlapping and multiversion B-trees, merely discussing their asymp-
totic optimality with respect to timestamp queries. This is, however, insuffi-
cient for practical use for several reasons. First, in most cases asymptotic per-
formance does not accurately reflect the actual cost. Second, interval queries,
which are more frequent in practice, are not discussed. Third, existing analysis
is only applicable to structures based on B-trees and cannot be used for other
MLTS.

In this article, we provide an analytical framework that can be employed
for any MLTS provided there exists a cost model for the corresponding
ephemeral structure. For instance, in order to analyze the performance of
MLTS based on R-trees, we only need to incorporate the corresponding R-
tree models into our framework. The proposed models can accurately predict
(1) tree sizes, (2) timestamp and interval query performance, and (3) query
selectivity. The formulae are based only on the properties of the raw data
and the underlying file system, and hence do not require knowledge about
the structures of the trees. Furthermore, they are applicable for any data
distribution and variable agility, and can be used in the presence of LRU
buffers. Our analysis can be employed to tune the structural parameters in
order to optimize the performance. Moreover, it provides significant insight
into the behavior of alternative structures, and leads to important guidelines
about the selection of the most appropriate method given the data and query
characteristics.

We deal with partially persistent trees [Salzberg and Tsotras 1999] (i.e., up-
dates can be applied at the current timestamp only), not including structures
(e.g., Lanka and Mays [1991]) where updates are allowed at any timestamp
in history. Furthermore, to facilitate analysis we make the following assump-
tions: every object has the same probability to issue a change at each times-
tamp; and the number of insertions approximates the number of deletions at
each timestamp. Note that these conditions are satisfied in a wide range of
applications (e.g., systems dealing with bank accounts, university transcripts,
employee records, vehicle movements, multimedia objects, etc.). The rest of the
article is organized as follows. Section 2 surveys overlapping and multiversion
structures and describes in detail the two frameworks using B-trees as the
ephemeral structures. Section 3 presents the cost models for methods based on
B-trees, and Section 4 discusses their extensions to support general structures
in real-life scenarios (LRU buffers and arbitrary data distributions). Section 5
presents an extensive experimental evaluation, and Section 6 concludes the
article with future directions.
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2. OVERLAPPING AND MULTIVERSION ACCESS METHODS

The overlapping technique was introduced in Burton and Huntbach [1985] and
Carey et al. [1986] to produce a time and space efficient approach to file shar-
ing. The idea was applied to B-trees in Burton et al. [1990] and R-trees in
Xu et al. [1990] and Nascimento and Silva [1998]. The resulting structures
were called overlapping B-trees (OVB-trees) and historical R-trees (HR-trees),
respectively. Tzouramanis et al. [1999] extended OVB-trees by integrating
pointers among leaf pages, which improved the so-called key-history queries
in temporal databases. The technique was also applied to linear quadtrees
[Tzouramanis et al. 2000a] and spatiotemporal data warehousing [Papadias
et al. 2002]. In a survey paper Salzberg and Tsotras [1999] compared asymp-
totic performance of overlapping structures with other temporal access methods
in terms of timestamp query performance, update costs, and structure sizes. In-
terval query performance was not discussed.

The earliest multiversion structure appeared in Easton [1986], who proposed
the write-once B-tree (WOB-tree) for write-once-read-many (WORM) disks. Fo-
cusing on a combination of WORM (for historical data) and write-many-read-
many (WMRM, for current data) disks, Lomet and Salzberg [1989] presented
the time-split B-tree (TSB-tree), which, as analyzed in Lomet and Salzberg
[1990], introduced less redundancy than WOB-trees, and thus reduced the in-
dex size considerably. Becker et al. [1996] optimized the multiversion frame-
work (in terms of asymptotical performance for space and timestamp query cost)
in their multiversion B-tree (MVB-tree), which is similar to the TSB-tree, but
employs an important mechanism called the version condition (to be elaborated
upon shortly). Varman and Verma [1997] discussed a variation of MVB-trees
that reduced the size requirements by some constant factor.

Multiversion structures based on R-trees include BTR-trees to index bitem-
poral databases [Kumar et al. 1998], PPR-trees [Kollios et al. 2001], and MV3R-
trees [Tao and Papadias 2001a] for spatiotemporal databases. Multiversion
linear quadtrees were proposed for image processing in Tzouramanis et al.
[2000b]. The concept was also applied in branched temporal databases [Jiang
et al. 2000] and temporal aggregation [Zhang et al. 2001], respectively, to ob-
tain BT-trees and multiversion SB-trees. Recently, Chien et al. [2002] adopted
the technique for XML processing, and Tao et al. [2002] used it for aggregate
processing of planar points. Despite the large number of structures, to the best
of our knowledge there does not exist any work that estimates the sizes and
performance of multiversion methods in terms of node accesses for interval
queries.

In the rest of the section, we describe the overlapping and multiversion
frameworks using B-trees as the ephemeral structure. Other MLTS can be con-
structed by applying the same transformation algorithms on the corresponding
ephemeral structures.

2.1 Overlapping B-Trees

The idea behind OVB-trees is to maintain a separate B-tree for each times-
tamp in history, but allow consecutive trees to share branches as long as the
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Fig. 2. An OVB-tree example.

underlying records do not change. Update algorithms are similar to those of
B-trees, except that whenever a shared node is to be modified, we duplicate it
to a new node where the changes are applied instead. Figure 2 illustrates part
of an OVB-tree for timestamps 0 and 1. Assume that, at timestamp 1, account e
changes from its previous balance e0 to a new one e1. Therefore, e0 should be
removed from the B-tree at timestamp 1, and e1 should be inserted. In order
not to affect the tree at timestamp 0, the removal of e0 causes the duplication of
E0, creating node E1. Similarly, the insertion of e1 spawns new node D1, which
contains the entries of D0 plus e1. The changes propagate upwards, creating
nodes B1 and C1. Notice that node A0 is shared by both trees, indicating that
none of the objects under A0 issue any update at timestamp 1. Therefore, con-
siderable space may be saved when the number of objects that change at each
timestamp is relatively small. Note that such node duplication introduces data
redundancy. For instance, separate records of objects a0, b0, c0, d0 are created
even though these objects do not generate new versions at timestamp 1.

To keep track of the roots of the logical B+-trees, an OVB-tree maintains a
root table, with one entry per root block. A timestamp query is directed to the
corresponding B-tree and search is performed inside this tree only. Thus the
query degenerates into an ordinary range query on B-trees and is handled very
efficiently. An interval query involving several timestamps should search the
corresponding trees of the related timestamps. Since a node can be pointed to
by multiple parents, it is necessary to avoid duplicate visits to the same node
via different parents, which can be achieved via “positive and negative pointers”
described in Tao and Papadias [2001b]. For a timestamp query that returns K
objects, OVB-trees achieve the optimal query cost of O(log(NV /b)+ K /b) node
accesses, consuming, however, suboptimal space O(NV log(NV /b)), where NV
is the total number of versions in history, and b the node capacity.

2.2 Multiversion B-Trees

In multiversion structures, each entry has the form<key, tst , ted , pointer>where
tst (the insertion time) denotes the time that the record was inserted in the
databases, and ted (the deletion time) denotes the time that it was deleted.1 For
leaf entries, key denotes the feature of an object (e.g., the balances of accounts

1Such temporal information is unnecessary in overlapping structures, as each node contains entries
of a single timestamp.
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Fig. 3. An example of an MVB-tree.

Fig. 4. Example of block overflow and version split.

or positions for vehicles). For an intermediate entry, key determines the mini-
mum bounding range of features in the subtree alive in its lifespan [tst , ted ); its
semantics follow that of the corresponding ephemeral structure. For MVB-trees
[Becker et al. 1996], key equals the minimum value of features in the subtree
(the bounding range can be derived by considering the value of key in the next
entry).2 The field pointer points to the actual record, or a node at the next level,
for leaf and intermediate entries, respectively. When a new entry is inserted at
timestamp t, tst is set to t and ted to “*” (which denotes NOW). When an entry is
logically deleted (due to an update), ted is changed (from *) to t. Entries with “*”
as deletion time are referred to as live entries; otherwise they are dead. Figure 3
illustrates an example of an MVB-tree.

For each timestamp t and each node except the roots, it is required that none,
or at least b ·PU entries are alive at t, where PU is a tree parameter and b the
node capacity (for the following examples PU = 1/3 and b= 6). This weak version
condition ensures that entries alive at the same timestamp are mostly grouped
together in order to facilitate timestamp queries. A weak version underflow
occurs if this condition is violated (e.g., due to deletion at the current time).

Insertions and deletions differ from those of the ephemeral structure (in this
case, B-trees) in that overflows and underflows are handled differently. Block
overflow occurs when an entry is inserted into a full node, in which case a version
split is performed. To be specific, all the live entries of the node are copied to a
new node, with their tst modified to the current time. The value of ted of these
entries in the original node is set to the deletion time as well (in practice this
step can be avoided since the deletion time is implied by the entry in the parent
node). In Figure 4, the insertion of <28,4,*> into node A at timestamp 4 (in
the tree of Figure 3) will cause node A to overflow. A new node D is created
to store the live entries of A, and A “dies” (notice that all * are replaced by
4) meaning that it will not be modified any more in the future. A new entry

2For MVR-trees (i.e., the multiversion structure based on the ephemeral structure R-tree), K is
the minimum bounding rectangle (MBR) of the live entries.
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Fig. 5. Example of strong version overflow and key split.

<5,4,*,D> (pointing to the new node) is inserted into the root node. When the
root generates a version split, the new node of the split becomes the root of
another logical tree. Note that, as with node duplication in OVB-trees, version
splits also introduce data redundancy. In Figure 4, for example, new records for
leaf entries with keys 5, 8, and 13 are created in node D even though they do
not generate new versions at timestamp 4.

In some cases, the new node may be almost full after a version split so that
a small number of insertions would cause it to overflow again. On the other
hand, if it contains too few entries, a small number of deletions would cause
it to underflow. To avoid these problems, it is required that the number of en-
tries in the new node must be in the range [b ·PSVU, b ·PSVO] after a version
split. PSVO (SVO stands for strong version overflow) and PSVU (strong version
underflow) are tree parameters whose tuning is discussed later (for the follow-
ing examples assume PSVU= 1/3 and PSVO= 5/6). A strong version overflow
(underflow) occurs when the number of entries exceeds b ·PSVO (becomes lower
than b ·PSVU). A strong version overflow is handled by a key split, which is a
version-independent split according to the features of the entries in the block,
and is processed in the same way as the ephemeral structure. In Figure 5, for
example, <105,5,*> is inserted into node C in the tree. Node C is version split,
followed by a key split, and nodes E and F are generated (spawning two new
entries in the root). Note that the strong version condition is only checked after
a version split; that is, it is possible that the live entries of a node are above
b ·PSVO after subsequent insertions.

