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Abstract— In a data stream management system, a continuous 

query is processed by an execution plan consisting of multiple 

operators connected via the “consumer-producer” relationship, 

i.e., the output of an operator (the “producer”) feeds to another 

downstream operator (the “consumer”) as input. Existing 

techniques execute each operator separately and push all results 

to its consumers, without considering whether the consumers 

need them. Consequently, considerable CPU and memory 

resources are wasted on producing and storing useless 

intermediate results. Motivated by this, we propose just-in-time 

(JIT) processing, a novel methodology that enables a consumer to 

return feedback expressing its current demand to the producer. 

The latter selectively generates results based on this information. 

We show, through extensive experiments, that JIT achieves 

significant savings in terms of both CPU time and memory 

consumption. 

I. INTRODUCTION 

In typical data stream applications, including wireless 
sensor networks [5], road traffic monitoring [3] and publish-
subscribe services [10], data continuously flow into a DSMS. 
Users of the DSMS pose long-running queries, whose results 
are incrementally evaluated as data records arrive or expire. 
To answer such a query, the DSMS runs an execution plan 
consisting of multiple basic operators (e.g., selections, joins) 
connected via the producer-consumer relationship, where the 
output of the producer comprises the input of the consumer. 
Besides a few top-level operators whose results are directly 
presented to the user, most operators generate output for the 
sole purpose of feeding their consumers. 

Figure 1a shows an example of a continuous query 
expressed in CQL [1]. Tuples from three streaming sources A, 
B and C are joined to detect a certain event. As a real-world 
example, an abnormal combination of readings from close-by 
humidity, light and temperature sensors may trigger the alarm 
in a factory [5]. The clause “RANGE 5 minutes” specifies that 
each record is alive for exactly 5 minutes, after which it 
expires and is purged from the system. Figure 1b illustrates a 
possible execution plan for this query consisting of two binary 
join operators Op1 and Op2 (denoted by ovals). Op1 joins 
sources A and B, whereas Op2 joins the result of Op1 (i.e., A  
B) with source C. Op1 (Op2) is the corresponding producer 
(consumer) of Op2 (Op1) respectively. The rectangles SA, SB 
(SAB and SC) denote operator states of Op1 (Op2), which hold 
tuples that came in the past, and are still valid. For example, at 
any time instant, SB holds B tuples that have arrived in the last 
5 minutes. A more detailed explanation of streaming join 
operators and their states is given in Section II. 

SELECT * FROM  
A [RANGE 5 minutes],  
B [RANGE 5 minutes],  
C [RANGE 5 minutes] 
WHERE A.x = B.x  
AND A.y = C.y  

A B C

A   B

A   B   C

SA SB

SCSAB

Source

Op :Producer

Op :Consumer
2

1

 
(a) CQL Expression (b) Execution plan 

Figure 1  Continuous query example 

An important fact overlooked in most previous work is that 
the producer does not have to generate a result that is not 

used by any of its consumers. We illustrate it with the tuple 
arrival sequence of Table I. Suppose a record a1 from source A 
arrives at time 1, while there are three join partners b1, b2, b3 
of a1 in SB, but no matching tuples of a1 in SC. Under 
conventional methods, operator Op1 (i.e., the producer) uses 
a1 to probe (i.e., to identify join partners) SB, generating three 
partial results a1b1, a1b2 and a1b3. Operator Op2 (the consumer) 
then uses each of them to probe SC, obtaining no results since 
no tuple in SC matches a1. Tuple a1 and partial results a1b1, 
a1b2, a1b3 are inserted into operator states SA and SAB 
respectively. Note that, at the current time instant, it is not 
necessary for the producer (Op1) to generate any of the three 
intermediate results a1b1, a1b2, a1b3 since the consumer (Op2) 
is unable to obtain any output with them. Yet, CPU time and 
memory resources are spent on computing and storing them. If 
no matching tuple of a1 appears in C before the expiration of 
these intermediate results, the resources spent on them are 
wasted1. 

TABLE I 
EXAMPLE TUPLE ARRIVAL SEQUENCE 

Timestamp Tuple (attribute values) Partial results 

0 b1(x=1), b2(x=1), b3(x=1) — 

1 a1(x=1, y=100) a1b1, a1b2, a1b3 

2 b4(x=1) a1b4 

3 a2(x=1, y=100) a2b1, a2b2, a2b3, a2b4 

 
Next, suppose that at time 2 a new record b4, matching a1, 

arrives while there are still no join partners of a1 in SC. By 

                                                 
1 Some query processing algorithms (e.g., M-Join [VNB03]) 
do not store intermediate results. In this case the resources for 
producing a1b1, a1b2, a1b3 are wasted regardless of whether 
matching C tuples of a1 arrive in the future. 
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probing SA with b4, Op1 generates a partial result a1b4, and 
subsequently performs a futile probing against SC. Similar to 
the previous three partial results, the computation of a1b4 is a 
waste of resources. Furthermore, the sheer presence of a1 
enlarges the size of SA, making the probing against SA more 
expensive even for incoming B tuples that do not match a1. 
Finally, assume that at time 3, a new record a2 arrives with 
identical values on the join attributes x and y as a1. This time, 
4 intermediate results (a2b1-a2b4 shown in Table I) are 
generated and 4 pointless probes against SC are performed. In 
general, as tuples like b4 and a2 keep coming, an increasing 
number of unwanted intermediate results are produced each 
time. This problem is amplified when more sources participate 
in the query. 

Motivated by these observations, we propose Just-In-Time 
(JIT), a novel processing approach that dynamically adjusts 
the execution of producer operators based on the requirements 
of their consumers. Applying JIT to our example, after Op2 
finds out that a1b1 cannot generate join results due to the lack 
of matching tuples in SC, it sends a feedback to Op1, which 
immediately suspends the processing of a1. Meanwhile, Op1 
stores a1 in a blacklist instead of SA to prevent future join 
partners of source B (e.g., b4), or similar tuples of A (e.g., a2), 
from generating unnecessary intermediate results. If a 
matching tuple of a1 arrives later in C, Op2 reports a change of 
demand to Op1, which then resumes the processing of a1 and 
related tuples (e.g., b4, a2), producing the required partial 
results in a just-in-time fashion. 

