

Approximate Temporal Aggregation

Yufei Tao Dimitris Papadias Christos Faloutsos
Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Hong Kong

taoyf@cs.cityu.edu.hk

Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
dimitris@cs.ust.hk

Department of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
christos@cs.cmu.edu

Abstract

Temporal aggregate queries retrieve summarized
information about records with time-evolving attributes.
Existing approaches have at least one of the following
shortcomings: (i) they incur large space requirements, (ii)
they have high processing cost and (iii) they are based on
complex structures, which are not available in commercial
systems. In this paper we solve these problems by
approximation techniques with bounded error. We
propose two methods: the first one is based on multi-
version B-trees and has logarithmic worst-case query cost,
while the second technique uses off-the-shelf B- and R-
trees, and achieves the same performance in the expected
case. We experimentally demonstrate that the proposed
methods consume an order of magnitude less space than
their competitors and are significantly faster, even for
cases that the permissible error bound is very small.

1. Introduction
Temporal databases have received considerable attention
due to the large number of applications that require
efficient management of data with time-evolving
attributes. In the related systems, records are typically
represented as two-dimensional intervals in the so-called
key-time space. Consider, for example, a telecom
company that preserves the following information about
phone calls made by its customers: (i) the starting/ending
time of each call, and (ii) its cost (in dollars). Figure 1.1
illustrates the interval representation of 6 calls, where the
key of each interval (i.e., its projection on the vertical
axis) denotes its cost, while the horizontal projection
corresponds to its duration or, following the common
terminology in the literature, its lifespan. For example, the
lifespan of f is the open interval [1,5) (we represent this
using different colors for its end points). A data interval is
alive during its lifespan, and dead outside of it.

While the majority of research (see [ST99] for a survey)
in temporal databases aims at retrieving information about
individual objects that satisfy certain (temporal and non-
temporal) predicates, the motivation of this work is that
many applications require only aggregate results and can
often accept approximate answers with small bounded
error. Given a key range qk and an interval qt, a temporal

count query retrieves the total number of data intervals
that are alive during qt with keys in range qk. For
example, the shaded rectangle in Figure 1.1 represents the
query “return the number of phone calls in period
qt=[6,8], with costs in qk=[1.75,3]”. Equivalently, the
goal is to count the number of intervals intersecting the
query rectangle (i.e., in our example the result is 2). An
alternative is the temporal sum query, which, assuming
that each data interval is associated with a weight,
retrieves the sum of the weights of the qualifying records.
For instance, if the database also stores the number of
persons involved in each call (i.e., it is possible to have
conference calls with more than two users), then a
temporal sum query returns the total number of persons in
all calls that qualify qk and qt.

time 1 2 3 4 5 6 7 8

a

b
c

e
d

f

0.5
1

1.5

2
2.5

3
3.5

key (cost in dollars)
temporal
agg. query

Figure 1.1: Interval representation of temporal data

• Motivation

Existing temporal aggregation techniques focus on exact
query processing. The best existing structure, the MVSB-
tree [ZMT+01], consumes O(N/B⋅logBN/B) space and
answers any query with O(logBN/B) node accesses, where
N is the number of intervals in the database and B is the
number of intervals that fit in one disk page. As
demonstrated in our experiments, in spite of its good
query cost, the size of this structure is much larger than
that of the database (due to its sub-optimal space
complexity), seriously hampering its usefulness for
(typically very voluminous) practical datasets.

Furthermore, the MVSB-tree (as well as most other
methods for this problem) is currently inapplicable in
practice since it is based on some complex, specialized
indexes that are not implemented in any commercial
database product. A practical solution should leverage
only tools that are “off-the-shelf” from the market and at
the same time provide excellent query performance.

• Contribution

This paper presents the first work on approximate
temporal aggregate processing. Specifically, for count
queries, the goal is to provide answers guaranteed to
deviate from the actual ones within threshold ε·N, where ε
is an arbitrary positive constant smaller than 1 (i.e., the
maximum error is specified as a percentage of the dataset
cardinality). We address this problem from both
theoretical and practical perspectives: (i) using the multi-
version B-tree, we show that any query can be answered
in O(logBN/B) cost and linear space O(N/B); (ii) for
practical scenarios, we reduce the problem to constrained
nearest neighbor search [FSAA01], which can be
answered by an R-tree (available in latest products from
Informix and Oracle) probabilistically in O(logBN/B) time
and O(N/B) space. The methodology also leads to the
same bounds for approximate sum queries, where the
maximum approximation error is defined as ε·∑N

i=1wi and
wi (1≤i≤N) is the weight of the i-th data interval.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 formally defines the
problem of approximate temporal aggregation and
presents our methods. Section 4 contains an extensive
experimental evaluation that confirms the applicability of
our approaches, while Section 5 concludes the paper with
directions for future work.

2. Related work
Section 2.1 first describes the multi-version B-tree, since
it is the basic structure of previous methods and
constitutes a part of the proposed solutions. Then, Section
2.2 discusses existing approaches on multi-dimensional
aggregate processing, covering both temporal and non-
temporal databases. Finally, Section 2.3 briefly reviews
algorithms for constrained nearest neighbor search using
R-trees.

2.1 The multi-version B-tree (MVB-tree)
The MVB-tree [BGO+96, VV97] aims at processing
timestamp key range queries in temporal databases. Such
a query retrieves all data intervals that are alive at a
timestamp qt, and whose keys fall in a range qk. For
instance, the query with qt=6 and qk=[1.75,3] will return
intervals d and e in Figure 1.1.