Strong version underflow is similar to weak version underflow, the only dif-
ference being that the former happens after a version split, whereas the latter
occurs when the weak version condition is violated after deletion. In both cases
a merge is attempted with the copy of a sibling node using only its live entries.
If the merged node strong version overflows, a key split is performed. Assume
that at timestamp 4 we want to delete entry<48,1,*> from the tree in Figure 3.
Node B weak version underflows since it contains only one live entry<43,1,*>.
A sibling, node C, is chosen and its live entries are copied to a new node, C′. The
insertion of <43,4,*> into C′ leads to another key split and finally nodes D and
E are created (Figure 6). In Varman and Verma [1997], the merging process
was improved to reduce the tree size.

Each root has a jurisdiction interval, which is the minimum bounding lifes-
pan of all the entries in the root (these jurisdiction intervals are mutually
disjoint). The processing of a (timestamp or interval) query starts by retrieving
the corresponding roots whose jurisdiction intervals intersect the queried in-
terval. Then the search is guided by key, tst, and ted down to the leaves. As with
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Fig. 6. Example of weak version underflow.

OVB-trees, a node may be visited more than once since it can have multiple
parents at different timestamps. Techniques for avoiding multiple visits dur-
ing the processing of interval queries in MVB-trees are discussed in Bercken
and Seeger [1996].

As shown in Becker et al. [1996], for NV versions produced by N objects,
a multiversion structure consumes O(NV /b) space and answers timestamp
queries in O(log(NV /b) + K /b), where b is the node capacity and K is the
number of records retrieved. Bercken and Seeger [1996] propose storing the
so-called backward pointers in MVB-trees to improve interval query perfor-
mance. The improvements are achieved by a specialized algorithm that avoids
most nonleaf node accesses. Specifically, to answer an interval query the algo-
rithm only needs to visit those nonleaf nodes that are alive at the first query
timestamp; the leaf nodes containing results at other timestamps are reached
by following backward pointers between leaf nodes. With some adaptations this
technique also applies to OVB-trees to obtain similar interval query behavior
[Tzouramanis et al. 1999]. The backward pointer technique, however, does not
extend to general structures (such as MLTS based on R-trees).

3. PERFORMANCE ANALYSIS OF MULTIPLE LOGICAL-TREE STRUCTURES

Objects in versioning databases are updated with different frequencies. For
example, in traffic control systems, the positions of vehicles usually change
much faster than the balances of accounts in banking systems. To capture this,
we define the concept of agility for temporal datasets as in Definition 3.1.
Datasets with higher agilities incur more updates and involve more space
requirements.

Definition 3.1. Let N be the number of objects, and u the number of ob-
jects that issue updates at timestamp i. Then we define the data agility ai at
timestamp i as

ai = u
N
.

Without loss of generality, we assume that features of objects are distributed
in a unit universe [0, 1]d , where d is the dimensionality (for B-trees, d = 1). An
interval query q can be represented as q(qk , qt) to indicate its feature range qk
and temporal interval qt ; qk is defined in the feature universe: for MLTS based
on B-trees, it is a one-dimensional range; and for MLTS based on R-trees, qk
is a multidimensional region. The interval range qt corresponds to the set of
timestamps queried.
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The problem definition is as follows. At the first timestamp (timestamp 1),
the features of N objects are distributed in the unit range [0, 1)d by a certain
distribution DIST1. At each of the subsequent timestamps i (i= 2, 3, . . . , T ), ai%
of the N objects issue feature changes, where T corresponds to the total number
of timestamps recorded. The object distribution at timestamp i is denoted as
DISTi, and may vary for different timestamps. The updates are such that each
object has the same probability to produce changes, and each update involves a
(logical) deletion (invalidating the record denoting its previous version) and an
insertion (for the new version). The dataset is indexed with an overlapping or
multiversion structure, and the objective is to predict the sizes of the structures
and their expected performance in terms of node (or page) accesses.

Existing analyses of MLTS [Becker et al. 1996; Varman and Verma 1997;
Salzberg and Tsotras 1999] often assume that there is only one object update
(i.e., a new version) per timestamp which, however, is too restrictive in prac-
tice. Consider, for example, the monthly salaries (objects in video/multimedia
frames), where a timestamp corresponds to a month (frame). Obviously, mul-
tiple salaries (objects) may change at the same timestamp. One update per
timestamp is simply a special case (i.e., where agility equals 1/N ) of our general
problem definition and it is covered by our analysis. Furthermore, the agility of
a dataset turns out to have a very significant impact on the behavior of MLTS.
Our work constitutes the first systematic approach that relates dataset agility
to MLTS performance.

The analysis proceeds as follows. In this section we present cost models for
OVB- and MVB-trees assuming that (1) there is no buffer (i.e., focusing on
node accesses), (2) DISTi is uniform for all timestamps, and (3) ai does not vary
throughout the history (i.e., ai =a for all 1≤ i≤T ). Although these assumptions
may not be very realistic, they allow us to elaborate the essential characteristics
of the alternative structures, and they serve as the basis for further discussion.
Next, we remove these assumptions and discuss how to generalize the frame-
work to other access methods, using the R-tree as an example. Table I lists the
main symbols that are used frequently in our derivation. Some symbols have
not appeared so far, but are elaborated shortly.

3.1 A Unified Cost Model

Similar to the representation of queries, we define a pair of ranges s(sk , st) for
each node s in OVB- or MVB-trees. The feature range sk corresponds to the
minimum bounding range of all the entries in s, and the st is the period when s
is valid in history. For a node in MVB-trees, st encloses the lifespans of all the
entries in s. For OVB-trees, where the lifespans of the entries are not explicitly
stored, st is defined as the period between the time that s is created and the time
that it is duplicated. Since DISTi is uniform for all timestamps i, the structures
of each logical tree in OVB- or MVB-trees remain approximately the same as
the suitable clustering of the objects differs very little for each timestamp.

Nodes in MLTS are created in an “evolving” manner. That is, after the logical
tree for the first timestamp is built, trees for subsequent timestamps are created
by generating necessary nodes from the previous trees. The fact that an update
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Table I. List of the Primary Symbols Used

Symbols Definition
N number of objects in the initial dataset (≈ number of objects alive at each

timestamp)
NV total number of versions
ai agility at timestamp i
DISTi object distribution at timestamp i
T number of all the timestamps in history
b capacity of a node
f fanout of a node
h height of a logical tree
s(sk , st ) bounding feature and time ranges of a node s
q(qk , qt ) feature and time ranges of query q
Ki total number of nodes at level i
Ei evolution rate at level i
f1 number of entries alive at one timestamp in an MVB-tree node
Mi number of level i nodes alive at one timestamp in the MVB-tree
vi average number of level i version splits in the MVB-tree at one timestamp
Vi total number of level i version splits in the MVB-tree in history

involves a deletion followed by an insertion and that every object has the same
probability to issue changes leads to two important observations: live nodes
at the same tree level receive approximately the same number of insertions
(deletions) at each timestamp; and the number of live entries in a node remains
roughly constant throughout its lifespan (because the number of insertions a
node receives approximates that of deletions received at each timestamp).

As a result, after the first logical tree is constructed, node duplication and
version split become the major types of structural changes for OVB- and MVB-
trees, respectively. This is supported by our experiments: starting from the sec-
ond timestamp, the number of key splits and merges (weak version underflows
and strong version overflows/underflows) is significantly smaller (less than 5%)
than the number of node duplications (version splits) for OVB- (MVB-) trees.
Therefore, in the analysis, we may assume node duplication (version splits) to
be the only type of structural changes for OVB- (MVB-) trees without intro-
ducing significant error. This allows us to focus on the factors that have the
greatest impact on query performance.

If a node s2 is created from a previous node s1 through duplication (version
split), then we say that s1 evolves into s2. To represent how fast the evolution
proceeds, we define the evolution rate in Definition 3.2. As shown shortly, the
evolution rate of nodes at a particular level of an OVB- or MVB-tree does not
change significantly through history; hence, we use the notation Ei to denote
the evolution rate for level i. Higher values for Ei indicate that new nodes are
created with shorter cycles (smaller lifespans), resulting in larger trees.

Definition 3.2. Let Mi be the average number of live nodes of a particular
tree level i at a timestamp. If on average, ni new nodes of the same level are
created at the next timestamp, then the evolution rate Ei for level i is

Ei = ni

Mi
.
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Fig. 7. Time evolution of nodes.

Notice that, in answering a query q, node s(sk , st) will be visited if and only
if it intersects q(qk , qt); that is, sk intersects qk and st intersects qt . In other
words, the probability that s will be visited is identical to the probability that
s(sk , st) intersects q(qk , qt), which we refer to as prob(s, q). Let probfeature and
probtm denote the probability that the feature and temporal ranges intersect.
Since the feature universe and the time dimension are independent, we have:

prob(s, q) = probfeature · probtm. (3.1)

The estimation for probfeature has been studied in multidimensional access meth-
ods. If d is the dimensionality of the feature universe then:

probfeature =
d∏

i=1

(
si
k + qi

k

)
, (3.2)

where si
k and qi

k are the extents along the ith dimension for sk and qk , respec-
tively [Theodoridis and Sellis 1996]. For the special case when the dimension-
ality of the feature universe is 1, the estimation for probfeature becomes:

probfeature = sk + qk . (3.3)

On the other hand, probtm is closely related to the evolution rate of nodes. Let
Pi be the total number of level i nodes whose lifespans intersect qt and Ki be
the total number of level i nodes ever created. We have:

probtm = Pi

Ki
. (3.4)

Assuming that the number of level i nodes alive at each timestamp is Mi, Ki
can be estimated as

Ki = Mi + Ei Mi(T − 1), (3.5)

where T denotes the total number of timestamps in history. The reasoning
behind Equation (3.5) is that initially there exist Mi level i nodes, all of which
are alive. Then, at each subsequent timestamp Ei ·Mi nodes are created. When
a new node is created, the previous node dies, so the lifespans of these two nodes
are disjoint and continuous. Figure 7 shows a query whose temporal interval
intersects the lifespans of four nodes, where a2 and a3 were created when a1
and a2 died, respectively.

The number of nodes whose lifespans intersect qt is computed as follows.
First, two nodes (a1 and b) are alive at the first timestamp of qt ; then, during
qt , another two nodes (i.e., a2 and a3) are created; hence Pi equals 4. In general,
there are Mi = 2 nodes alive at the first timestamp (time i) of qt . Then, at each
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of the subsequent timestamps i+ j (1≤ j ≤ |qt | −1), Ei ·Mi nodes are created.
Hence, we have the following estimation for Pi.