We show experimentally that JIT achieves significant 
performance gains, especially for queries with comparatively 
high selectivity. The rest of the paper is organized as follows. 
Section II surveys related work. Section III outlines the 
general framework of JIT. Section IV provides efficient 
implementation of key components of JIT. Section V 
discusses JIT in various query plans. Section VI contains an 
extensive experimental evaluation. Finally, Section VII 
concludes with directions for future work. 

II. RELATED WORK 

Existing work in the data stream literature can be classified 
into two categories: the first aims at summarizing streaming 
data into synopsis structures (e.g., histograms, wavelets, 
sketches) and using them to provide fast, approximate answers 
to specific aggregate queries (e.g., [15, 12]); the second 
focuses on the design of general-purpose DSMSs (e.g., Aurora 
[2, 8], STREAM [1], TelegraphCQ [4], etc.) with formal 
semantics, expressive query languages and efficient query 
processing techniques. This work falls in the latter category, 
as a novel approach to continuous query processing. 

A fundamental difference between a traditional DBMS and 
a DSMS is that the latter faces infinite inputs from the 
streaming sources, which cannot be handled by blocking 
operators such as joins [19]. To tackle this problem, most 
DSMSs adopt the sliding-window semantics. Specifically, for 
each source, the user specifies a window of fixed length. In the 
example of Figure 1, all three sources are assigned a window 
of 5 minutes. Hereafter, for simplicity we assume the 

existence of a global window of length w. Each incoming 
tuple t is associated with a timestamp t.ts, and is considered 
alive during the lifespan of [t.ts, t.ts+w). Accordingly, two 
input tuples t and t′ with timestamps t.ts and t′.ts can join only 

if |t.ts–t′.ts| ≤ w. A join result t with component inputs t1, …, 

tm is usually assigned a timestamp of t.ts = maxm
i=1 ti.ts [1]. For 

example, in Figure 1b, let ab be an output tuple of the operator 
A B, produced by joining a (from A) and b (from B). Then, 
ab.ts is the later timestamp between a.ts and b.ts. Assuming 
that a.ts and b.ts represent the arrival time of the two tuples, 
then ab.ts can be interpreted as the earliest time that ab can be 
created. In addition, most DSMSs require the results of a 
query to be reported according to their temporal order: for any 
two result tuples t and t′, t is reported before t′ if and only if 
t.ts ≤ t′.ts. 

Query processing in a DSMS entails the construction and 
execution of a query plan. This work focuses on the execution 
part. Under this context, one of the most extensively studied 
problems is join processing, which is inherently more 
complex than single-input operators such as selections and 
projections. The state-of-the-art binary join algorithms (e.g., 
[16]) involve three steps: purge-probe-insert. Consider for 
instance, the operator A B in Figure 1b. An incoming tuple a 
from input stream A first purges tuples of SB, whose 

timestamp is earlier than a.ts−w; then, it probes SB and joins 
with its tuples; finally, a is inserted into SA. 

An m-way join can be computed through m–1 binary join 
steps. For example, the query plan in Figure 1b answers a 3-
way join with two binary join operators, Note that such a plan 
(commonly referred to as X-Join [11]) stores intermediate join 
results (e.g., those of A B) in the operator state (SAB). In 
contrast, an M-Join [23] plan, illustrated in Figure 2a, does not 
store any intermediate results. Instead, tuples in each source 
go through a linear path of m–1 operators to join with tuples 
from other sources. This approach costs less memory than the 
X-Join, but more CPU time due to repeated computations of 
intermediate results. Adaptive caching [11] provides a tradeoff 
between memory and CPU resources, resembling a tree of M-
Join operators. Finally, the Eddy architecture [4], shown in 
Figure 2b, features the novel Eddy operator that dynamically 
routes source tuples and intermediate results to appropriate 
operators to complete their processing. The proposed 
algorithms can be applied to all these types of join plans. 
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(a) M-Join (b) Eddy 

Figure 2  Example of alternative m-way join plans 

A plethora of optimizations for continuous query 
processing have been proposed in the literature. When there 
are numerous operators in the system, operator scheduling 
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(e.g., [9]) finds the best execution order for minimizing 
memory consumption and maximizing throughput. Adaptive 

query processing techniques (e.g., dynamic plan migration [25, 
24]) dynamically adjust the query to optimize performance in 
the presence of changing stream characteristics. When the 
system has insufficient CPU or memory resources to process 
the query completely, load shedding (e.g., [22]) or operator 

spilling (e.g., [20]) aims at generating a maximal (or well-
represented) subset of the actual results. In case of multiple 
running queries, performance can be improved through shared 
execution (e.g., [14]) and query indexing (e.g., [18, 6]). 
Finally, novel hardware, such as the Cell processor [13], can 
be used to improve performance. Our work is orthogonal to 
the above methods.  

Demand-driven operator execution (DOE) [21], recently 
proposed in the context of stream keyword search, suspends a 
join operator whenever (i) one of its states becomes empty, or 
(ii) all its consumers are suspended. As we demonstrate later, 
this is an extreme case that a producer generates only 
unwanted intermediate results; thus, DOE is subsumed by JIT. 
Furthermore, DOE focuses on keyword search systems, 
following some specific assumptions (e.g., the execution plan 
is always a left-deep tree), whereas the proposed solutions are 
generally applicable to all query plans. 

III. GENERAL FRAMEWORK OF JIT 

Section III-A describes JIT at an abstract level. Section III-
B deals with operator scheduling issues. Section III-C 
discusses feedback propagation in plans where the same 
operator acts both as a consumer and producer. 