The MVB-tree can be regarded as a space-efficient
scheme for storing multiple (logical) B-trees. Each entry
has the form <key, tst, ted>, where tst denotes the starting
time of a data interval, and ted denotes the ending time
(i.e., [tst,ted) is the entry’s lifespan). For leaf entries, key is
the key of an interval (e.g., the cost of a call in Figure
1.1), while for an intermediate entry e, key equals the
minimum key of the leaf entries in its subtree that are
alive in the lifespan of e. The inclusion of a data interval

in the tree involves two separate operations at its starting
and ending timestamps respectively (all the operations are
performed chronologically). Specifically, if the current
processing time is t, intervals starting at this time are
inserted with their tst set to t and ted to “*”, indicating that
their ending time is temporarily unknown (such entries
are said to be alive). Similarly, intervals ending at this
time have their ted changed (from *) to t (they die at t).
Figure 2.1 illustrates an example of an MVB-tree with
both alive and dead entries.

<5, 1, *, A>
<43, 1, *, B>

<5, 1, *>

<13, 1, *>
<25, 1, 3>
<27, 1, 3>

<8, 1, *>

<39, 1, 3>

<43, 1, *>

<52, 1, 2>
<59, 1, 3>
<68, 1, 3>

<48, 1, *>

A BRoot

<72, 1, *>

<83, 1, *>
<95, 1, 3>
<99, 1, *>

<78, 1, *>

C

<72, 1, *, C>

<102, 1, *>
Figure 2.1: A MVB-tree example

For each timestamp t and each node, except for the roots,
it is required that either none, or at least B⋅Pversion entries
are alive at t, where Pversion is a tree parameter and B the
disk page size (for the following examples Pversion=1/3 and
B=6). This weak version condition ensures that entries
alive at the same timestamp are mostly grouped together.
A weak version underflow occurs if this condition is
violated (e.g., due to deletion at the current processing
time). A block overflow occurs when an entry is inserted
into a full node, in which case a version split is
performed. To be specific, all the alive entries of the node
are copied to a new node, with their tst modified to the
current time. The value of ted of these entries in the
original node is also set to the insertion time1. The
insertion of <28,4,*> into node A at timestamp 4 (in the
tree of Figure 2.1) will cause node A to overflow. As
shown in Figure 2.2, a new node D is created to store the
alive entries of A, and A dies meaning that it will not be
modified any more in the future. A new entry <5,4,*,D>
(pointing to the new node) is inserted into the root node.
When the root generates a version split, the new node of
the split becomes the root of another logical tree.

<5, 1, 4, A>
<43, 1, *, B>

<5, 1, 4>

<13, 1, 4>
<25, 1, 3>
<27, 1, 3>

<8, 1, 4>

<39, 1, 3>

<43, 1, *>

<52, 1, 2>
<59, 1, 3>
<68, 1, 3>

<48, 1, *>

A BRoot

<72, 1, *>

<83, 1, *>
<95, 1, 3>
<99, 1, *>

<78, 1, *>

C

<72, 1, *, C>

<102, 1, *>

<5, 4, *>

<13, 4, *>
<8, 4, *>

D

<28, 4, *><5, 4, *, D>

Figure 2.2: Version split in the MVB-tree

In some cases, the new node may be almost full after a
version split so that a small number of insertions would
cause its overflow again. On the other hand, if it contains
too few entries, a small number of deletions will cause its

1 In practice this step can be avoided since the deletion time is
implied by the entry in the parent node.

underflow. To avoid these problems, after a version split
the number of entries in the new node must be in the
range [B⋅Psvu,B⋅Psvo] (Psvu and Psvo are tree parameters). A
strong version overflow (underflow) occurs when the
number of entries exceeds B⋅Psvo (becomes lower than
B⋅Psvu). A strong version overflow is handled by a key
split, which is a version-independent split according to the
keys of the entries in the node, and is processed in the
same way as the B-tree. The strong version underflow is
similar to the weak version underflow; the only difference
is that the former happens after a version split, while the
latter occurs when the weak version condition is violated
after a deletion. In both cases, a merge is attempted with
the copy of a sibling node, using only its alive entries. If
the merged node strong version overflows, a key split is
performed. In [VV97], the merging process is improved
to reduce the tree size.
As shown in [BGO+96], given N data intervals, the
MVB-tree consumes O(N/B) space, and answers
timestamp range queries with O(logBN/B + K/B) I/Os,
where K is the number of intervals retrieved, i.e., both
space consumption and query cost are optimal.
Furthermore, the MVB-tree can also optimally process the
timestamp search query TS(qt,qk), which retrieves the
interval, alive at qt, with the largest key ≤ qk. For instance,
in Figure 1.1, TS(6,3) returns interval e. The following
theorem summarizes the performance bounds for MVB-
trees, which we utilize in Section 3.2.
Theorem 2.1: Given N data intervals, a MVB-tree
consumes O(N/B) space and answers any timestamp
search query in O(logBN/B) time. ■

2.2 Aggregate processing techniques
Zhang et al. [ZMT+01] address exact retrieval of
temporal aggregation. According to their terminology,
given a value qk and a timestamp qt, a data interval
satisfies the less-key-less-time condition LKLT(qt,qk) if its
key (starting timestamp) is no larger than qk (qt). As
shown in Figure 2.3a (qt=1), such intervals intersect the
rectangular region r, whose main diagonal starts at the
origin of the axes and ends at point (qt,qk). Similarly, an
interval satisfies the less-key-single-time condition
LKST(qt,qk), if it is alive at timestamp qt and its key is no
larger than qk. In Figure 2.3a (qt=2), the qualifying
intervals intersect the line segment s defined by points
(2,0) and (2,qk). The corresponding count LKLT query
returns the number of intervals satisfying the LKLT
condition. The sum LKLT query returns the sum of their
weights. Without ambiguity, in the sequel we use the
notation LKLT(qt,qk) to denote both the LKLT condition,
and the result of a LKLT count or sum query. The
semantics of LKST(qt,qk) are similar.