Pi = Mi + Ei Mi(qt − 1). (3.6)

Combining Equations (3.4) through (3.6), we have

probtm =
1+ Ei(qt − 1)
1+ Ei(T − 1)

. (3.7)

Extending Equations (3.1) and (3.3), we derive:

prob(s, q) = (sk + qk)
1+ Ei(qt − 1)
1+ Ei(T − 1)

. (3.8)

Recall that prob(s, q) states the probability for a node to be accessed in answer-
ing query q; thus the expected number of node accesses NA(q) is given by the
equation:

NA(q) =
∑

every node s

prob(s, q).

If si(sik , sit) are the average range and temporal extents of nodes at level i, the
above equation can be written as (3.9), where h denotes the height of a logical
tree, Ki denotes the total number nodes at level i, and prob(si, q) is given by
Equation (3.8).

NA(q) =
h−1∑
i=0

[Ki ·prob(si, q)]. (3.9)

In this work, we assume each node in the tree occupies a single disk page;
hence Equation (3.9) also gives the expected number of disk accesses. Obviously,
the equation can be easily adapted to general cases where a node can occupy
multiple pages. This cost model, however, is “qualitative”, in the sense that it
must refer to the corresponding tree to obtain values for the relevant variables.
In the sequel, we aim at representing sik, Ei, Ki, and h using the properties of
the indexed dataset and the underlying file system.

3.2 A Cost Model for OVB-Trees

In this section, we present the derivation of the cost model for OVB-trees
through several steps. In each step, we focus on rewriting a particular compo-
nent in Equation (3.9) as the function of variables whose values are obtainable
without referring to the actual tree.

Estimating h. The height of a B-tree that indexes N keys is estimated as
in Equation (3.10), where f is the fanout of the tree. The commonly adopted
value for f is ln 2 · bsplit [Yao 1978], where bsplit is the number of entries a
node contains when it splits.3 For OVB-trees, bsplit= b. Note that since the node

3As shown in Yao [1978], the fanout of a node in the B-tree does not depend on the concrete data
distribution, but rather on the sequence of insertions. For example, the fanout is lowest if records
are inserted in increasing order of their keys, and it is roughly the same for randomized insertions.
Our cost models are based on randomized insertions because they are most common in practice.
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capacity is decided by the page size of the underlying file system, the value of
f is independent of the indexed dataset. Furthermore, since each logical tree
indexes the same number of objects, the height of each tree is expected to be
the same.

h = dlog f N/be + 1. (3.10)

Estimating Ei. We start with the estimation for E0, the evolution rate at
the leaf level. Let us consider a leaf node s of a logical tree at an arbitrary
timestamp i. Recall that s will be copied to a new node at timestamp (i+ 1)
if and only if any change (i.e., insertion or deletion) occurs in the node. For
a dataset with agility a, the total number of changes per timestamp equals
2aN because each object update involves one deletion and one insertion. E0
corresponds to the probability that a leaf node is affected by any of these 2aN
changes. A leaf node contains on average N/ f entries. Given an update, every
node has the same probability f /N to be affected; thus, the probability for a
node not to be affected by a single change is (1− f /N ). Since all the changes
are independent, the probability for a node not to be updated by any of these
changes is (1− f /N )2aN . Thus we have:

E0 = 1−
(

1− f
N

)2aN

. (3.11)

In general, the number of nodes at level i is N/ f i+ 1; hence the likelihood for
a level i node to be affected by a change is f i+1/N . Following the derivation of
(3.11), we obtain:

Ei = 1−
(

1− f i+1

N

)2aN

(0≤ i≤h− 1). (3.12)

If N is sufficiently large (which is true in practice), we have

Ei ≈ 1− (1− e)2af i+1
.

As a side product of the estimation for Ei, we have the following lemma for
the expected number of timestamps sit that a node at level i remains alive in
history.

LEMMA 1. sit = 1/Ei.

PROOF. Consider a node s of level i that is created at timestamp k. Since the
probability that s is copied at one timestamp is Ei, it follows that the probability
that node s is valid for j timestamps (i.e., it is copied at timestamp k+ j ) is
(1− Ei) j –1 · Ei. Therefore, the expected number of timestamps that node s is
valid in history is given by

∞∑
j=1

{[
Ei(1− Ei) j−1] · j

}
.

The above series converges to 1/Ei.

Estimating Ki. Since, at level i, the number of live nodes at one timestamp
is N/ f i+1, the number of new nodes created at each timestamp is Ei · (N/ f i+1).
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Hence, the total number of level i nodes is

Ki = N
f i+1 + Ei

N
f i+1 (T − 1) (0≤ i≤h− 1). (3.13)

Note that a corollary of Equation (3.13) is that we can estimate the size of an
OVB-tree as

Size(OVB) =
h−1∑
i=0

Ki =
h−1∑
i=0

[
N

f i+1 + Ei
N

f i+1 (T − 1)
]
. (3.14)

Estimating sik . Now it remains to estimate sik , the average key range of
nodes at level i. Notice that, since each logical tree is simply an ordinary B-tree,
this estimation is directly obtainable from the analysis of B-trees. In fact, when
DIST is uniform, the key ranges of nodes at the same level are roughly the
same. Given that there are N/ f i+1 nodes at level i in a B+-tree, we have

sik = f i+1

N
(0 ≤ i ≤ h− 1). (3.15)

So far we have rewritten all the components of Equation (3.9) as functions
of f , N , a, and T . The number of node accesses for OVB-trees is presented in
Equation (3.16).

NA(q) =
dlog f N/be∑

i=0

[
N

f i+1 + Ei
N

f i+1 (T − 1)
](

f i+1

N
+ qk

)
1+ Ei(qt − 1)
1+ Ei(T − 1)

=
dlog f N/be∑

i=0

N
f i+1

(
f i+1

N
+ qk

)[
1+

(
1−

(
1− f i+1

N

)2aN)
(qt − 1)

]
.

(3.16)

Note that when a equals 0, the above equation degenerates into a cost model
for conventional B-trees.

3.3 A Cost Model for MVB-Trees

In the sequel, we carry out a similar analysis for MVB-trees based on
Equation (3.9).

Estimating h. Let f1 be the average number of live entries at a single times-
tamp in node s. Note that f1 is different from f , which equals the total number
of entries in s. Thus, the height of a logical tree is given by Equation (3.17):

h = dlog f1
N/be. (3.17)

Meanwhile, let Mi denote the average number of level i nodes that are alive at
a single timestamp in a logical tree. The estimation for Mi is

Mi = N

f i+1
1

(0≤ i≤h− 1).

The estimation for f1 deserves further elaboration. Recall that, in MVB-trees,
if a node consists of only entries at the same timestamp, then the number of
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the entries cannot exceed b ·PSVO; otherwise a strong version overflow occurs
and the node will be key split. Hence, f1= ln 2 · bsplit= ln 2 · b · PSVO.

Estimating Ei. We first present the estimation for E0. A node s contains
f1 entries when it is created from a version split; thus s will receive (b− f1)
insertions before it generates a version split, which in turn leads to the creation
of a new node. At each timestamp, as there are a ·N insertions, each leaf node
can receive on average a ·N/M0 insertions. As a result, s will generate a version
split after (b− f1) ·M0/(a ·N ) timestamps. Since M0=N/ f1, the number of
timestamps s0t that a leaf level node remains alive before it is version split, can
be estimated as

s0t = (b− f1)M0

aN
= b− f1

af1
.

Let Vi be the total number (in history) of version splits at level i, and vi the
average number of version splits per timestamp at level i. For the leaf level, V0
and v0 are estimated as

V0 = M0
T − 1

s0t
= aN (T − 1)

b− f1
, and v0 = V0

T − 1
= aN

b− f1
.

Recall that the evolution rate is defined as the number of new nodes over the
total number of live nodes at a timestamp. Since version splits are the only type
of structural changes considered, we have

E0 = v0

M0
= af1

b− f1
.

Whenever a leaf node generates a version split, an entry will be inserted into
its parent node at level 1. Hence, at each timestamp, the average number of
insertions at level 1 is v0, and every level 1 node receives on average v0/M1
entries. Similar to our analysis above, a node at level 1 will generate a version
split (b− f1) ·M1/v0 timestamps after its creation. Therefore, the lifespan of
the node, s1t is

s1t = (b− f1) M1

v0
= (b− f1)2

af 2
1

.

The estimation for V1 is

V1 = M1
T − 1

s1t
= aN (T − 1)

(b− f1)2 .

In the same way, we obtain the following equations for nodes at higher levels.

sit = (b− f1)i+1

af i+1
1

, and Vi = aN (T − 1)
(b− f1)i+1 (0 ≤ i ≤ h− 1). (3.18)

Hence, we have

vi = Vi

T − 1
= aN

(b− f1)i+1 , and Ei = vi

Mi
= af i+1

1

(b− f1)i+1 (0 ≤ i ≤ h− 1).

(3.19)
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Finally, note that, as with Lemma 1 for OVB-trees, sit = 1/Ei also applies to
nodes of MVB-trees at all levels.

Estimating Ki. Given that the total number of version splits at level i is
provided by Equation (3.18), the total number Ki of nodes created through
history is:

Ki = Mi + Vi = N

f i+1
1

+ aN
(
T − 1

)
(b− f1)i+1 (0 ≤ i ≤ h− 1). (3.20)

As a corollary of Equation (3.20), the size of an MVB-tree can be estimated as

Size(MVB) =
h−1∑
i=0

Ki =
h−1∑
i=0

[
N

f i+1
1

+ aN (T − 1)
(b− f1)i+1

]
. (3.21)

Estimating sik. As mentioned above, a node contains f1 live entries at the
same timestamp. Therefore, replacing f in Equation (3.15) for OVB-trees with
f1, we obtain the following equation for the average key range of nodes at level i.

sik = f i+1
1

N
(0 ≤ i ≤ h− 1). (3.22)

Equation (3.23) presents the final model, which predicts the node disk ac-
cesses for range-interval queries based on the properties of the indexed dataset
and the underlying file system.