A. Main Concepts 

Let Q be a continuous query registered in the DSMS, and 
EP(Q) be the execution plan of Q constructed by the query 
optimizer. For ease of presentation, hereafter we focus on the 
case that EP(Q) is a tree of binary join operators, i.e., an X-
Join plan [11], and discuss more complicated plans in Section 
V. JIT does not rely on any assumptions about the shape of 
EP(Q) (which can be left-deep, right-deep or bushy), or the 
value distributions of the records arriving from the data 

sources. Let OC, OP ∈ EP(Q) be two operators forming a 
consumer-producer relationship, i.e., the output of OP is one 
of OC’s inputs. JIT considers the case where OC is selective 
with respect to the inputs supplied by OP. This means that 
several partial results generated by OP never contribute to the 
output of OC, which we call fruitless partial results (FPRs). In 
Figure 1, assuming that during a1’s lifespan, a matching tuple 
never appears in C, then a1b1, a1b2, etc., are all FPRs with 
respect to consumer Op2.  

However, given an intermediate result t from OP, it is 
impossible for OC to determine whether t is an FPR or not 
before its expiration, because a join partner of t may arrive at 
a later time. On the other hand, OC knows those partial results 
that are currently not needed, which we call non-demanded 

partial results (NPRs). In the running example, at timestamp 1, 
a1b1, a1b2, a1b3 are NPRs with respect to Op2. Clearly, each 
NPR has two possible destinies: (i) to be matched by a future 

partner, or (ii) to become a FPR after its expiration. JIT 
postpones the generation of NPRs of type (i) until they are 
demanded, i.e., when a matching partner arrives, and 
eliminates the production of type (ii) NPRs altogether. 

JIT exploits the observation that there is a broad class of 
partial results that can be detected as NPRs before their 
generation. Their common characteristic is that they contain 
minimal non-demanded sub-tuples (MNSs), such that any 
output of OP that is super-tuple of an MNS must be an NPR. 
In the running example, a1 is an MNS; joining a1 with any B 
tuple leads to an NPR. We require a non-empty MNS to be 
minimal, i.e., not to contain another MNS as sub-tuple. The 
empty tuple Ø is sub-tuple of any record. It is possible for Ø 
to be a valid MNS, when the opposite operator state (of OP) at 
OC is empty. In this case, all results computed by OP are NPRs, 
and OP can be simply suspended, achieving the same effect as 
DOE [21]. Figure 3 visualizes the relationship between FPR, 
NPR and MNS. 
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Figure 3  Concepts of FPR, NPR and MNS 

According to JIT, consumer OC detects MNSs during join 
processing, and reports them to OP as a suspension feedback. 
In our example, consumer Op2 processes input a1b1, identifies 
a1 as an MNS, and sends a feedback f = <suspend, {a1}> to 
producer Op1. Once OP receives such a feedback, it 
immediately stops generating results that are super-tuples of 
the specified MNSs. Continuing the example, Op1 stops 
joining a1 with B tuples, thus avoiding intermediate results 
a1b2, a1b3, a1b4. Furthermore, if later a new tuple a2 arrives, 
with identical attribute value on y (the join attribute of A and 
C) as a1, it is not joined with B, eliminating the generation of 
more NPRs. 

Similar to an NPR, an MNS may be matched by a later 
partner. Therefore, OC stores all detected MNSs in an MNS 

buffer until their expiration, and probes each incoming tuple 
from the opposite input against the MNS buffer. The MNS 
buffer may be organized as a hash table, or other index 
structure, to speed up the probing. Whenever OC finds a 
matching tuple t of an MNS s, it removes s from the MNS 
buffer, and sends a resumption feedback containing s to 
producer OP. Upon receiving this message, OP immediately 
starts generating the set Ss of super-tuples of s that have not 
been produced before, and returns Ss to OC. After obtaining Ss 
from OP, OC joins t with Ss to generate results, and appends Ss 
to the corresponding operator state. We call the producer’s 
reactions to both kinds of feedback collectively as dynamic 

production control. 
Using the running example, suppose that at timestamp 4, a 

new tuple c1 (c1.y = 100) arrives from source C. Op2 finds that 
c1 matches MNS a1, and sends the feedback f′ = <resume, 
{a1}> to Op1. Op1 joins a1 and a2 (whose processing is also 
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suspended since its y attribute is identical to a1) with tuples in 
SB, obtaining Sa1

 = {a1b2, a1b3, a2b4, a2b1, a2b2, a2b3, a2b4}. 

Note that a1b1 is not included in Sa1 
because it has already 

been generated (before a1 is found as an MNS). Op1 returns 
Sa1

 to Op2, which joins it with c1, generating 7 results. Finally, 

all tuples in Sa1
 are appended to SAB. 

The general framework of JIT is flexible, in that it can be 
adapted to the stream (e.g., arrival rate) and query 
characteristics (e.g., operator selectivity). Specifically, a 
consumer OC may choose not to detect all MNSs for a given 
input. Intuitively, detecting more MNSs gives better guidance 
to producer OP (at the expense of higher cost at OC), but does 
not affect the correctness of the output. Furthermore, OP may 
decide to ignore the message and keep producing NPRs.  

B. JIT and Operator Scheduling 

Just-in-time processing necessitates the cooperation of OC, 
OP and the DSMS’s operator scheduler to maximize its 
performance. In this section we present some scheduling 
policies starting with the case that f is a suspension feedback. 
At the time that OC issues f, it is possible that OP is currently 
working on producing NPRs specified by f. In the running 
example, when Op2 sends f = <suspend, {a1}>, Op1 may be 
joining a1 with another tuple in SB, say b2. Upon receiving f, 
JIT requires OP to suspend its current work and immediately 
handle f. OP resumes previous work only after finishing 
dealing with f. In the example, after handling f, Op1 learns that 
a1 is an MNS and stops joining it with SB. Moreover, it is also 
desirable for the scheduler to assign OP a higher priority than 
its upstream operators while processing f, because (as 
discussed in Section III-C) OP may propagate the feedback to 
them. 