A temporal count/sum query with key range [qk1, qk2] and
interval [qt1,qt2] can be reduced to 4 LKLT and 2 LKST

queries, or equivalently, the result equals LKLT(qt1,qk1) +
LKLT(qt2,qk2) − LKLT(qt2,qk1) − LKLT(qt1,qk2) +
LKST(qt1,qk2) − LKST(qt1,qk1). Figure 2.3b illustrates the
two types of intervals that qualify a counting query q
(shaded region): (i) those (e.g., a) whose starting points
fall in q, and (ii) those (e.g., b) that cross the left edge of
q. The number of intervals of type (i) is given by
LKLT(qt1,qk1) + LKLT(qt2,qk2) − LKLT(qt2,qk1) −
LKLT(qt1,qk2), while that of type (ii) by LKST(qt1,qk2) −
LKST(qt1,qk1). Based on this reduction, Zhang et al.
[ZMT+01] propose the MVSB-tree, which is the multi-
version counterpart2 of the SB-tree [YW01]. For N data
intervals, the MVSB-tree answers a temporal count/sum
query optimally in O(logBN/B) time, but consumes sub-
optimal O(N/B⋅logBN/B) space.

time

key

LKLT(1,qk)
qk

1 2

LKST(2,qk)

r s

 time

key

qk
2

b
a

query rectangle q

qk
1

qt1 qt2
(a) LKLT and LKST (b) 2 qualifying interval types
Figure 2.3: Reduction of temporal aggregate queries

The aP-tree [TPZ02b] aims at the aggregate processing of
planar points. Although the method could also be applied,
with appropriate transformations, for temporal
aggregation, it also requires O(N/B⋅logBN/B) space.
Another aggregation structure for multi-dimensional
points, the CRB-tree [GAA03], consumes linear space,
however, under the very restrictive assumption, that most
of the tree is stored in sequential pages (which can only
hold for static data). Furthermore, its extension for
temporal aggregation is unclear. In [ZTG02], Zhang et al.
develop two versions of the ECDF-B-tree for aggregate
processing on rectangular objects (also applicable to
intervals) with different space-query time tradeoffs.
Specifically, the first version consumes O(N/B⋅logBN/B)
space and answers a query in O(B·logB

2N/B) time, while
the corresponding complexities of the second version are
O(N·logBN/B) (for space) and O(logB

2N/B) (for query
cost). These bounds are worse than those of the MVSB-
tree (due to the higher applicability of the ECDF-B-tree).

The above techniques rely on specialized index structures
not available in any commercial product. The most
“practical” method in the literature is the aggregate R-
tree3 (aR-tee) [PKZT01], which augments the traditional
R-tree with aggregate information in the intermediate

2 As discussed in [BGO+96], the algorithms introduced in
Section 2.1 can be applied to obtain the multi-version
counterpart of any “ephemeral” structure.
3 Strictly speaking the aR-tree is not available in current DBMS
either. Here we categorize it as “practical” because the necessary
changes (with respect to the R-tree) are small. Our solutions,
however, are not based on aR-trees.

entries. The main idea is that if the MBR of an
intermediate entry is totally contained in the query region,
its sub-tree is not visited; instead, the aggregate number
stored with the entry is retrieved directly. As shown in
[PKZT01], aR-trees achieve significant speedup
compared to conventional R-tree for large query
windows. The aR-tree can be used for temporal
aggregation by treating each interval as an MBR with zero
extent on the y axis.

Aggregate processing has also been considered in other
applications, e.g., Papadias et al [PTKZ02] deal with
spatio-temporal aggregation, while Zhang et al [ZGTS03]
consider data streams. These approaches are specific to
the targeted problems and cannot be applied in our case.
Finally, approximate query answering in non-temporal
databases has been addressed using various techniques
such as histograms [TGIK02], sampling [CDD+01],
randomized data access [HHW97], function-fitting
[CR94], etc. All these methods, however, assume a single
“snapshot” of the database and do not support temporal
(historical) data (the only histograms with a temporal
aspect focus on spatio-temporal prediction [TSP03]).

2.3 Constrained nearest neighbor search
Given a set of multi-dimensional points, a query region qr
and a point qp, a constrained nearest neighbor query
retrieves the data point that is closest to qp among all
points that fall in qr. Figure 2.4 illustrates 12 points and
the MBRs of the corresponding R-tree. To answer the
query with qr and qp shown in Figure 2.4a, the algorithm
of [FSAA01] first retrieves the root of the R-tree, and
(because the MBRs of both N1 and N2 intersect qr) visits
the subtrees of the root entries in ascending order of their
minimum distances to the query point. In this example, N2
has zero distance to qr and its contents N5, N6 are fetched.
Since the MBR of N6 does not intersect qr, only N5 is
retrieved and point p9 becomes the current nearest
neighbor (NN). Then, the algorithm backtracks to the root
and terminates after discovering that the distance from qp
to N1 is longer than that between qp and p9, which
becomes the final result. A conventional (unconstrained)
nearest neighbor query would return p10 as the result for
qp.

N1N3

N4

N5
N2

N6

p1

p2

p3 p4

p5

p6

p7

p8

p9

p10
p11

p12

qp

query region qr

R

N3 N4

N6N5

p1 p2 p3 p4 p5 p6

p7 p8 p9 p10 p11 p12

N3 N4 N5 N6

N1 N2

N1
N2

(a) Points and node extents (b) Corresponding R-tree
Figure 2.4: A constrained NN query and its processing

The performance of NN queries has been very well
studied. The cost models of [B00, KPF01] indicate that
the expected query cost depends only on the (i) fractal
dimension [FK94] of the dataset, and (ii) the height of the
R-tree. Specifically, they show that the cost is bounded by
O((B+1)f/B·logBN/B), where B is the disk page size, and f
the fractal dimension. Since for 2D points f≤2, we have
O((B+1)f/B·logBN/B) = O((B+1)·logBN/B) = O(logBN/B),
leading to Theorem 2.2.