NA(q) =
dlog f1 N/be∑

i=0

[
N

f i+1
1

+ Ei
N

f i+1
1

(T − 1)
](

f i+1
1

N
+ qk

)
1+ Ei(qt − 1)
1+ Ei(T − 1)

=
dlog f1 N/be∑

i=0

N

f i+1
1

(
f i+1

1

N
+ qk

)[
1+ af i+1

1 · (qt − 1)
(b− f1)i+1

]
. (3.23)

Tuning PSVO. Recall that a MVB-tree has several tree parameters, among
which PSVO (i.e., the strong version overflow threshold) has the most significant
effect on the overall performance of the tree.4 To understand this, observe from
Equations (3.21) and (3.23) that both the tree size and query performance are
very closely related to f1, which, as mentioned earlier, can be approximated
as ln 2 · b · PSVO. Our models provide useful insight towards choosing a good
value for PSVO. For example, according to Equation (3.21) setting a low PSVO
(which in turn makes f1 smaller) usually reduces the tree size, by decreasing
the term (aN (T − 1))/((b− f1)i+ 1), which corresponds to the number of nodes
created after the first timestamp, and will eventually dominate the other term
N/ f i+1

1 (i.e., the number of nodes that are alive only at the first timestamp).
Intuitively, a smaller f1 allows a node to receive more entries before it is version
split, which reduces the total number of version splits, and hence data redun-
dancy. However, if PSVO is too low, the height of the tree (see Equation (3.17)

4Usually the other parameters are defined based on PSVO, for example, PSVU= PSVO/2,
PU = PSVO/4 [Varman and Verma 1997].
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will become significantly higher, which, as shown in the experiments, may in-
crease the total tree size if the number of nodes created at higher levels (during
the entire history) exceeds the number of nodes diminished at lower levels.
Furthermore, a high tree may compromise query performance. In fact, we ob-
serve that for any specific query parameters qk and qt , there exists an optimal
PSVO that minimizes the query cost NA(q), and can be obtained by solving PSVO
from the equation,

d [NA(q)]
df1

· df1

dPSVO
= 0,

where NA(q) is given by Equation (3.23). When qt = 1 (timestamp queries), for
example, the optimal PSVO equals the maximum value 1, which means that
strong version overflows can never happen. This is expected because a times-
tamp query only needs to search one logical B-tree; thus it is important to
maximize the fanout f1 of each logical tree. Queries with longer intervals have
best performance with smaller PSVO so that the resulting tree has less redun-
dancy (due to the fact that version splits happen less often). These observations
are verified by the experiments.

3.4 Selectivity Estimation

A record i with feature ik and lifespan it , will be retrieved by a query q, if
and only if q(qk , qt) intersects i(ik , it). The probability prob(i, q) for i(ik , it) and
q(qk , qt) to intersect is calculated according to Equation (3.8), except that the
evolution rate of the objects now corresponds to the agility a of the dataset, and
ik is set to 0 because the feature of each entry indexed by an OVB- or MVB-tree
contains only a single value. Hence, we have:

sel(q) = prob(i, q) = qk
1+ a(qt − 1)
1+ a(T − 1)

. (3.24)

As a result, the number NUM(q) of records retrieved by query q is estimated as

NUM(q) = prob(i, q) · [N + aN(T − 1)] = N ·qk · [1+ a(qt − 1)]. (3.25)

3.5 Asymptotical Performance of Interval Queries

As mentioned earlier, traditional analysis on MLTS focused on their asymptot-
ical performance for timestamp queries. Both structures achieve the optimal
query cost, namely, O(log(NV /b)+ K /b) node accesses, and the space consump-
tion is O(NV /b) (optimal) for MVB-trees and O(NV log(N/b)) (suboptimal) for
OVB-trees, where NV is the total number of versions produced by N objects
throughout the history, K the number of versions retrieved, and b the node
capacity. No result, however, exists for the asymptotical performance of either
structure on interval queries. Particularly, since the MVB-tree is optimal (both
in space and query cost) for timestamp queries, an interesting problem is to
study whether it is also optimal for interval queries or, equivalently, whether
it answers any interval query that returns K versions in O(log(NV /b)+ K /b)
node accesses.
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Fig. 8. The MVB-tree is not optimal for interval queries.

It turns out that the MVB-tree is not optimal in the worst case, because
its interval query performance can be Ä(log(NV /b)+ K /b+qt), where qt is the
number of timestamps queried. To construct such a pessimistic case, we start
with leaf node A1 in Figure 8, which is created at timestamp 1 with 5 live
entries (node capacity= 6). At the next timestamp, 2 deletions and 2 insertions
are performed on A1, which causes it to version split, creating node A2 (still
with 5 live entries). Notice that we do not modify the lifespans of the entries
with keys 10, 20, 30 in both nodes, in order to emphasize that they are not new
versions but simply redundant data resulting from the version split. Similarly,
at the next timestamp, 2 deletions and 2 insertions are performed on node
A2, which version splits and spawns node A3. This process is repeated at each
timestamp i, so that a new node Ai is created and entries with keys 10, 20, 30
are never affected except for being duplicated in Ai.

Now we consider a query q with the key range [15, 25] and time interval
[1, qt], where qt is no smaller than 1 and decides the length of the interval.
Notice that in order to answer q, all nodes Ai (1≤ i≤qt) must be accessed
because both their feature and temporal ranges intersect those of q, resulting
in a processing cost of Ä(log(NV /b)+ K /b+qt) (the logarithmic factor comes
from traversing the path from the root to leaves), which is worse than the
optimal performance O(log(NV /b)+ K /b). The longer the query interval is, the
more “suboptimal” the performance becomes.

Although this example is formulated with concrete values for tree param-
eters (specifically, fanout f = 5, node capacity b= 6, number of updates per
timestamp a ·N ≥ 2), it is easy to design similar cases for general settings.
Specifically, starting from a leaf node A that has f entries, we may perform at
least (b− f + 1) deletions and (b− f + 1) insertions on A (or nodes that evolve
from A) at each timestamp, forcing it to version split and create a new node.
Some entries in A are never affected by these updates (e.g., entries with keys 10,
20, 30 in Figure 8). Then, an interval query that retrieves only these unaffected
entries has suboptimal query cost, because the number of versions retrieved is
independent of the query interval length, whereas the number of node accesses
increases linearly. Moreover, due to the similarity between nodes in OVB- and
MVB-trees, such examples can also be constructed for OVB-trees, indicating
that OVB-trees are not optimal for interval queries either.

After realizing the suboptimality of MVB-trees in the worst case, it is natural
to investigate whether MVB-trees are still optimal for interval queries in the
expected case. Note that the pessimistic example constructed earlier may not
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necessarily happen in the expected case, because it is rather unlikely that an
object will remain unchanged for a long period of time if every object has the
same probability to issue updates. To be specific, we may check if the estimated
number of node accesses NA (produced from Equation (3.23) is indeed bounded
by O(log(NV /b)+ K /b), where K denotes the number of versions retrieved (pro-
duced from (3.25). As shown shortly, when N ·qk ≥ f1 the expected performance
of MVB-trees is indeed optimal for interval queries by employing the query al-
gorithm in Bercken and Seeger [1996], which, as mentioned in Section 2.2, only
visits the nonleaf nodes whose lifespans intersect the first timestamp of the
query, as well as all the leaf nodes whose feature and temporal extents inter-
sect those of the query. The cost of visiting the nonleaf nodes corresponds to the
logarithmic term log(NV /b) of the optimal complexity. In the sequel, we show
that the expected number NA0 of leaf node accesses is bounded by O(K /b).

To illustrate this, observe that, since Ei =a · f i
1/(b− f1)i, and f1= ln 2 ·

b ·Psvo, we have: Ei =a · (ln 2 ·Psvo)i/(1− ln 2 ·Psvo)i, leading to the fact that
Ei =O(a) (since PSVO is a constant). This means that the evolution rate of MVB-
trees at any level is as fast (in terms of complexity) as the data agility, which is
somewhat against the intuition that nodes at higher levels should evolve more
slowly than nodes at lower levels (i.e., with longer lifespans). In fact, notice that
for some Psvo (specifically when ln 2 ·Psvo> 1/2) the evolution rates at higher
levels can be even higher than those at lower levels. Formally, NA0 is estimated
from Equation (3.23),

NA0 = N
f1

(
f1

N
+ qk

)
[1+ E0(qt − 1)] =

(
1+ N

f1
qk

)
[1+ E0(qt − 1)]

= 1+ N
f1

qk + E0(qt − 1)+ N
f1

qk · E0(qt − 1). (3.26)

Because f1=O(b) and Ei =O(a), NA0 is bounded by (when N ·qk ≥ f1)

NA0 = O
[

N
b

qk + N
b

qk ·a(qt − 1)
]
.

Since K =N ·qk +N ·qk ·a(qt − 1), we have NA0=O(K /b). Combining with
the fact that the number of nonleaf node accesses establishes the logarith-
mic term O(log(NV /b)), the overall expected performance of MVB-trees is
bounded by O(log(NV /b)+ K /b). Recall that this bound is achieved by assum-
ing N ·qk ≥ f1, which is required so that the term E0(qt − 1) is absorbed by
(N/ f1) ·qk · E0(qt − 1) in the big-O complexity of Equation (3.26). Note that this
extra condition ensures that the feature range qk of the query is at least as long
as the average feature range f1/N of a leaf node. When this is not satisfied
(consider, for instance, the pessimistic example given in Figure 8), the query
cost may be bounded by E0(qt − 1), which, intuitively, indicates that the number
of versions retrieved by the query is not sufficient for justifying the nodes that
evolved during the qt and must be accessed by the query.

Next we conduct a similar analysis for the interval query performance of
OVB-trees. However, instead of showing their expected optimality (which as
can be conjectured is not true), we aim at quantifying the factor by which their
expected performance deviates from the optimal cost. Similarly, we assume the
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algorithm proposed in Bercken and Seeger [1996] so that the total number
of nonleaf node accesses corresponds to the logarithmic factor O(log(NV /b)),
allowing us to focus on the leaf node accesses. To facilitate analysis we assume
N is large so that

E0 = 1− (1− f /N )2aN ≈ 1− e−2af .

Furthermore, we observe that for typical values of f (on the order of 100 for reg-
ular disk pages), e−2af ≈ 0; thus E0≈ 1. From Equation (3.16) we have (similar
to MVB-trees, assuming N ·qk ≥ f ):

NA0 = N
f

(
f
N
+ qk

)
[1+ E0(qt − 1)] =

(
1+ N

f
qk

)
[1+ E0(qt − 1)]

= O
[
1+ N

f
qk + (qt − 1)+ N

f
qk · (qt − 1)

]
= O

[
N
b

qk + N
b

qk · 1a a(qt − 1)
]

= 1
a

O
[
a

N
b

qk + N
b

qk ·a(qt − 1)
]

= 1
a

O
[

N
b

qk + N
b

qk ·a(qt − 1)
]
= 1

a
O
(

K
b

)
.

Therefore, it is clear that the performance of OVB-trees is closely related to the
data agility a (which is not the case for MVB-trees). As a increases, OVB-trees
approach the optimal performance. Consider, for example, the extreme case
where a= 1 (i.e., all objects change at every timestamp). Then, maintaining a
separate B-tree at each timestamp is an optimal solution in the sense that the
number of node accesses is linear to the number of object versions retrieved. In
fact, as discussed in the next section and shown in the experiments, OVB-trees
actually outperform MVB-trees beyond certain agility.