A complication arises when the DSMS places an inter-
operator queue between each pair of consumer / producer 
operators to store the partial results not yet processed by the 
consumer (in order to enable more flexible operator 
scheduling). After OC identifies an MNS s, super-tuples of s 
may have already been produced and stored in the queue QCP 
between OC and OP. Note that OC cannot simply delete them 
from QCP because they are considered “future inputs” at this 
moment. For instance, let t be a super-tuple of s. There may 
exist another tuple t' in the opposite queue (i.e., the queue of 
the other OC input) such that t' matches t and t'.ts ≤ t.ts, 
meaning that t and t' can generate a result. In our prototype, 
we process these super-tuples as normal input since the size of 
an inter-operator queue is usually small. When OC detects one 
of them, it sends a feedback to OP specifying s as an MNS. If 
OP has already suspended generating such NPRs, it simply 
ignores the message. 

Next we discuss resumption messages. Recall that a 
resumption feedback is issued by OC during the processing of 
an incoming tuple t, requesting OP to produce a set S of 
suppressed inputs. Because of the temporal ordering 
requirement, OC must process t before generating results for 
subsequent inputs. This means that if OC finishes the purge-
probe-insert routine of t before S is ready, it has to wait for OP 
to compute S. This waiting may lead to temporary silence of 

OC’s output and, in a distributed setting (where OC and OP are 
on different sites) idle CPU cycles. 

JIT takes several measures to eliminate this waiting. First, 
for each incoming tuple t, OC first probes t against the MNS 
buffer before the opposite operator states. The rationale is that 
if matching MNSs of t are found, OC continues to purge / 
probe t against the opposite operator state, and at the same 

time OP starts to compute the demanded partial results S. OC 
waits for OP only if the latter does not complete computing S 
before the former finishes probing t against the corresponding 
operator state. Second, after OC sends a resumption feedback 
to operator OP, the scheduler assigns OP a higher priority than 
OC. Finally, similar to the case of suspension messages, upon 
receiving a resumption feedback, OP immediately suspends its 
current work, computes S, and then resumes the previous job. 
We summarize the timeline of the production resumption 
process in Figure 4. 
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Figure 4  Timeline of production resumption 

C. Feedback Propagation 

In complex query plans, the producer OP may also have 
upstream operators that supply its inputs. In Figure 5a, Op3 is 
simultaneously a producer for Op4, and a consumer with 
regard to Op1 and Op2. A subtlety in this situation is that the 
dynamic production control performed by an operator (as a 
producer) may change its demand for inputs (as a consumer). 
Consider the tuple arriving sequence of Figure 5c. The join 
predicate checked at Op4 is illustrated in Figure 5b. For 
simplicity, we assume that all tuples shown in the sequence 
(a1-e1) match each other. Initially, records b1 and c1d1 are 
present in operator states SB and SCD respectively. Then, tuple 
a1 from source A is joined with b1, generating a1b1, which is 
subsequently joined with c1d1, producing a1b1c1d1.  
 

 (A.x = E.x) ∧ (B.y = E.y)  

∧ (C.z = E.z) ∧ (D.w = E.w) 

(b) Join Predicate at Op4 

Timestamp Tuple 

0 b1, c1d1 

1 a1 
E

SESABCD

SAB SCD

A B C D

SA SB SC SD

Op4

Op3

Op2Op1

 2 e1 

(a) Query plan (c) Tuple arrival sequence 

Figure 5  A 5-way join example 

Now at Op4, suppose SE has matching records of b1 and d1, 
but not a1 and c1. Op4 thus sends a feedback <suspend, {a1, 
c1}> to Op3. Responding to the feedback, Op3 stops joining 
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tuples containing a1 or c1 (e.g., a1b1, c1d1 respectively) with 
their corresponding partners (inputs from Op2 and Op1). 
Consequently, Op3’s demand for inputs has changed; in 
particular, it does not want inputs that are super-tuples of a1 or 
c1 any longer. Hence, it propagates the feedback <suspend, 
{a1}> to Op1 and <suspend, {c1}> to Op2. Similarly, when e1 
(matching a1 and c1) arrives at time 2, Op3 receives the 
resumption feedback <resume, {a1, c1}> from Op4. It then 
propagates <resume, {a1}> to Op1 and <resume, {c1}> to Op2, 
obtains the required inputs from them, and computes the 
partial results requested by Op4. 

Scheduling policies are more complex in the presence of 
feedback propagation, but follow the general idea described in 
Section III-B: (i) an operator always propagates a feedback 
before handling it, (ii) upon receiving a feedback, an operator 
suspends its current job and handles the feedback, (iii) an 
operator handling a suspension feedback has higher priority 
over its upstream ones, and (iv) an operator handling a 
resumption message computes the tuples requested by its 
consumer, while at the same time expecting inputs from its 
producers (to which it has propagated the feedback) and has a 
lower priority over these producers. Figure 6 summarizes the 
general framework of JIT, which consists of two procedures: 
Process_Input (performed by the consumer) and 
Handle_Feedback (by the producer).  

 
Process_Input (Tuple t, Operator OP) // Consumer 
// INPUT = t : an input tuple 
// OP: the producer operator that generates t 
1. Let St (So) be the operator state corresponding to t (opposite of t) 
2. Let NBo be the MNS buffer opposite of t 

3. Initialize MNS set Π to empty 
4. Purge NB, and probe t against NB 

5. For each MNS s ∈ NBo matching t  

6.  Remove s from NBo and add s to Π 

7. If Π is not empty 

8.  Send a feedback <resume, Π> to OP 

9.  Assign OP a higher priority than the current operator 

10. Purge So and probe t against So, generating results 

11. Compute the MNS set Ω = Identify_MNS(t) 

12. If Ω is not empty, send a feedback <suspend, Ω> to OP 
13. Insert t into St 

14. If Π is not empty 

15.  Retrieve input set SΠ corresponding to Π from OP 

16.  Join t with SΠ, generating results 

17.  Append SΠ to So 

Handle_Feedback (Feedback f, Operator OC)  // Producer 

// INPUT = f: a feedback of the form <command, Π> 

// OC: the consumer that sends f 
1. Suspend current operation 
2. Propagate_Feedback(f) 