Theorem 2.2: Given N 2D data points, an R-tree answers
a (constrained or not) nearest neighbor query in expected
O(logBN/B) time. ■

In Section 3.3 we illustrate the connection between
nearest neighbor search and temporal aggregation, and
show how it leads to practical solutions with good
performance in the expected case.

3. Approximate Temporal Aggregation
Section 3.1 formally defines approximate temporal
aggregate queries and illustrates how they can be reduced
to approximate LKST queries (following the terminology
of [ZMT+01]). Sections 3.2 and 3.3 solve LKST count
queries using techniques based on MVB-trees and
combination of R- and B-trees, respectively. Section 3.4
extends the solutions to temporal sum.

3.1 Problem definition and basic reductions
We consider the popular transaction time database model
[ST99], where records can only be appended to the
database chronologically. When a new data interval
begins/ends (i.e., in the context of Figure 1.1, a call
starts/finishes), the database sets its starting/ending
timestamp to the current time. Intervals already written to
the database are never removed. Further, we assume the
typical word-wise machine, where each value occupies
the whole memory word4. Our goal is to design access
methods for approximate processing of temporal count
and sum queries.

Problem 3.1: Given N data intervals with arbitrary
lengths5 and weights w1, w2,…, wN, an approximate
temporal count (sum) query returns a value, which
deviates from the precise result by less than ε·N (ε·∑N

i=1wi),
where ε is a constant (referred to as the approximation
ratio in the sequel) in [0,1]. ■

4 In the alternative bit-wise machine [GAA03], any integer v is
represented by exactly log2v bits, so that multiple integers may
be compressed into a single word. Structures implemented in
bit-wise machines usually consume less space, at the expense of
significant implementation overhead.
5 The problem is substantially simpler if the intervals are of the
same length, or their lengths are smaller than a constant. In both
cases the problem can be reduced to point aggregation by
enlarging the query region accordingly.

Notice that the error bound is related to the maximum
possible query result. Specifically, the “largest” count
query retrieves all intervals (i.e., the maximum result is
N), and similarly, the highest value returned by a sum
query is ∑N

i=1wi. Consider, for instance, that N=104 and
ε=0.001; then, the output of any temporal count query
may deviate by less than 10 from the actual result. On the
other hand, if N becomes 105, the maximum error is less
than 100 for the same ε. Motivated by the reduction of
[ZMT+01] (see Section 2.2), we consider the approximate
versions of LKLT and LKST queries defined as follows:

Problem 3.2: Given N data intervals with arbitrary
lengths, an approximate LKLT(qt,qk) count (sum) query
returns a value that deviates from the actual result, i.e., the
number of intervals (or the sum of their weights)
satisfying condition LKLT(qt,qk), by no more than ε·N
(ε·∑N

i=1wi), where ε is the approximation ratio in the range
[0,1]. The approximate LKST query can be defined in the
same way. ■

The approximate version of the reduction (from temporal
count/sum to LKLT and LKST) is more complex than its
exact counterpart. As shown in Section 3.2, our methods
for approximate LKLT and LKST queries always return
values smaller than the actual result. Given this fact, we
prove the following lemma.

Lemma 3.1: An approximate count/sum query with ratio
ε, can be reduced to 4 approximate LKLT and 2 LKST
queries, all with approximation ratio ε/3.

Proof: Let the count/sum query have key range
qK=[qk1,qk2] and interval qT=[qt1,qt2]. Then, as mentioned
in Section 2.2, the actual result act = LKLT(qt1,qk1) +
LKLT(qt2,qk2) − LKLT(qt2,qk1) − LKLT(qt1,qk2) +
LKST(qt1,qk2) − LKST(qt1,qk1). Let the actual values of
the 6 terms in this equation be v1, v2, …, v6, respectively
(i.e., act = v1 + v2 − v3 − v4 + v5 + v6). Accordingly, let v1',
v2', …, v6' denote the approximate results returned by our
method with approximation ratio ε/3. The approximate
result for the original query is computed as est = v1' + v2' −
v3' − v4' + v5' + v6'. Given that vi' ≤ vi ≤ vi' + ε/3, for 1≤i≤6,
it is easy to obtain that −ε ≤ est − act ≤ ε. ■

Recall that LKLT queries are used by [ZMT+01] to obtain
the intervals (of type (i) in Figure 2.3b) whose starting
points fall in the query region. It turns out that each LKLT
can be further reduced to a LKST query by a simple
transformation. Consider query LKLT(6,1.75) in Figure
3.1a, returning the number (3) of intervals starting in the
shaded region. Figure 3.1b demonstrates the transformed
query LKST(6,1.75) and data, where the ending time of
each transformed interval is fixed to the last timestamp
(i.e., 8) of the history, and its key and starting time are the
same as those of the original interval. Observe that
LKST(6,1.75) (on the transformed data in Figure 3.1b) has
the same result as LKLT(6,1.75) (in Figure 3.1a). Note

that the transformed intervals6 are not actually
materialized to the hard disk (in fact, as elaborated
shortly, our technique only requires storing a fraction of
the database).

time 1 2 3 4 5 6 7 8

a

b

c

e
d

f

0.5
1

1.5

2
2.5

3
3.5

key

LKLT query

(a) LKLT query

time 1 2 3 4 5 6 7 8

a'

b'
c'

e'
d'

f'

key

LKST query

0.5
1

1.5

2
2.5

3
3.5

(b) The transformed data and LKST query

Figure 3.1: Reduction from LKLT to LKST

The following lemma summarizes the above discussion.