3.6 Predicting the Behavior of MLTS

The proposed models can answer two important questions: when it is worth
using a MLTS instead of the independent-tree implementation (i.e., an indi-
vidual B-tree for each timestamp), and which MLTS is preferable depending
on structure size and query performance considerations. Regarding the first
question, notice that when the agility exceeds a certain threshold (which we
call the degradation agility), all the live nodes will be duplicated (version split)
in an overlapping (multiversion) structure, at each timestamp; that is, both
structures will degenerate into independent trees. To calculate the degrada-
tion agility, notice that a MLTS degrades completely when the evolution rate
Ei approaches 1 for all levels, where Ei is defined in (3.12) and (3.19) for OVB-
and MVB-trees, respectively. Solving these equations, we obtain the degrada-
tion agilities for OVB- and MVB-trees as follows.

deg-agility(OVB) ≈ −1
N log(1− f /N )

. (3.27)

deg-agility(MVB) ≈ b− f1

f1
= 1− ln 2 · Psvo

ln 2 · Psvo
. (3.28)
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For OVB-trees the estimated degradation agility is very low (less than 5% for
our experimental settings), which severely limits their applicability. In order
to intuitively explain this phenomenon, consider a situation where the aver-
age fanout of OVB-trees is f = 100. Even if one (out of 100) object in a node
issues a change, the node needs to be copied (which leads to replication of all
100 entries). Furthermore, the update may lead to an insertion in another node,
which will lead to duplication of that node as well. Therefore, in the worst case,
even if less than 1% of the objects issue updates at a timestamp, an OVB-tree
may degenerate to independent B-trees. Furthermore, the degradation agility
becomes even lower for larger block sizes.

On the other hand, although the estimated degradation agility of MVB-trees
is more than an order of magnitude higher (about 80% for our settings) this does
not mean that MVB-trees are better than ephemeral B-trees up to this value of
agility. Recall that each entry in a multiversion structure contains additional
information about its lifespan, which lowers the node fanout. As a result, al-
though an MVB-tree may have not degraded, above an agility threshold, which
we call size multitree point (MTP, for short), it consumes more space than the
independent-tree implementation. The size MTP can be predicted by solving the
following equation, where the right part corresponds to the size of independent
B-trees.

Size(MVB) = T ·
dlog f Ne−1∑

i=0

N
f i+1 ,

Size(MVB) is given in Equation (3.21), and f is the fanout of a B- (or OVB-)
tree. Solving this equation we obtain:

aMTP(size) ≈
(

T
f
− 1

f1

)
· bMVB − f1

T − 1
≈ bMVB(1− ln 2 · PSVO)

f
(3.29)

where bMVB is the node capacity of the MVB-tree.
Similarly, for certain query parameters (qk , qt), we can also calculate the

query MTP (the agility above which independent B-trees outperform the MVB-
tree) by solving Equation (3.30). Although the query and size MTPs are not
necessarily identical (the query MTP depends on the query parameters), their
values, as shown in the experimental evaluation, are usually very close.

NA(q) = qt ·
dlog f N/be∑

i=0

N
f i+1

(
f i+1

N
+ qk

)

⇒ aMTP (qk , qt) ≈
1+ qk ·N/ f
1+ qk ·N/ f1

qt − 1

PSVO · ln 2
1− PSVO · ln 2

(qt − 1)
. (3.30)

The above equation holds for qt > 1 (i.e., interval queries). For timestamp
queries, the query MTP is meaningless, because the independent-tree imple-
mentation (or OVB-tree) always outperforms MVB-trees due to their larger
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fanouts. For interval queries and large values of N , Equation (3.30) can be
simplified to

aMTP (qk , qt) ≈
f1

f
qt − 1

PSVO · ln 2
1− PSVO · ln 2

(qt − 1)
.

Furthermore, when qt is sufficiently high (i.e., long interval queries), the query
MTP converges to

aMTP (qk , qt) ≈
(
1− PSVO · ln 2

)
f1

PSVO · ln 2 · f
.

For agilities below the query MTP, MVB-trees are usually more efficient for
interval queries. Furthermore, the performance gain over OVB-trees can be ob-
tained by considering Equations (3.16) and (3.23). Let NAi(OVB) and NAi(MVB)
denote the number of node accesses at level i in answering query q with an OVB-
and MVB-tree, respectively. Then, we have

NAi(OVB)
NAi(MVB)

≈ 1+ EOi (qt − 1)
1+ EMi (qt − 1)

·C(qk), (3.31)

where C(qk) is a function of qk , and EOi and EMi correspond to the evolution rates
at level i for the OVB- and MVB-tree, respectively. Given that typically EOi is
an order of magnitude larger than EMi, the ratio in the above equation initially
increases with qt (for small qt and fixed qk) and will converge to EOi ·C(qk)/EMi
when qt is sufficiently large. These observations are experimentally evaluated
in Section 5.

4. GENERALIZATION OF THE ANALYSIS FRAMEWORK

The models of the previous section assume that no buffer is available, and the
datasets are uniform whereas the agility remains constant for each timestamp.
Section 4.1 extends the cost models to estimate page accesses in the presence of
LRU buffers, and Section 4.2 addresses general data distributions and variable
agilities. Finally, Section 4.3 applies the entire analysis framework to R-trees.

4.1 Introducing a LRU Buffer

Equations (3.16) and (3.23) estimate the number of node accesses of OVB- and
MVB-trees. In practical environments, buffers are widely used to improve query
efficiency, and ignoring the effect of buffering may bias performance evaluation.
Therefore, it is important for the proposed models to capture the number of disk
page accesses when a (typically, LRU) buffer is available.

The behavior of LRU buffers in general database environments has been an-
alyzed in Bhide et al. [1993]. Subsequent work [Huang et al. 1997; Leutenegger
and Lopez 2000] that addresses the buffered performance of specific index struc-
tures is based on Bhide et al.’s [1993] findings that, after the buffer warmup
period (i.e., all buffer pages have been loaded), the probability of locating a page
in the buffer does not vary significantly. Based on this idea, Leutenegger and
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Lopez [2000] adopt a two-step approach to predict the I/O of access methods.
Assuming an empty buffer with C pages, the first step aims at estimating the
number nq of queries performed when all C pages are loaded. Let prob(si, q)
denote the probability that a node at level i is accessed by a query; then the
probability that a level i node is accessed at least once by any of the nq queries
is: 1− [1− prob(si, q)]nq . Since the total number of distinct pages accessed after
nq queries is C (recall that at this point the buffer becomes full for the first
time), nq can be solved from the following equation (Ki is the total number of
nodes at level i).

dlog f N/be∑
i=0

(
Ki ·

{
1− [1− prob (si, q)]nq

}) = C. (4.1)

After obtaining nq (which in practice can be saved in the system log), the second
step estimates the number of page accesses for answering query q by observing
that a node needs to be fetched from the disk if and only if the following condi-
tions are satisfied: (1) the extents of the node intersect those of the query (for
which the probability is prob(si, q) for a node at level i), and (2) the node is not in
the buffer. According to Bhide et al. [1993], the probability of (2) approximates
the probability that the node is not accessed by any of the nq queries during the
buffer warmup period. Since this probability is [1− prob(si, q)]nq for a level i
node, the probability for the node to be loaded from the disk (to answer query
q) is given by prob(si, q) · (1− prob(si, q))nq . Therefore, the number of disk page
accesses PA(q) is given by

PA(q) =
dlog f N/be∑

i=0

{
Ki ·prob(si, q) · [1− prob(si, q)]nq

}
. (4.2)

Finally, Ki and prob(si, q) for OVB- and MVB-trees have already been discussed
in the last section. Specifically, Ki is given in Equations (3.13) and (3.20), while
for prob(si, q):

OVB prob(si, q) =
(

f i+1

N
+ qk

)
1+ Ei

(
qt − 1

)
1+ Ei

(
T − 1

)

=
(

f i+1

N
+ qk

) 1+
[

1−
(

1− f i+1

N

)2aN] (
qt − 1

)
1+

[
1−

(
1− f i+1

N

)2aN] (
T − 1

) ;

(4.3)

MVB prob(si, q) =
(

f i+1
1

N
+ qk

)
1+ Ei(qt − 1)
1+ Ei(T − 1)

=
(

f i+1
1

N
+ qk

)
1+ af i+1

1 · (qt − 1)
(b− f1)i+1

1+ af i+1
1 · (T − 1)
(b− f1)i+1

 . (4.4)
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Fig. 9. A histogram example.

Applying the above equations in (4.1) and (4.2), we obtain cost models that
predict the number of page accesses in answering a query with OVB- and MVB-
trees when the buffer contains C pages.

4.2 General Temporal Datasets

In order to capture general temporal datasets, we need to allow arbitrary dis-
tributions and variable agilities for each timestamp. In practice, arbitrary data
distributions are usually described using histograms, the idea of which is to
divide the feature universe into a set of partitions such that the feature dis-
tribution of the objects within each partition is (almost) uniform [Piatetsky-
Shapiro and Connell 1984; Liption et al. 1990]. Figure 9 illustrates an example
where four partitions A, B, C, D are allocated. Each partition is associated
with certain statistical information: typically, the number of features in the
partition and the partition length. For example, there are five features in A,
whose length is l A. The histogram is used to estimate the selectivity of a query,
or equivalently, the number of features to be retrieved. Consider, for example,
the query in Figure 9 whose feature range intersects partitions A and B (with
intersection lengths a and b). Given that A and B contain 5 and 4 features,
respectively, the number of features retrieved can be estimated as: 5 · (a/l A)+
4 · (b/l B).

The description for data agility ai, on the other hand, is straightforward:
we only need to store a sequence of numbers representing the values of ai at
each timestamp. Observe that although values of ai may differ significantly,
consecutive DISTi are usually very similar (e.g., the balance distribution of ac-
counts changes slowly from one timestamp to the next one). Since most queries
in practice involve short intervals [Salzberg and Tsotras 1999], it is reasonable
to consider that DISTi remains approximately the same at all timestamps i
during qt , which indicates that logical trees at these timestamps have similar
structures.