3. If command is suspend, call Suspend_Production(Π, OC) 

4. Else, call Resume_Production(Π, OC) 
5. Resume the operation suspended at Line 1 

Figure 6  General framework of JIT 

Lines 10 and 13 in Process_Input materialize the purge-

probe-insert processing routine for a given input t. Before that, 
the consumer probes t against the MNS buffer NB and sends 
the resumption feedback (Lines 1-9). The response of this 

feedback is retrieved later (Lines 14-17), according to the 
asynchronous messaging protocol described above. After 
probing the opposite state So, the consumer detects MNSs of t, 
and sends a suspension feedback, if any MNS is found. 
Regarding the producer, the only change is that it now handles 
the pre-emptive job of responding to feedback. Specifically, it 
first propagates the feedback to upstream operators (Line 2), 
and performs appropriate operations depending on the type of 
the feedback (Lines 3-4). Two important aspects of JIT are 
left open in the above framework: (i) on the consumer’s side, 
function Identify_MNS and (ii) on the producer’s side, 
functions Propagate_Feedback, Suspend_ Production and 
Resume_Production. We call them collectively as the 
feedback mechanism and discuss it in detail in the next section.  

IV. IMPLEMENTATION OF THE FEEDBACK MECHANISM 

Section IV-A describes MNS detection by the consumer 
operator. Section IV-B presents the dynamic production 
control, i.e., the producer’s reactions to feedback. 

A. MNS Detection 

A suspension feedback is initiated when a consumer OC 
identifies that some input tuple t does not have join partners, 
in which case OC sends a message  <suspend, {MNS(t)}> to 
the corresponding producer OP of t. MNS(t) is the set of 
minimal non-demanded sub-tuples contained in t. Any sub-
tuple of t that has the potential to belong to MNS(t) is called 
candidate non-demanded sub-tuple (CNS). A CNS can only 
contain components that appear in the join predicate of OC. 
Consider, for instance, that the consumer is the top join of 
Figure 1, i.e., OC =Op2 and t = ab (received from OP =Op1). 
Given the join predicate A.y = C.y at Op2, the CNSs are a and 
Ø2. In the more complex scenario of Figure 5, for an input t = 
abcd of Op4, there are 16 CNSs, e.g., Ø, a, ab, abc, abcd, etc., 
which are all combinations of components a, b, c, and d 

involved in the conditions of Op4: (A.x = E.x) ∧ (B.y = E.y) ∧ 

(C.z = E.z) ∧ (D.w = E.w). CNSs can be organized in a lattice, 
where each node corresponds to a CNS and nodes are 
connected by the "sub-tuple" relationship. Figure 7 illustrates 
the lattice for input t = abcd in the example of Figure 5. 

 

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

Ø level 0

level 1

level 2

level 3

level 4

 

Figure 7  Example CNS lattice 

Two important properties of the lattice are (i) if a 
CNS/node s is determined to be an MNS, then none of its 
ancestors can be an MNS because they are not minimal 
(although they are all NPRs), and (ii) given a node s above 

                                                 
2 Recall from Section III.A that the empty tuple Ø is a valid 
MNS, when the opposite operator state of OC is empty. 
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Level 1 and a tuple t′, s matches t′ if and only if all its children 
match t′. Regarding property (i), if one of a, b, ab or ac is an 
MNS, abc cannot be an MNS since it contains an MNS as a 
sub-tuple. Similarly, for property (ii), if abc matches a tuple t' 
both ab and ac must match t'. Let So be the opposite state of t 
in OC. Identify_MNS uses the CNS lattice to efficiently 

determine (i) given a CNS s and a tuple t′∈So, whether s 
matches t′, and (ii) given a CNS s that has no matching tuples 
in So, whether s is minimal. The basic idea of the algorithm is 

to match all nodes with each tuple t′∈So, and subsequently 
report minimal CNSs that do not have a matching partner.  

 Figure 8 illustrate the pseudo-code. As a special case, if So 
is empty, Identify_MNS reports Ø as the only MNS and 
returns immediately. Otherwise, it initializes each node of the 
CNS lattice L to alive, meaning that it has the potential to 

become an MNS. Then, for each tuple t' ∈ So, the algorithm 
tests every Level 1 node s against t'. If s matches t', s is 
marked as matched; otherwise, it is set to unmatched. Next, it 
proceeds to examining nodes in increasing order of their level. 
Each node is marked as matched, if all its children are 
matched. After completing the traversal of L for t', all matched 
nodes are set to dead, and Identify_MNS proceeds to the next 
tuple in So. When all tuples in So have been processed, the 
algorithm picks nodes that are both alive and minimal. 
Specifically, it starts from Level 1 and reports all alive nodes 
as MNSs. Then, it checks higher nodes level by level. For 
each alive node s, if any of its children is an MNS or non-
minimal, s is marked as non-minimal; otherwise, s is reported 
as an MNS. 

 
Identify_MNS (Record t) // Consumer 
// INPUT = t : an input record from producer;  
1. Let St (So) be the operator state corresponding to t (opposite of t) 
2. If So is empty, report Ø as the only MNS and return 
3. Let L be the CNS lattice of t 
4. Initialize all nodes in L to be alive 

5. For each record t′ ∈ So 

6.  For each Level 1 node s ∈ L, mark s as matched if it matches t′, 
and unmatched otherwise 

7.  For l = 2 to top level of L 
8.   For each s on level l of L 
9.    Mark s as matched if all its children are matched, and 

unmatched otherwise 
10.  Set a node to dead if marked as matched during Lines 6-9 
11. Report each Level 1 node that is alive as MNS 
12. For l = 2 to top level of L 

13.  For each s on level l of L 

14.   Mark s as non-minimal if any of its children is MNS or non-
minimal; otherwise, report s as MNS 

Figure 8  Algorithm Identify_MNS 

Note that a matched node may become unmatched during 
the processing of a subsequent tuple. On the other hand, once 
a node dies, it stays so for the entire execution. Consider again 
input t = abcd of Op4 in Figure 5 and a tuple e1 in SE = So such 
that a.x = e1.x. The processing of e1 will set node a to matched 
(Line 6) and then dead (Line 10). Now assume a subsequent 
tuple e2 in SE such that c.z = e2.z. During the processing of e2, 
node c becomes matched and dies. However, node ac remains 

unmatched (and alive) because the status of a has switched to 
unmatched (but still dead) for e2.   