Lemma 3.2: An approximate count/sum query with
approximation ratio ε can be reduced to 6 approximate
LKST queries with approximation ratio ε/3.

Proof: This lemma results from Lemma 3.1 and the
reduction from LKLT to LKST. ■

It is worth mentioning that the LKST query, in addition to
being the core of temporal count/sum queries, is also an
important stand-alone operation in practice. Focusing first
on LKST count, in the next section we present a solution
for its approximate processing based on the MVB-tree. In
Section 3.3, we present an alternative method that adopts
only B- and R-trees (hence it is readily applicable in
commercial systems). The same methodology is applied
to sum queries in Section 3.4.

3.2 Approximate LKST count using MVB-trees
We define the rank of an interval e at timestamp t (t is
within the lifespan of e) as the output of LKST(t,e.key),
namely, the number of intervals (i.e., including e itself)
alive at t with keys≤e.key. Obviously, the rank of an
interval may change at different timestamps. In Figure
3.2a, for example, the rank of f equals 2, 3, 4 during
intervals [1,2), [2,3), and [3,5), respectively.

6 A similar transformation (but for a different problem) is
applied in [TPZ02b].

Now let us consider query q=LKST(6,3) in Figure 3.2a,
whose actual result is 3, since intervals e, d, c are alive at
timestamp 6 and have keys ≤ 3. Our solution is based on
the observation that the result equals the largest rank
among those of the qualifying intervals (in this case the
rank of e). In order to obtain this rank efficiently, we
“clip” every data interval into several smaller ones, each
corresponding to the period when its rank remains fixed.
Figure 3.2b illustrates the clipped intervals for the data of
Figure 3.2a. For example, f is partitioned into 3 intervals
with lifespans [1,2), [2,3), [3,5), and ranks 2, 3, 4
respectively, while d generates a single interval because
its rank remains 2 throughout its lifespan. The clipped
intervals are indexed by a MVB-tree, where each leaf
entry contains in addition to key, tst, ted, also the rank of
the interval during [tst, ted). The LKST(6,3) query can now
be answered by the timestamp search query TS(6,3) (see
Section 2.1), which finds the qualifying interval with the
largest key (i.e., the clipped interval of e with lifespan
[3,7)). The rank (3) of this interval constitutes the (actual)
result.

time 1 2 3 4 5 6 7 8

a

b

c

e
d

f

key
LKST(6,3)

0.5
1

1.5

2
2.5

3
3.5

(a) The original intervals

time 1 2 3 4 5 6 7 8

a

key

b

c
d

f 2

1

3

2 1
1

2
4

e

0.5
1

1.5

2
2.5

3
3.5

2

3

(b) The clipped intervals with ranks

a timestamp

time 1 2 3 4 5 6 7 8

b

d

f
key

1
f2

e1

1

(2)

(2)

(2)

(4)

(2)

search query q

1

0.5
1

1.5

2
2.5

3
3.5

(c) The anchor intervals

Figure 3.2: Generating anchor intervals based on ranks

The problem of this method is that in the worst case, each
interval will be clipped into O(N) smaller ones, incurring

O(N2) space consumption (which is higher than the
MVSB-tree). Fortunately, the space consumption can be
significantly reduced for approximate processing.
Assume, for example, that we want the absolute error to
be less than 2 (i.e., ε =2/6=1/3). This implies that we only
need to store even ranks because even if the actual result
is an odd number, we can retrieve the next (lower) rank
(which must be even)7. Therefore, the difference between
the approximate and actual answers is at most 1. This is
illustrated in Figure 3.2c that shows the intervals with
even ranks, as well as, the timestamp search query
TS(6,3), which now retrieves interval d1, with rank 2 as
the approximate result (recall that the actual result is 3).

In the general case, where ε is an arbitrary number in
[0,1], we need to keep only the clipped intervals whose
rank is a multiple of ε·N, so that any approximate output
deviates at most ε·N−1 from the actual result. In the
sequel, we refer to these intervals as the anchor intervals.
As shown in the following lemma, the number of anchor
intervals is O(N), i.e., we reduce the space consumption
from quadratic to linear.

Lemma 3.3: Given N data intervals, the total number of
anchor intervals, whose ranks are multiples of ε·N, is
O(N).

Proof: First observe that at any timestamp, there can be at
most 1/ε = O(1) anchor intervals (i.e., since O(N)
intervals are alive at each timestamp, and the ranks of
consecutive anchor intervals differ by ε·N). On the other
hand, a new anchor interval can be created only at
timestamps when an interval starts/ends, and the number
of such timestamps is at most 2N. Therefore, the total
number of anchor intervals is at most 2N·1/ε = O(N). ■

It is worth mentioning that, although the number of
anchor intervals (i.e., after discarding those whose ranks
are not multiples of ε·N) produced by a particular data
interval may still be O(N), Lemma 3.3 indicates that there
can be only O(1) such (data) intervals. As mentioned
earlier, we index the O(N) anchor intervals using an
MVB-tree, which, as stated in Theorem 2.1, consumes
O(N/B) space, and answers a time search query (and
hence the original LKST query) in O(logBN/B) I/Os.

Next we discuss the algorithm for efficiently generating
the anchor intervals. To facilitate illustration, we refer to
the starting/ending timestamps of all the intervals
collectively as event timestamps, which are first sorted
and processed in ascending order. In practice, however,
this sorting step can be avoided as data intervals start/end
chronologically. Processing a starting (ending) event
timestamp t involves inserting (removing) the
corresponding data interval into (from) a B-tree, using its

7 Applying the same methodology, we can easily obtain
approximate results that are always larger.

key as the index key. In other words, the B-tree always
maintains the set of O(N) data intervals alive at t. On the
other hand, we store the set of anchor intervals alive at t in
an anchor list Lanchor, using O(1) space. At the end of each
timestamp (i.e., the next event timestamp is larger than t),
we empty Lanchor, and select, from the B-tree (as described
in detail shortly), the set of O(1) intervals, whose ranks at
t are multiples of ε·N, and place them in Lanchor.