Next we extend the analysis of Section 3 to address general temporal
datasets. Without loss of generality, we denote the set of query timestamps
as t1, t2, . . . , tqt. Let Nε be the number of features retrieved at the first times-
tamp t1. Since DISTi does not vary significantly5 during qt , approximately the
same number of features is retrieved at every timestamp ti (1≤ i ≤ qt). Let S1 be
the set of nodes that are accessed at t1 (i.e., these nodes are alive at t1 and their

5In some extreme cases where distributions change drastically in consecutive timestamps, we can
use the average number of features retrieved at each timestamp to replace Nε .
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feature ranges intersect qk). Because logical trees at close timestamps have sim-
ilar structures, nodes that evolve from those in S1 at subsequent timestamps
have similar feature ranges. As a result, the complete set of nodes accessed by
a query is approximately the union of S1 and the set SE of nodes evolving from
S1 during qt , or more formally, NA(q) = |S1|+ |SE |. If Nεi is the number of level
i nodes in S1, then:

|S1| =
h−1∑
i=0

Nεi.

Given Nε (obtained from histograms), the values for Nεi can be computed by
observing that a range query on B-trees must visit a set of nodes whose feature
ranges are consecutive. Since on average f entries are reported in each leaf
node (with possible exceptions for the two nodes whose feature ranges include
the endpoints of the query range), the number of expected leaf nodes accessed
is [Nε/ f ]. Following the same reasoning: Nεi = max{1, [Nε/ f i+1]} (the max
operation is due to the fact that at least one node must be visited at each level
even if no record is retrieved; that is, Nε = 0).

Next we focus on |SE |, for which we need to estimate the evolution rate
Eεi for level i nodes in S1. Unlike Ei in Section 3, Eεi is a function of time
(represented as Eεi( j ) for timestamp j ) because the number of updates at each
timestamp is different. Then the number of level i nodes that evolve from S1
during qt is given by Nεi

∑tqt
j=t2

Eεi( j ). So the total number of nodes in SE is∑h−1
i=0 [Nεi

∑tqt
j=t2

Eεi ( j )]. As a result,

NA(q) = |S1| + |SE | =
h−1∑
i=0

Nεi

1+
tqt∑

j=t2

Eεi ( j )

.
The derivation of Eεi follows that of Ei as presented in Section 3, except that,

since we only consider a fraction of live nodes (specifically, Nεi) at each times-
tamp, the number of updates that affect these nodes is aj ·Nεi · f i+1 (note that
Nεi · f i+1 is the number of entries in the subtrees of the Nεi nodes). Therefore,
for OVB-trees,

Eεi ( j ) = 1−
(

1− 1
Nεi

)2aj ·Nεi · f i+1

. (4.5)

The new cost model that estimates the number of node accesses for OVB-
trees is

OVB NA(q) =
dlog f N/be∑

i=0

Nεi

1+
tqt∑

j=t2

[
1−

(
1− 1

Nεi

)2aj ·Nεi · f i+1]
.

(4.6)

Similarly, for MVB-trees, the evolution rate Eεi( j ) at timestamp j is given by

Eεi ( j ) = aj · f i+1
1

(b− f1)i+1 . (4.7)
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The corresponding formula for MVB-trees is

MVB NA(q) =
dlog f1 N/be∑

i=0

Nεi

1+
f i+1

1 ·
j=tqt−1∑

j=t2

aj

(b− f1)i+1


. (4.8)

The size estimation of OVB- and MVB-trees is the same as the uniform case,
except that agility ai (hence, Ei) may vary at each timestamp. The estimations
for Ei( j ) (i.e., the evolution rate of level i at timestamp j ) is similar to Equations
(4.5) and (4.7), but the number of updates at each timestamp is a ·N . Replacing
Ei · (T − 1) with

∑T
j=2 Ei( j )in Equations (3.14) and (3.21), we obtain:

Size(OVB) =
dlog f N/be∑

i=0

(
N

f i+1

{
1+

T−1∑
i=2

[
1−

(
1− f i+1

N

)2ai N]})
; (4.9)

Size(MVB) =
dlog f1 N/be∑

i=0

 N

f i+1
1

+
N ·

T−1∑
i=2

ai

(b− f1)i+1

. (4.10)

Following the analysis of Section 3.4, the estimation for selectivity becomes:

NUM(q) = Nε ·
(

1+
tqt∑

i=t2

ai

)
, and sel(q) =

Nε ·
(

1+
tqt∑

i=t2

ai

)

N ·
(

1+
T−1∑
i=2

ai

) . (4.11)

Finally, we extend Equation (4.2) to capture the query performance when a
LRU buffer is available. First observe that the expected number of disk page
accesses PA(q) can be written as

PA(q) =
h−1∑
i=0

Nεi

1+
tqt∑

j=t2

Eεi ( j )

 · [1− probε(si, q)
]nq

, (4.12)

where probε(si, q) is the probability (averaged “locally,” namely, among nodes
in |S1| and |SE |) that a node of level i is accessed by the query. The reason-
ing of the above equation is that Nεi[1+

∑tqt
j=t2

Eεi ( j )] is the number of nodes
that must be accessed at level i, and [1−probε(si, q)]nq states the average prob-
ability that each of these nodes is not in the buffer (thus it must be fetched
from the disk). We estimate probε(si, q) based on Equation (3.8) except that
sk and Ei are replaced with the corresponding locally averaged values. More
specifically:

sk = (Nεi · f i+1) · qk

Nε

, and Ei = 1
qt − 1

tqt∑
j=t2

Eεi ( j ),

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.



Overlapping and Multiversion Structures • 325

where Eεi is given in Equations (4.5) and (4.7), respectively, for OVB- and
MVB-trees.

4.3 Extension to General MLTS

The previous analysis consists of two parts: probfeature and probtm (see
Equation (3.1). The properties of B-trees are only used for probfeature, or more
specifically, sik (the feature extent of a node). Extensions of the cost models to
other MLTS differ only in the estimation of probfeature, because general MLTS
are constructed through the same overlapping or multiversion frameworks, and
thus have similar temporal behavior. Therefore, provided that related results
are available regarding the performance of an ephemeral structure, our frame-
work produces models for the resulting MLTS easily. In the sequel, we illustrate
this by considering the R-tree as the ephemeral structure; that is, the corre-
sponding MLTS are overlapping R-trees (OVR-trees) and multiversion R-trees
(MVR-trees).6

R-trees have been extensively used in spatial databases, where the universe
is a two dimensional square. By Equation (3.2), probfeature should be repre-
sented as

probfeature = (s1 + q1)(s2 + q2), (4.13)

where q1 and q2 are the extents of qk along the spatial dimensions.
The cost models for OVR- and MVR-trees differ from those for OVB- and

MVB-trees only in the estimation for s1 and s2, which is the focus of R-tree
analysis [Kamel and Faloutsos 1993; Pagel and Six 1996; Theodoridis and Sellis
1996; Theodoridis et al. 2000]. Particularly, when DIST is uniform, the estima-
tion is given by Equations (4.14) and (4.15), where Di refers to the density of
node MBRs at level i (D0 is the density D of the actual object MBRs).7

si1 = si2 =
√

Di+1
f i+1

N
(0 ≤ i ≤ h− 1) (4.14)

where

Di+1 =
(

1+
√

Di − 1√
f

)2

and D0 = D. (4.15)

Replacing sik with si1 and si2 in Equations (3.16) and (3.23), we obtain the cost
models for OVR- and MVR-trees as in Equations (4.16) and (4.17) respectively.

6As mentioned earlier, existing implementations of OVR- and MVR-trees are HR- [Nascimento and
Silva 1998] and BTR-trees [Kumar et al. 1998], respectively.
7The density of a set of rectangles is defined as the average number of rectangles that contain a
given point in the workspace. Equivalently, density can be expressed as the ratio of the sum of
the areas of all rectangles over the area of the available workspace. Equations (4.14) and (4.15)
assume that the MBRs of nodes in R-trees are quadratic, which is a widely accepted fact in R-tree
cost analysis [Pagel and Six 1996; Theodoridis and Sellis 1996].
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Similarly, (4.18) and (4.19) compute the tree sizes, and Equation (4.20) predicts
the selectivity of interval queries. Note that the notions of degradation agility
and multitree point apply to general MLTS by following the same reasoning as
for B-trees.

OVR NA(q) =
dlog f Ne−1∑

i=0

 N
f i+1

√Di+1
f i+1

N
+ q1

√Di+1
f i+1

N
+ q2


×
{

1+
[

1−
(

1− f i+1

Nε

)2aj ·Nε
]

(qt − 1)

})
. (4.16)

MVR NA(q) =
dlog f1

Ne−1∑
i=0

 N

f i+1
1

√Di+1
f i+1

1

N
+ q1

√Di+1
f i+1

1

N
+ q2


×
[

1+ af i+1
1 · (qt − 1)
(b− f1)i+1

]}
. (4.17)

Size(OVR) =
dlog f Ne−1∑

i=0

Ki =
h−1∑
i=0

{
N

f i+1 +
[

1−
(

1− f i+1

Nε

)2aj ·Nε
]

× N
f i+1 (T − 1)

}
. (4.18)

Size(MVR) =
dlog f1 Ne−1∑

i=0

Ki =
h−1∑
i=0

[
N

f i+1
1

+ af i+1
1 N (T − 1)
(b− f1)i+1

]
. (4.19)

sel(q) =
(√

D
N
+ q1

)(√
D
N
+ q2

)
1+ a(qt − 1)
1+ a(T − 1)

. (4.20)

Extending the above models to address performance under buffers and arbi-
trary data distribution is also straightforward. Specifically, prob(si, q) is esti-
mated as Equations (4.21) and (4.22), respectively, for OVR- and MVR-trees.
Replacing prob(si, q) in Equation (4.2) with these two equations we obtain mod-
els that predict the number of page accesses.

OVR prob(si, q) =
√Di+1

f i+1

N
+ q1

√Di+1
f i+1

N
+ q2



×
1+

[
1−

(
1− f i+1

N

)2aN] (
qt − 1

)
1+

[
1−

(
1− f i+1

N

)2aN] (
T − 1

) . (4.21)
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OVR prob(si, q) =
√Di+1

f i+1
1

N
+ q1

√Di+1
f i+1

1

N
+ q2



×


1+ af i+1

1 · (qt − 1)
(b− f1)i+1

1+ af i+1
1 · (T − 1)
(b− f1)i+1

 . (4.22)

Arbitrary data distribution (particularly query selectivity) can be accurately
captured by extending the histogram methods for 1-D features. By applying the
analysis in Section 4.1, we obtain equations that have exactly the same form as
Equations (4.6) and (4.8) through (4.12) for query performance and tree size of
OVR- and MVR-trees, as well as the query selectivity. The difference is in the
way that values of Nε and Nei are obtained, which is the topic of the analysis
of R-trees [Acharya et al. 1999; Theodoridis et al. 2000].