Identify_MNS can be combined with a nested loop join of t 
and So, since both probe t against all So records. Furthermore, 
when the join condition at OC contains equi-join predicates, its 
performance can be accelerated using Bloom filters [7] on So. 
Specifically, a Bloom filter comprises of (i) BF[1..k], a k-bit 
string of binary values, and (ii) a set of l hash functions h1, 
h2, …, hl, each of which maps all values in the domain to 
integers in [1, k]. Given a set of values V, BF[i] is 1 if there 

exists v ∈ V and 1≤j≤l such that hj(v) = i, and 0 otherwise. 
Clearly BF[i] can be built with a single scan of V. Given a 
value v, if there exists 1≤j≤l such that BF[hj(v)] is 0, one can 
be sure that v does not exist in the value set V. Continuing the 
example, a Bloom filter maintained on E.y (E.z, E.w) is 
capable of detecting (some) b (c, d) sub-tuples that do not 
match any tuple in SE, respectively, and thus are MNSs. This 
method has lower computation cost than Identify_MNS, but 
may not detect all MNSs. 

B. Dynamic Production Control 

In this section we focus on the handling of feedback 
messages by Suspend_Production, Resume_Production and 
Propagate_Feedback. In all these procedures, each MNS in 
the feedback is handled independently. Thus, without loss of 
generality, we assume that the feedback contains only one 
MNS. Let operators OL and OR supply the left and right inputs 
of OP, respectively. Depending on the schema of results 
produced by OL and OR, an MNS is classified into two types: a 
Type I MNS is a sub-tuple of results generated exclusively by 
OL or OR, whereas a Type II MNS is a sub-tuple of the 
combination of results produced by OL and OR. In the example 
of Figure 5, OP = Op3, OL = Op1 and OR = Op2. Sub-tuples a, 
ab and c belong to Type I, while ac belongs to Type II. 

 We also distinguish two cases for suspension of production. 
The first refers to conventional suspension feedback, i.e., an 
operator completely stops producing NPRs containing an 
MNS. On the other hand, a mark-result feedback requires the 
producer to mark, rather than to suspend production of, super-
tuples of the specified NPRs. A mark-result message is 
generated for type II MNSs. Consider, for instance, that Op3 in 
Figure 5 wants to stop MNS {ac}, generated from inputs OL = 
Op1 (for a) and OR = Op2 (for c). Op3 passes <mark, {a}> to 
Op1 and <mark, {c}> to Op2. Op1 (Op2) then marks every 
output that is a super-tuple of a (c), respectively. At Op3, 
marked AB tuples from Op1 containing a as a sub-tuple are not 
joined with marked CD tuples from Op2 containing c, thus 
eliminating a*c* output (although permitting results such as 
a*c1* and a1*c*). 

Let s be an MNS of Type I from OL. Suspend_Production 
scans the operator state SL of OL, extracting all super-tuples of 
s, and moves them to a blacklist BL associated with SL. If right 
before handling the feedback, OP was joining a super-tuple t 
of s, t is also inserted to BL. After finishing feedback handling, 
OP continues to process the next input tuple t′ succeeding t. In 
the example of Figure 1 and Table I, if Op1 receives <suspend, 
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{a1}> while joining a1 with b2 ∈ SB, it moves a1 to blacklist 
BA, and then continues with the next incoming tuple b4. 

The blacklist BL is organized as follows. Each entry of BL 
consists of an MNS s and a list of s’s super-tuples, each 
associated with a timestamp specifying when they are inserted 
to BL. For a suspension feedback, incoming tuples from OR are 
not joined with BL, so as to prevent the generation of NPRs. 
For a mark-result feedback, however, new tuples from OR 
have to join BL, generating marked outputs. Hence, when there 
is hash table or index structure maintained on SL, it is 
desirable to extend the structure to cover the "marked" tuples 
in BL for efficient probing. 

Recall from the example of Figure 1 that OP can detect new 
MNSs (e.g., a2) if they have the same join attribute values as 
an existing MNS s. This is realized by two additional 
operations. First, during the scan of the operator state (SL) to 
identify super-tuples of s, OP also finds those records in SL 
that contain a sub-tuple s′ with identical join attributes as s, 
and moves these records to BL as well, under the entry for s. 
Second, when a new record t (e.g., a2) arrives from OL, OP 
compares it with MNSs in BL. If t contains such a sub-tuple s′, 
t is inserted to BL. For a suspension feedback, no further 
processing of t is necessary, whereas for a mark-results 
feedback, t is joined with SR, marking the results.  

For a Type II MNS s, Suspend_Production first 
decomposes it into sL and sR. Then, OP (i) scans both states SL 
and SR, moving super-tuples of sL and sR to black lists BL and 
BR, respectively, and (ii) sends mark-results messages to OL 
and OR. If the process is initiated by a suspension feedback, 
each marked incoming tuple only probes against SL (or SR), 
while an unmarked tuple joins both SL/SR and BL/BR. 
Otherwise, (the process is initiated by mark-result), a marked 
input is also probed against SL/SR, and the outputs are marked. 