It remains to clarify how to select, from a B-tree, the
record with a specific rank r, i.e., the record whose key is
the r-th smallest among all records in the tree. Towards
this, we augment each intermediate entry of the B-tree
with an additional value, specifying the number of data
records in its subtree. Figure 3.3 shows an example with
10 records (e.g., the aggregate 5 in parenthesis of the first
entry of G denotes that there are 5 entries in its subtree).
Then, a record with any rank can be found by accessing
O(h) nodes, where h is the height of the tree. For instance,
to find the record with rank r=8, we first retrieve the root
G, and since the aggregate in the first entry is 5<r, we
follow the second entry and reach F. Now we search for
the record with rank r=8−5=3 in the subtree of F; thus, we
follow the first entry of F (since its aggregate 3≥r) and
reach C, where we simply select the 3rd record (i.e., 8).

1 2 3 4 5 6 7 8 9 10

1(2) 3(3) 6(3) 9(2)

1(5) 3(5)

A B C D

E F

G

Figure 3.3: A B-tree with aggregate information

We are now ready to analyze the execution time of the
algorithm for producing the anchor intervals. Processing
each timestamp t involves (i) inserting/removing K
intervals (where K is the number of intervals starting or
ending at t) into the B-tree, (ii) performing O(1) queries to
find the anchor intervals at t, and (iii) updating the anchor
list. Since the number of intervals alive at the same
timestamp is O(N), step (i) requires O(K·logBN/B) time,
step (ii) O(logBN/B) time, and step (i) O(1) time. Thus, the
total overhead of the algorithm is bounded by
inserting/removing N intervals, namely, O(N·logBN/B). It
is worth mentioning that our algorithm is “append-only”
(since we process the intervals in ascending order of the
event timestamps), and thus is suitable for incremental
maintenance in transaction time databases. The following
theorem summarizes the above discussion.

Theorem 3.1: Given N data intervals, any approximate
LKST query can be solved using a MVB-tree in
O(logBN/B) time and O(N/B) space. The MVB-tree can be
updated in amortized O(logBN/B) time per interval. ■

Since, by Lemma 3.2, a count query is reduced to 6 LKST
queries, Theorem 3.1 also describes the bounds for
approximate count queries. Note that although

approximate results of LKST queries are always lower
than the actual values, the final output of an approximate
count (or sum) query may be actually larger than the
precise answer (but within the bounds), because the
partial results of some LKST queries are subtracted.

If the LKST query is issued as a stand-alone operation,
Theorem 3.1 still holds even if we further decrease the
error upper bound as follows. Specifically, given
LKST(qt,qk), we require that the approximate result
deviates from the actual value by less than ε·Nt (instead of
ε·N), where Nt is the number of data intervals alive at time
qt. This can be achieved using the same algorithm for
generating the anchor intervals, except that the intervals
maintained at time qt are those whose ranks are multiples
of ε·Nt. Further, note that this upper bound is indeed the
lowest that can be guaranteed by our methodology, given
that we are allowed to use only linear space.

3.3 Approximate LKST count using B-, R-trees
To enable the application of R-trees, we convert
approximate LKST queries to constrained nearest
neighbor search on a set of 2D points. Towards this, we
first obtain, as discussed in the previous section, a set of
O(N) anchor intervals (i.e., the clipped intervals whose
ranks are multiples of ε·N). Then, each interval with key
k and lifespan [ts,te) generates a set of anchor points with
the same key k as follows: (i) the starting point of the
interval is the first anchor point, and (ii) at every
timestamp t∈ [ts,te) when another anchor interval starts or
ends, a new anchor point is created. Figure 3.4a illustrates
the anchor intervals of Figure 3.2b. Every interval, except
for f2 and d1, produces a single anchor point (its starting
point). On the other hand, f2 generates an additional point
at the timestamp when d1 starts and b1 ends. Similarly, d1
produces an additional point at the time when f2 ends.
Figure 3.4b shows the set of anchor points. Each point is
tagged with the rank of the corresponding anchor interval.

As with anchor interval generation, anchor points can also
be obtained using plane-sweep, by maintaining the anchor
list storing the O(1) anchor intervals alive at the sweeping
timestamp. The difference is that, at each event timestamp
(i.e., when an anchor interval starts/ends), a new anchor
point is created for each interval in the anchor list. Figure
3.5 illustrates the pseudocode for this process. As shown
in Lemma 3.4, the number of anchor points is at the order
of the dataset size.

Lemma 3.4: Given N data intervals, the total number of
anchor points is O(N).

Proof: As stated in the proof of Lemma 3.3, there are
O(N) event timestamps at which we need to generate
anchor points. The number of such anchor points at each
event timestamp is of the same order O(1) as that of the
anchor intervals at that time, which completes the proof. ■

time 1 2 3 4 5 6 7 8

b

d

f
key

1
f2

e1

1

1

0.5
1

1.5

2
2.5

3
3.5

(a) The anchor intervals

a constrained

time 1 2 3 4 5 6 7 8

f

key

1 (2)

(2)

(2)

(4)

(2)

NN query q(4)

(2)

constrained
region

p
f
2

p f
3

p

e
1

p d
1

p d
2

p

b
1

p

0.5
1

1.5

2
2.5

3
3.5

(b) The corresponding points

Figure 3.4: Reduction from LKST to constrained NN

Algorithm Generate_Anchor_Point (ε, N)
// ε is the approximation ratio, and N is the number of intervals
1. sort the starting/ending time of all intervals into Ltime