Our cost models assume that MLTS are searched in a recursive depth-first
manner. That is, if all the branches of a node have been visited, we backtrack
to the parent node and continue with the next qualifying nontraversed branch.
In spite of the fact that, as mentioned earlier, specialized algorithms (i.e., back-
ward pointers [Bercken and Seeger 1996]) may improve the performance of
interval queries, we chose to present our model using the recursive depth-first
algorithm for the following reasons. First, the backward pointer method applies
only to a few ephemeral structures. For others (e.g., R-tree based structures), it
is necessary to visit qualifying entries at all levels. Since we aim at the general
methodology, we based our derivation on the recursive algorithm. Second, it
is straightforward to adapt the proposed models to the backward pointer al-
gorithm: the estimation for the leaf nodes remains the same, whereas we only
need to set qt to 1 to obtain estimations for the other levels.

5. EXPERIMENTAL EVALUATION

In this section, we conduct an extensive experimental evaluation to prove the ef-
ficiency of the proposed models, first discussing MLTS based on B-trees. Due to
the lack of real datasets, we created synthetic ones as follows. At the first times-
tamp, the features (each feature is a single value) of 20K objects distribute in
the universe [0, 1] following uniform, skewed (i.e., Zipf with harmonic constant
0.6), or Gaussian (with mean 0.5, variance 0.2) distributions. Then, at each
of the following 199 timestamps (i.e., the history contains 200 timestamps),
a% of the objects are selected to produce feature changes (a ranges from 0 to
100%). For example, if a equals 25%, 5K (= 25%× 20K) objects issue updates
per timestamp and the entire dataset contains 1 million (= 5K× 200) records.
Each feature update is such that the feature of an object deviates from its pre-
vious value by a distance randomly generated in [−0.05, 0.05]. In this way, we
allow the distribution of the objects’ features to vary slowly along with time.
Figure 10 shows the histograms at timestamps 1, 100, and 200 for datasets
with the same agility a= 10% but different initial distribution DIST1. Notice
that as time evolves the data distribution gradually becomes uniform. In order
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Fig. 10. Histograms of temporal datasets: (a) timestamp 1; (b) timestamp 100; (c) timestamp 200.

to obtain the histogram at each timestamp, we divide the feature universe into
100 partitions with equal lengths, and store, for each partition, the number of
objects in the corresponding range.

Variable agilities were created by setting a value for aMAX and randomly
generating agilities in the range [0, aMAX] for each timestamp. In the sequel we
denote a dataset with respect to its initial distribution and agility characteris-
tics. For example, Uni10% refers to uniform distribution and fixed agility 10%,
and Sk25%R represents a dataset with skewed initial distribution and random-
ized agility (note the “R” behind the agility value) generated by aMAX= 25%.
Similarly, Gaussian distribution is denoted as Gau.

Query performance is measured by the average node (or page) accesses in
answering a workload consisting of 500 queries. All the queries in a workload in-
volve a feature range of the same length qk and an interval range with the same
number of timestamps qt . The left endpoints of the feature and time ranges of
query q are uniformly distributed in ranges [0, 1−qk], and [1, 201−qt], re-
spectively. In the sequel, we denote a workload as WRKqk,qt to indicate its pa-
rameters. OVB- and MVB-trees are implemented as described in Salzberg and
Tsotras [1999] and Becker et al. [1996], respectively. Unless otherwise stated,
the parameters for MVB-trees are: PSVO= 0.8 (suggested value in Varman and
Verma [1997]) and PSVU = PSVO/2, PU = PSVO/4. The page size is set to 1 K
or 4 K bytes resulting in node capacities 122 or 506 entries, respectively, for
OVB-trees. The corresponding numbers for MVB-trees are 61 and 253 entries.
These values are used by the cost models.

5.1 Structure Size

We first evaluate Equations (3.14), (3.21), (4.9), and (4.10) on the sizes of the
MLTS. Figure 11 shows the estimated (est) and experimental (exp) sizes for uni-
form datasets as a function of dataset agility a, which remains fixed throughout
history. Notice that OVB-trees initially grow very fast with a, but their sizes
stabilize after the degradation agility (around 4 and 1% for 1 and 4 K block
sizes, respectively), where they degenerate into independent trees. The degra-
dation agility is lower for 4 K blocks because larger nodes are more likely to
be duplicated at each timestamp. On the other hand, the sizes of MVB-trees
grow linearly with the dataset agility and are much more space efficient than
OVB-trees for usual agilities (up to 25%).
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Fig. 11. Sizes of MLTS as a function of agility (uniform datasets): (a) OVB-trees; (b) MVB-trees.

Table II. Comparison of Tree Sizes

Sizes (Mbytes) of OVB-trees (fixed agility)
Agility (%) Uniform Skewed Gaussian Estimated

1 K 4 K 1 K 4 K 1 K 4 K 1 K 4 K
0.25 19 32 17 31 17 31 17 29
0.5 28 43 27 43 27 42 28 41
0.75 38 49 37 49 37 48 35 46
1 41 49 41 49 40 49 39 46
2 50 49 49 49 50 49 48 46
3 51 49 51 49 51 49 49 46
4 52 49 52 49 51 49 49 46
5 52 49 52 49 51 49 49 46

Sizes (Mbytes) of MVB-trees (random agility)
Random
Agility (%) Uniform Skewed Gaussian Estimated

aMAX 1 K 4 K 1 K 4 K 1 K 4 K 1 K 4 K
1 1 1 1 1 1 1 1 1
5 4 4 4 4 4 4 4 4

10 9 8 8 8 9 8 8 8
15 12 11 12 11 11 11 10 9
20 16 15 16 15 15 14 14 13
25 20 19 21 19 20 19 18 17

In order to verify the estimated degradation agility for MVB-trees (81%), we
increased the agility 5% at a time while checking for any noticeable increase
in the tree sizes. We found that the sizes of MVB-trees (for both block sizes)
stabilized at around 120 megabytes when the agility became higher than 85%.
Above a = 35%, MVB-trees consumed more space than independent B-trees
(i.e., around 50 Mb as shown in Figure (11a)), which is consistent with the
estimated value of size-MTP (33%) obtained by Equation (3.29).

Table II shows in detail the tree sizes for datasets of all distributions under
various agilities. The estimations are the same for datasets with the same
agility, and the experimental values confirm that the size of a tree is hardly
affected by the data distribution. Note that although we have shown only the
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Fig. 12. Node accesses versus agility (qk = 6%, qt = 10).

sizes of OVB- (MVB-) trees for fixed (random) agilities to avoid redundancy,
sizes of the other trees are also very well predicted (with similar error rates).

The small error (below 10%) in all cases (also in subsequent results) is due
to underestimation of the actual values. This is because we only consider the
major structural changes (i.e., node duplication and version splits for OVB- and
MVB-trees), while omitting other types of changes that may increase the tree
size (e.g., key splits or strong version overflows in OVB- and MVB-trees may
create two new nodes at a time). As mentioned in Section 3.1 and confirmed
in our experiments, however, such changes occur very infrequently, and their
omission does not bias the estimated performance significantly.

5.2 Query Performance

Next we evaluate query performance starting with the case where no buffer
is available. We identify several parameters that affect performance: the data
agility a, the feature range qk , and the query length qt . In order to investigate
the effects of individual parameters, in each experiment we vary one parameter
and fix the others to some standard values: a= 2% for OVB- and 10% for MVB-
trees, qk = 6% of the entire feature universe and qt = 10 timestamps (5% of the
history). Note that the standard agility is lower for OVB-trees because their
degradation agilities are lower.

5.2.1 Performance Without Buffers. Node accesses for uniform datasets are
predicted using Equations (3.16) and (3.23), whereas Equations (4.6) and (4.8)
together with histograms (as shown in Figure 10) are used for nonuniform
datasets. For the first experiment we fix qk and qt , and vary the agility of the
datasets (which, however, remains constant for each timestamp). Figure 12
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Fig. 13. Node accesses versus qk (a = 2% (OVB) or 10% (MVB), qt = 10).

shows the node accesses (NA) as a function of agility for datasets with different
distributions using workload WRK6%,10. The performance of both structures
demonstrates similar behavior to that of their sizes. Specifically, the query
cost of OVB-trees grows quickly with agility (until the degradation agility is
reached) and that of MVB-trees increases linearly. Note that the costs of OVB-
trees with 4 K block sizes are constant because at agility 2% these trees have
already degraded. Furthermore, by comparing figures on the same columns, it
is clear that MVB-trees outperform OVB-trees significantly. For example, when
agility= 5%, MVB-trees answer the query with around 60 (1 K block size) node
accesses whereas OVB-trees (already degraded) must perform more than 150
node accesses. Notice that although for nonuniform data we report the average
costs, for each individual query8 we observe similar error rates to those in the
average case. The same is true for all experiments.

Next we fix agility to 2 and 10% for OVB- and MVB-trees, respectively, qt
to 10 timestamps, and investigate query performance as qk changes from 2 to
12% of the feature universe. Figure 13 shows the performance as a function
of qk . As expected, the costs of all trees increase linearly with qk . MVB-trees
outperform OVB-trees significantly (around 50%) in all cases. The estimated
and experimental results are again very similar.

Figure 14 illustrates the node accesses for workloads WRK6%,1∼25, (i.e., qs is
fixed to 6% and qt ranges from 1 to 25 timestamps). OVB-trees outperform MVB-
trees only on workloads with timestamp queries (qt =1); for 1 and 4 K block
size, the costs of OVB-trees are around 19 and 5 node accesses, respectively,

8The costs of queries on nonuniform data depend on concrete query locations, as captured by our
model.
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Fig. 14. Node accesses versus qt (a= 2% (OVB) or 10% (MVB), qk = 6%).

Fig. 15. Query multitree points (uniform).

and the corresponding MVB-tree costs are around 40 and 10. This is because
for timestamp queries, only one logical B-tree needs to be visited and the fanout
of nodes in OVB-trees is around twice that of MVB-trees, which accounts for
the fact that OVB-trees require only half of the node accesses of MVB-trees.
The performance of OVB-trees, however, deteriorates very quickly as qt in-
creases. The gain of MVB- over OVB-trees increases initially with the query in-
terval, but tends to stabilize when qt is longer than 10, which is consistent with
Equation (3.31).

As discussed in Section 3.6, above a certain agility (i.e., the query MTP),
MVB-trees will be outperformed by the independent tree implementation. In
order to obtain the MTP for a set of specific query parameters (qk , qt) we increase
the agility by 1% at each step, and then compare the performance of the corre-
sponding MVB-trees with the independent tree implementation. Figures 15(a)
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Fig. 16. Node accesses versus aMAX (qk = 6%, qt = 10).

and (b) demonstrate the estimated (by Equation (3.30) and experimental query
MTP (for uniform datasets) with respect to qk and qt , respectively. As qk (qt)
increases, the multitree point initially decreases (increases) very quickly and
converges after around qk = 10%(qt = 15 timestamps) to rather low values
(30 and 35% for 1 and 4 K block sizes, respectively); above these agilities, the
independent tree implementation (or OVB-trees) will outperform MVB-trees.
Furthermore, recall (Section 5.1) that the size MTP is also around 35%, which
indicates that MVB-trees are useful only for dataset agilities up to this per-
centage.