Next, we discuss Resume_Production, assuming that s is a 
Type I sub-tuple of OL’s results. First, OP finds the entry with 
MNS s in BL. For an unmark-results feedback, OP simply 
moves all super-tuples of s to SL. For a resumption feedback, 
OP joins each super-tuple t of s with tuples in SR whose arrival 
timestamps are larger than the suspension time of t, and 
inserts t to SL. In the example of Figure 1, suppose BA contains 
a1 and a2, when Op1 receives <resume, a1> from Op2. Op1 
moves both tuples back to SA, and joins a1 with b2-b4 and a2 
with b1-b4. Note that a1 is not joined with b1 because the 
suspension time of the former (1) is not earlier than the arrival 
time of the latter (1), suggesting that when a1 is inserted into 
BA, it has already been joined with b1. Type II MNSs are 
handled in a similar manner. 

 During feedback propagation, OP simply relays a Type I 
MNS to OL and/or OR in its original form, e.g., if it receives 
<suspend, {a}>, Op3 passes <suspend, {a}> to Op1. For an 
MNS s of Type II, OP first decomposes s into two sub-tuples 
sL and sR based on the schema of OL and OR’s results, e.g., 
sub-tuple ac is decomposed into a and c. Then, it sends sL to 
OL and sR to OR, using a mark-result feedback. Similarly for a 
resumption feedback containing a Type II MNS s, OP passes 
sL and sR to OL and OR respectively, enclosed in unmark-result 
feedback, which stops the marking process. We end this 

section with a note that practical implementations of the above 
functions have a high degree of flexibility since JIT serves as 
an optimization, not a core requirement, for query processing. 
For example, an implementation may choose not to handle 
Type II MNSs, or not to detect new MNSs based on known 
ones. 

V. EXTENSIONS TO OTHER OPERATORS AND PLANS 

So far we have focused on binary tree plans and the case 
that both the consumer and producer operators are joins. 
However, the applicability of JIT is not restricted to this 
context. We first extend JIT to operators beyond joins. When 
OP is not a join operator, it may be unable to perform dynamic 
production control; on the other hand, if an upstream operator 
O′ of OP is a join, OP can simply pass feedback from a 
downstream consumer OC to O′, and the latter then adjusts its 
production accordingly. 

A consumer OC can be an arbitrary operator as long as it is 
able to detect MNSs using an algorithm similar to 
Identify_MNS (see Section IV-A). For instance, consider the 
plan of Figure 9a, in which OC = Op2 is a selection. For the 

sequence of inputs in Table I, Op2 = σA.x>200 detects a1 as an 
MNS once it receives a1b1 from Op1. It thus sends <suspend, 
{a1}> to Op1, which stops joining a1 with records in SB. 
Instead of maintaining a black list, Op1 can simply delete a1, 
as Op2 will never issue a resumption message. In Figure 9b, 
consumer Op2 joins its inputs from Op1 with a static relation 
RC, rather than another streaming source. JIT applies to this 
plan in a similar way to the case of Figure 9a, i.e., Op2 may 
send suspension, but not resumption, feedback. 

 

A B

A   BSA SB

A.x>200
Op2

Op1

σ 

 
A B

A   BSA SB

A   B   C RC
Op2

Op1

 

(a) OC is a selection (b) OC is a static join 

Figure 9  Alternative plans  

Next we discuss JIT in plans with complex operators, 
specifically, M-Join and Eddy. As shown in Figure 2a, an M-
Join involves multiple “half join” operators, each of which has 
only a single operator state (e.g., operator B has only one 
state SB). Such operators are similar to the join in Figure 9b, 
except that the operator states (e.g., SB) get updated as tuples 
arrive and expire in the corresponding stream (e.g., B). 
Therefore, resumption feedback is necessary as new matching 
partners of an MNS may appear later. The processing of this 
feedback, however, is simpler than the case of binary stream 
joins, in that the consumer does not request inputs from the 
producer from such messages. For example, in the leftmost 
operator path in Figure 2a, suppose Op2 has issued a 
suspension feedback to its Op1 specifying a1 as an MNS. Later 
a matching partner c1 of a1 arrives and is inserted to SC. 
Because c1 is processed along a different path (Op5 and Op6), 
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Op2 is not activated and thus does not need super-tuples of a1 
from Op2. 

The Eddy architecture (Figure 2b) is similar to M-Joins in 
the sense that tuples are processed in the “half join” units 
(called STeMs in [4]), but now there are no fixed consumer-
producer connections between them. We view every STeM as 
both a consumer and a producer. Once an MNS s is detected, 
it is sent back to the Eddy that propagates it to STeMs, whose 
operator state may contain s as a sub-tuple. For instance, MNS 
a1 is propagated to STeM Op1, which then puts a1 in a 
blacklist. Resumption feedback can be handled in a similar 
manner. Finally, the JIT logic can also be programmed into 
user defined aggregates (UDAs), which let the user organize 
simple operations with control flows, achieving Turing-
complete expressive power [19]. 

VI. EXPERIMENTAL EVALUATION 

We have implemented JIT in C++ following the PIPES [17] 
stream management framework, and performed all 
experiments on a Pentium 4 3.0G CPU with 2GB of RAM. 
For each set of experiments, we generate synthetic data for N 
streaming sources, and process a continuous join query over 
the N sources with a clique-join predicate. Specifically, there 
is an equi-join condition between each pair of sources; every 
tuple from any of the N sources contains N–1 columns 
corresponding to the other N–1 sources. For example, if there 

are 4 sources A, B, C and D, the join predicate is (A.x1=B.x1) ∧ 

(A.x2=C.x2) ∧ (A.x3=D.x3) ∧ (B.x4=C.x4) ∧ (B.x5=D. x5) ∧ (C.x6 
= D.x6), where x1-x6 are distinct columns. Unless otherwise 

specified, each source has an average tuple arrival rate of λ 
tuples per second, and each column value is a random integer 
uniformly distributed in the range [1..dmax]. Intuitively, a 
larger dmax leads to a more selective join because the 
probability of two values to be equal is smaller. A sliding 
window of size w is applied to all sources. 