2. initialize a B-tree BT (augmented as in Figure 3.3)
3. initialize an empty anchor list Lanchor
4. tlast = the first timestamp in Ltime
5. for each timestamp t in Ltime
6. if t ≠ tlast
7. empty Lanchor; tlast = t
8. retrieve from BT the intervals whose ranks are

multiples of ε·N, and put them in Lanchor
9. for each interval e in Lanchor generate anchor point

(t,e.key)
10. if t is a starting (ending) timestamp of interval e
11. insert (remove) e in (from) BT
end Generate_Anchor_Point

Figure 3.5: Algorithm for anchor point generation

We index all the O(N) event timestamps and anchor
points in a B- and R-tree, respectively. Given a query
LKST(qt,qk), we first find, using the B-tree in O(logB N/B)
time, the latest event time ta before or at qt (we say ta is
the anchor time of qt). For example, for the query
LKST(6,3) in Figure 3.2c, ta=5, i.e., the ending time of
anchor interval f2. Then, we retrieve the nearest anchor
point of query point (qt,qk) in the constrained region,
whose key projection is [−∞,qk] and whose time
projection is [ta, qt]. In Figure 3.4b the constrained region
is the shaded rectangle, where the nearest anchor point
retrieved is pd2 (in this example, there is only one point in
the constrained region, while this number is O(1/ε) in
general). The tagged rank (i.e., 2) of the retrieved anchor
point is the result of the approximate LKST query, as
justified in the following lemma.

Lemma 3.5: Given query LKST(qt,qk), the rank of the
nearest anchor point of (qt,qk) in the constrained region
(with key/time projection [−∞,qk]/[ta, qk]), deviates from
the actual result of LKST(qt,qk) by less than ε·N.

Proof: The correctness of the lemma follows the
observation that the anchor point returned by the
constrained nearest neighbor query corresponds to the
anchor interval retrieved by the timestamp search query
(qt,qk). ■

According to Theorem 2.2, the R-tree answers a
constrained nearest neighbor query in expected
O(logBN/B) time, which is also the overall query
overhead, as stated in Theorem 3.2. Similar to the MVB-
approach, this theorem still holds if the upper bound of
the absolute error (of the approximate result) is lowered to
ε·Nt, i.e., the number of data intervals alive at the time
query time qt.

Theorem 3.2: Given N data intervals, any approximate
LKST query can be solved using a B- and R-tree in
expected O(logBN/B) time using O(N/B) space. Both trees
can be updated in amortized cost O(logBN/B) per interval.
■

3.4 Approximate temporal sum processing
The methodology can be easily extended to approximate
sum processing with the same query and space overhead.
Given a set of N data intervals with weights w1, w2, ..., wN,
it suffices to discuss the approximate LKST sum query,
since, by Lemma 3.2, a temporal sum can be reduced to 6
such queries. Let W=∑N

i=1wi be the sum of the weights of
all data intervals, i.e., W is the largest (actual) result of
any sum query. Figure 3.6a shows the weights of the 6
intervals in Figure 3.2a.

For an interval e we define its w-rank (at an arbitrary
timestamp t during its lifespan) as the sum of the weights
of all intervals (including e) alive at t with keys smaller
than or equal to e.key. As with the rank defined in Section
3.2, the w-rank of an interval may also vary with time,
and thus every interval is partitioned so that each clipped
interval represents the period during which its w-rank
remains fixed. Figure 3.6b illustrates the resulting clipped
intervals with their corresponding w-ranks.

Similar to the approximate count problem, we convert a
LKST sum query to a timestamp search on a set of chosen
anchor intervals. Specifically, given the approximation
ratio ε, we keep, at each timestamp t, the smallest set of
clipped intervals (among those alive at t) satisfying the
condition: for any clipped interval a with w-rank ≥ ε·W,
there exists one anchor interval b such that 0 ≤ b.w-rank −
a.w-rank ≤ ε·W. Assuming ε=1/3 (i.e., maximum error
below ε·W=1/3×35=11.7), Figure 3.6c illustrates the
anchor intervals together with their w-ranks. At
timestamp 4, for example, there are 4 alive clipped

intervals (from b, d, e, c) with w-ranks 2, 12, 22, 31
respectively, out of which only d1 and f2 (with ranks 12,
31) are anchor intervals. The algorithm for computing the
anchor intervals is similar to the one for temporal count
processing. We omit the details and simply summarize in
theorem 3.3.

time 1 2 3 4 5 6 7 8

a

key
a LKST sum query

w =3
bw =2

cw =2
dw =10

ew =10
fw =9

0.5
1

1.5

2
2.5

3
3.5

(a) The original intervals with weights

time 1 2 3 4 5 6 7 8

a

key

b

c
d

f 12

3

22

5 2
2

13 18
27

12
22

31

e

0.5
1

1.5

2
2.5

3
3.5

(b) The clipped intervals with w-ranks

a timestamp

time 1 2 3 4 5 6 7 8

d

f
key

1

e1

(12)

(13)
(12)

search query q

1

e2 (18)

f2 (31)

0.5
1

1.5

2
2.5

3
3.5

(c) The anchor intervals with w-ranks

Figure 3.6: Anchor interval generation for LKST sum

Theorem 3.3: Given N data intervals, any approximate
LKST sum query can be answered using a MVB-tree in
O(logBN/B) time and O(N/B) space. The MVB-tree can be
updated in amortized cost O(logBN/B) per interval. ■

Similar to Theorem 4.1, the above theorem still holds
even if we reduce the maximum absolute error from ε·W
to ε·Wt, where Wt is the sum of the weights of the intervals
alive at the query time. Furthermore, we can also solve
the problem with only a B- and an R-tree, by converting a
query to a constrained nearest neighbor search on a set of
anchor points computed using an algorithm similar to the
one of Figure 3.5.