Figure 16 evaluates query performance for datasets with random agilities
(node accesses plotted as a function of aMAX), using workload WRK6%,10. The re-
sults with respect to other query parameters are omitted due to their similarity
to those in Figures 13 and 14. The cost models are again very accurate.

5.2.2 Performance with Buffers. Now we proceed to evaluate the cost mod-
els (Equations (4.3), (4.4), and (4.12) in the presence of LRU buffers. Specifically,
we repeat the experiments of Section 5.2.1 by introducing a LRU buffer with
size 20% of the corresponding tree. Since OVB-trees are larger than MVB-trees,
they require more buffer space to achieve the same percentage. Each workload
now contains 2000 queries in order to allow a period long enough for the buffer
to warm up. We start to measure the number of disk accesses after all the pages
in the buffer are loaded for the first time (the longest warmup period requires
up to 650 queries, meaning that at least 1350 queries are measured).

Because the results are very similar to those in the absence of the buffer, we
selected only one diagram for datasets with variable agilities since they produce
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Fig. 17. Page accesses versus aMAX (qk = 6%, qt = 10).

relatively larger errors than datasets with fixed agilities. Figure 17 shows the
number of page accesses as a function of aMAX using workload WRK6%,10. The di-
agrams are similar to those in Figure 16, the only difference being that the
buffer decreases the query costs, which are captured by our cost models very
well.

In order to further study the buffer impact, we vary its size from 1 to 50%
of the corresponding tree. Figure 18 shows the page accesses for workload
WRK6%,10 as a function of the buffer size, using datasets with fixed agilities
(2 or 10% for OVB- and MVB-trees, respectively). Both structures improve sig-
nificantly only when the buffer contains a large part of the tree. For example,
in our settings, a buffer that keeps 20% of an OVB- (MVB-) tree amounts to
around 10 M (3 M) bytes. Given that practical applications usually involve
much higher cardinalities and longer “active” history (i.e., timestamps that are
subject to frequent queries), the required buffer size may be prohibitive. There-
fore, in practice buffering may be of limited importance for MLTS.

5.3 Effects of PSVO

In this section we demonstrate the effects of the PSVO parameter on the perfor-
mance MVB-trees using dataset Uni10%. Similar results were observed for other
datasets. Figure 19 shows the tree sizes as a function of PSVO. As discussed in
Section 3.3, smaller Psvo lowers the tree sizes, indicating less data redundancy.
Note that the MVB-tree achieves the smallest size (less than half of the largest
size) at Psvo value 0.3, whereas the tree size starts to grow at smaller values,
as predicted in Section 3.3.
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Fig. 18. Page accesses versus buffer size (a = 2% (OVB) or 10% (MVB), qk = 6%, qt = 10).

Fig. 19. Effects of PSVO on the sizes of MVB-trees (a = 10%).

Figure 20 shows the node and page accesses (buffer sizes fixed to 20% of the
tree with PSVO = 0.8) incurred by workload WRK6%,10 for trees built with differ-
ent PSVO. In this case, the optimal value of PSVO (0.6) is different from the corre-
sponding value for size minimization. Our cost models can lead to optimization
heuristics that take into account both the space consumption and query perfor-
mance. For example, if the objective is to minimize NA(q)/Size(MVB), we can
obtain the optimal PSVO by solving:

d [NA(q)/Size(MVB)]
df1

· df1

dPSVO
= 0.

5.4 Selectivity Estimation

In this section we evaluate the efficiency of Equations (3.25) and (4.11) for esti-
mating query selectivity. Figure 21 shows the actual and estimated number of
records that satisfy the query conditions for datasets with skewed distribution
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Fig. 20. Performance versus PSVO (a = 10%, qk = 6%, qt = 10).

Fig. 21. Selectivity evaluation for skewed datasets with fixed agilities.

Fig. 22. Selectivity evaluation for skewed datasets with random agilities.

and fixed agilities. We omit the results for uniform and Gaussian distributions
because the trends are similar (actually since skewed datasets usually pro-
duce the largest errors, the estimations are even more accurate for the other
datasets). Figure 22 illustrates the results of similar experiments on skewed
datasets with random agilities. It is clear that our models predict the selectivity
accurately in all cases (with less than 10% errors).
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Fig. 23. Evolution of GR dataset at different timestamps: (a) 1; (b) 100; (c) 200.

5.5 Application to R-Trees

To demonstrate the generality of our approach, we evaluate the accuracy of
the models proposed in Section 4 for MLTS based on R-trees. The OVR- and
MVR-trees are implemented as HR- [Nascimento and Silva 1998] and BTR-
trees Kumar et al. [1998]. The parameters of MVR-trees follow those in Kumar
et al. [1998]: PU = 0.2, PSVO = 0.85, and PSVU = 0.4. Using a page size of 1 K
(4 K) bytes, the node capacities in OVR- and MVR-trees is 48 (202) and 34 (143)
entries, respectively. Datasets are generated in a way similar to those used for
OVB- and MVB-trees. Specifically, at the first timestamp objects are distributed
in a 2-D unit universe by a certain distribution DIST1. Then, at each of the
subsequent 199 timestamps, a% (fixed or randomized) of the objects produce
updates. An update causes the center of an object to move by (δx, δy), where δx
and δy are randomly generated in [−0.05, 0.05]. We conducted experiments with
uniform, skewed, and Gaussian distributions, and observed that the results
were similar to those already reported in the previous sections. In order to
avoid redundancy and further demonstrate the adaptability of our models, we
generated datasets9 by using a real-world map as DIST1 of 23,268 objects [Web]
(Figure 23(a)). The updates are generated in the same way as described earlier
causing the initial distribution to gradually change. Figures 23(b) and (c) show
examples of the dataset (referred to as GR in the sequel) at timestamps 100
and 200.

As before, in order to support nonuniform datasets, we maintain density
maps [Theodoridis et al. 2000] at each timestamp. To be specific, we divide
the universe into a grid with 50× 50 cells and store in each cell the number
of rectangles that intersect the cell (for a histogram) and the average den-
sity in the cell (for a density map) that is calculated as the ratio between
the sum of the areas of the rectangles intersecting the cell and the cell’s
area.

Figures 24(a) and (b) evaluate the space consumption of OVR- and MVR-
trees as a function of agility. The observations are similar to those for

9We are not aware of any real spatiotemporal datasets of sufficient size (in terms of objects and
history length) available for experiments.
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Fig. 24. Sizes of (a) OVR- and (b) MVR-trees.

Fig. 25. Node accesses under fixed agilities.

OVB- and MVB-trees; OVR-trees degenerate into independent trees at very
small agilities, whereas MVR-trees are more space efficient. Notice that (com-
paring with Figure 11) the degradation agilities of OVR-trees (for both page
sizes) are slightly higher than those of OVB-trees due to the fact that the fanouts
of nodes in OVR-trees are smaller.

Next we verify the predictions for the number of node accesses of OVR- and
MVR-trees with respect to various dataset and query parameters. Figure 25(a)
shows the number of node accesses as a function of agility for OVR-trees us-
ing workload WRK6%,10 (i.e., the feature of each query is a quadratic rectangle
covering 0.36% of the entire universe). In Figures 25(b) and (c), the agility is
fixed at 2%, and the performance is measured as qk or qt changes, respectively.
Figures 25 (d) through (f) present the same experiments (except that the stan-
dard agility is set to 10%) for MVR-trees. The growth tendencies are similar to
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Fig. 26. Page accesses versus aMAX (qk = 6%, qt = 10): (a) OVB-trees; (b) MVB-trees.

Fig. 27. Selectivity evaluation (for random agilities).

MLTS based on B-trees except that, in Figures 25(b) and (e), the cost increases
quadratically with qk due to the quadratic growth in the query feature area.

In Figure 26 we introduce a buffer with the size 20% of each tree, and measure
the number of page accesses as a function of aMAX (using workload WRK6%,10)
for random agility datasets. The predicted costs (from Equation (4.12) follow the
actual ones very well, yielding maximum error around 20%. Finally, Figure 27
evaluates Equation (4.11) which predicts query selectivity (again for datasets
with random agilities).

To summarize, in this section we have presented an extensive experimen-
tal study on the accuracy and adaptability of our analysis. The results in-
dicate that the proposed models capture the behavior of MLTS very well,
producing accurate values for structure sizes, query performance (node or
page accesses), and selectivity. Furthermore, we verified the observations dis-
cussed in Section 3.5 about the behavior of overlapping and multiversion
structures (e.g., degradation agility, multitree points, etc.,). which provide
strong indications towards selecting the best alternative access method in
practice.

6. CONCLUSION

Our framework reduces the analysis of overlapping and multiversion struc-
tures to that of the corresponding ephemeral structures, which means that it
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is applicable to a variety of different access methods. Extensive experimenta-
tion proves the precision of the models for a wide range of conditions. To the
best of our knowledge, this is the first work that attempts to provide a system-
atic study for these types of structures. Given the ever-increasing availability
and importance of historical data in numerous applications, analysis of related
structures is crucial for the development of efficient systems.

In addition to their usefulness for query optimization, the proposed models
provide significant insight into the behavior of overlapping and multiversion
structures. In particular, we establish, for the first time, the close connection
between the performance of MLTS and the dataset agility. Furthermore, the for-
mulae quantify how fast redundant data accumulate and predict the agilities
where the structures degrade to independent trees. In general, multiversion
structures usually incur less redundancy than overlapping structures and are
preferable for general workloads. Above a certain agility (multitree points),
however, the best alternative is to simply build an independent ephemeral
structure for each timestamp. The proposed models accurately estimate the
degradation agilities and the multitree points. Thus they can be employed by
system administrators to decide suitable indexing methods given the dataset
and system characteristics.

Furthermore, this article also lays down a solid foundation for investigating
the performance of other queries, such as temporal and spatiotemporal joins
[Soo et al. 1994; Zhang et al. 2002]; aggregate queries [Yang and Widom 2001;
Papadias et al. 2002; Zhang et al 2001; Tao et al. 2002], and spatiotemporal
nearest neighbor queries. It may also lead to the development of improved
access methods. For example, structures such as MVB-trees were motivated by
the need to optimize timestamp queries with minimal space overhead. Other
structures could be developed aiming at the optimization of interval queries,
balancing the tradeoff between data redundancy and performance.
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