We investigate the effect of JIT on two different categories 
of binary join trees: bushy and left-deep, both of which are 
commonly used in practice. Table II summarizes all query 
plans used in the experiments. A plan is executed twice, each 
time for 5 hours application time, with and without JIT. We 
refer to the execution without JIT as REF (for reference 
solution). The two solutions are compared in terms of total 
CPU time and peak memory consumption. All joins are 
implemented using the nested loop algorithm [16]. Table III 
summarizes the ranges of all parameters, with default values 
in bold. 

TABLE II 
EXECUTION PLANS  

N Bushy Plan Left-Deep Plan 

3  (A B) C 

4 (A B) (C D) ((A B) C) D 

5 ((A B) (C D)) E (((A B) C) D) E 

6 ((A B) (C D)) (E F) ((((A B) C) D) E) F 

7 ((A B) (C D)) ((E F) G)  
8 ((A B) (C D)) ((E F) (G H))  

 

TABLE III 
PARAMETERS UNDER INVESTIGATION  

Range & Default 
Parameter 

Bushy Left Deep 

window size w (min) 10, 15, 20, 25, 30 5, 7.5, 10, 12.5, 15 

stream rate λ (/sec) 0.4, 0.7, 1, 1.3, 1.6 0.4, 0.7, 1, 1.3, 1.6 

#sources N 4, 5, 6, 7, 8 3, 4, 5, 6 

max data value dmax 100, 150, 200, 250, 300 30, 40, 50, 60, 70  

 
We first present the results for the bushy plans. Figure 10 

shows the CPU time and memory consumption as a function 
of the window size w. In terms of CPU time, JIT outperforms 
REF by more than an order of magnitude (Figure 10a), while 
saving up to 62% of memory (Figure 10b). Note that the 
performance gains are amplified with increasing w. The 
advantage of JIT mainly comes from the reduction of FPRs 
(i.e., unnecessary partial results). In general, a longer window 
has two effects on the number of FPRs: (i) it leads to a larger 
number of total intermediate results, causing more FPRs; (ii) it 
increases the chance that an intermediate result has matching 
partners, reducing FPRs. The former effect prevails because it 
is magnified through multiple join operators, while the latter is 
always linear to w. 
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(a) CPU time (b) Memory consumption 

Figure 10  Overhead vs. window size w (bushy plan)  

Figure 11 plots the CPU time and memory consumption 

against the stream rate λ. The effect of λ is similar to that of 

the window size w, and as λ increases, JIT yields larger 
savings compared to REF. Intuitively, a rapid stream rate 
leads to more intermediate results, many of which are not 
demanded by their corresponding consumers and are, 
therefore, eliminated by JIT. 
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Figure 11  Overhead vs. stream rate λ (bushy plan)  

Figure 12 studies the effect of the number N of streaming 
sources. Again, JIT outperforms REF by large margins on 
both metrics and its overhead increases slower with N. An 
interesting observation is that in terms of memory 
consumption, REF exhibits a step-wise pattern, i.e., the plans 
with 4 and 5 (also 6 and 7) inputs consume similar amounts of 
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memory, which reflects the nature of the bushy plans. In JIT, 
however, this pattern does not exist because many 
intermediate results are eliminated. 
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Figure 12  Overhead vs. number of sources N (bushy plan)  

Figure 13 demonstrates the impact of dmax, i.e., the 
maximum column value for each tuple. Recall that a large dmax 
leads to a small output size. Consequently, fewer intermediate 
results are generated and the overhead of both JIT and REF 
decreases. Note that in JIT, when dmax exceeds 200, both the 
CPU cost and the memory consumption remain relatively 
stable because, after this point, very few intermediate results 
are produced. 
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Figure 13  Overhead vs. max data value dmax (bushy plan) 

Having established the superiority of JIT in high selectivity 
settings and bushy plans, we next investigate its performance 
for low selectivity and left-deep plans. As shown in Table III, 
the default dmax used in this set of experiments is as low as 50, 
compared with 200 in the previous settings. In order not to 
overload the system, we apply smaller w (window size) and N 
(number of sources), and feed stream D (C when N = 3) with 
values from [1..102

dmax]. Figures 14 and 15 illustrate the 

results for varying window size w and stream rate λ, 
respectively. Due to the relatively low selectivity, many 
intermediate results have matching partners and, thus, the 
effect of JIT is less pronounced. Nevertheless, JIT still has a 
clear advantage over REF, especially for higher values of w 

and λ. 
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Figure 14  Overhead vs. window size w (left-deep plan)  
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Figure 15  Overhead vs. stream rate λ (left-deep)  

Figure 16 compares JIT and REF with respect to the 
number of streaming sources (N). JIT outperforms REF and 
scales more gracefully as N grows, especially in terms of CPU 
time. Finally, Figure 17 illustrates the effect of dmax. REF 
incurs high cost for low selectivity (dmax < 50), whereas JIT, 
successfully handles even very low selectivity. 
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Figure 16  Overhead vs. number of sources N (left-deep)  
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Figure 17  Overhead vs. max data value dmax (left-deep)  

VII. CONCLUSION 

This paper proposes JIT, a novel framework for continuous 
query execution. JIT eliminates unnecessary intermediate 
results through the collaboration between the consumer and 
producer operators, thus achieving significant savings in terms 
of both CPU time and memory consumption. We first present 
a general framework of JIT, including (i) a feedback 
mechanism, (ii) scheduling policies that maximize parallelism, 
and (iii) a message propagation scheme to amplify the effects 
of JIT. Then, we describe efficient implementations of key 
components of JIT, specifically, the feedback generation 
algorithm at the consumer and the dynamic production control 
routines performed by the producer. A comprehensive set of 
experiments confirm that JIT improves performance, often by 
orders of magnitude. 

This work opens several directions for future work. So far, 
we have focused on the case that the exact results are required. 
The first interesting problem is to integrate JIT with 
approximate query processing methods, such as load shedding 
[22]. Furthermore, we intend to investigate the application of 
JIT in wireless sensor networks [5], where the elimination of 
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unnecessary partial results is critical for minimizing network 
transmissions and prolonging the battery life of sensors. 
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