Theorem 3.4: Given N data intervals, any approximate
LKST sum query can be solved using a B- and R-tree in
expected O(logBN/B) time using O(N/B) space. Both trees
can be updated in amortized O(logBN/B) time per interval.

3.5 Discussion
To summarize, for each type of aggregate queries (i.e.,
count or sum), our theoretical solution consists of two
separate MVB-trees, which manage the anchor intervals
generated for answering LKST and LKLT queries
respectively (recall that, as shown in Figure 3.1b and
Lemma 3.2, LKLT can be reduced to LKST). The practical
solution maintains a B- and an R-tree indexing the anchor
intervals for LKST processing, and another two trees for
LKLT. As demonstrated in the experiments, the overall
space consumption of both solutions is much smaller than
the original database size. Here we qualitatively illustrate
this for count queries (the extension to sum is
straightforward), adopting the following parametric
modeling [TPZ02a]. The database consists of T+1
timestamps such that (i) M data intervals (whose keys
follow arbitrary distribution) start at timestamp 0, and (ii)
at each of the subsequent T timestamps, A percent of the
intervals terminate their lifespans, while the same number
of intervals start at this timestamp with distinct key values
(A is the dataset agility8). Clearly the total number of
intervals throughout the history equals N = M+M·A·T ≈
M·A·T (assuming large T). On the other hand, as proven in
the previous sections, the number of anchor
intervals/points at each timestamp is at most 1/ε. As a
result, the total number of anchor intervals/points is
bounded by 1/ε·(T+1), which is smaller than N if M·A>1/ε
(in fact, with a more complex analysis, we can prove a
tighter condition M·A>1/(2ε)). This intuitive condition
essentially says that the number of new intervals starting
at a timestamp is larger than the number of anchor
intervals/points we keep, which is indeed the case for
“agile” datasets (see the settings of our experiments).

4. Experiments
This section experimentally demonstrates the efficiency
of our methods. We generate temporal datasets in the
same way as [TPZ02a], simulating the phone call history
of a telecom company. Specifically, at timestamp 0 the
keys of M intervals (i.e., calls) are generated in [0,100]
following certain distribution DIST. In practice, each
timestamp corresponds to the minimum billing period,
e.g., 6 seconds, and its key denotes its cost. Then, at each
subsequent timestamp t (1≤t≤1000, i.e., the history
consists of 1000 timestamps), A% (i.e., the dataset agility)
of the M intervals are randomly selected to produce key
changes as follows: each such interval terminates its
lifespan at t (i.e., the call ends), updates its key by some
offset uniformly generated in [-1,1], and creates another

8 In general, A may vary at different timestamps, or separate
agilities may be defined for insertions and deletions (i.e., the
number of alive intervals at each timestamp may change). Here
we fix A for simplicity.

interval (with the new key) starting at t. Note that, in this
way the number of alive intervals (calls) at each
timestamp remains fixed (=M). We vary M from 1k to
10k, and the dataset agility A from 1% to 20%, so that the
total number of data records ranges from 11k to 2 million.

The key (time) range of each temporal count/sum query is
uniformly generated in [0,100] ([0,1000]), and each
workload consists of 200 queries with the same
parameters |qk|, |qt|, ε, which denote the lengths of the key
range, time range, and approximation ratio, respectively.
In the sequel, we represent |qk| (|qt|) as the percentages
over the key (time) axis respectively, e.g., 10% for |qk|
(|qt|) corresponds to key (time) range of length 10 (100).

We compare (i) the MVSB-tree [ZMT+01], (ii) the aR-
tree (see Section 2.2), (iii) our MVB-tree-based solution
(proposed in Section 3.2), and (iv) the combined B- and
R-trees (proposed in Section 3.3, denoted as B+R in the
sequel). In particular, methods (i) and (iii) are
“theoretical” solutions (since they utilize access methods
currently unavailable in commercial database products),
while (ii) and (iv) are readily applicable in practice. The
performance of each method is measured as the average
number of node accesses (per query) in answering a query
workload. We have conducted experiments of both
count/sum queries using different key distributions
DIST={uniform, Gaussian, Zipf}, obtaining almost
identical results. Due the space constraint, in the sequel
we demonstrate the diagrams for count queries and Zipf
key distribution (specifically, skewed towards 0 with base
coefficient 0.8, simulating the fact that most calls in
practice tend to have small costs).

4.1 Size comparison
The first experiment evaluates the space consumption of
the alternative solutions. In Figure 4.1a, we fix the agility
A to 10%, but vary M (i.e., the number of intervals alive at
a timestamp) from 1k to 20k. The approximation ratio ε of
the proposed structures is set to 0.5%9. The space of the
aR-tree corresponds to the database size, since this
structure stores each interval exactly once. The size of
MVSB is around 1.5 times larger than the database size
(recall that its space complexity is O(N/BlogBN/B)). The
proposed methods, however, are significantly smaller
(e.g., for M=20k, they consume about 1/20 of the database
size) because they only keep a constant (i.e., at most
1/ε=200) number of anchor intervals/points at each
timestamp t, regardless of the total number of intervals
alive at t. Observe that, in contrast to the competitors, the
space consumption of MVB and B+R actually decreases
for larger M. This happens because the maximum absolute
error allowed (with the same ε) grows for higher M,

9 We quantify the relative error of different approximation ratios
in Section 4.2.

resulting in even fewer anchor intervals/points maintained
at each timestamp. Figure 4.1b examines the structural
sizes as a function of dataset agility A, fixing M to 10k,
confirming similar observations.

MVSB aR MVB B+R

the number M of alive intervals

0
20
40
60
80

100
120
140

1k 5k 10k 15k 20k

at each timestamp

size (mega bytes)

0
20
40
60
80

100
120
140

1% 5% 10% 15% 20%
dataset agility A

size (mega bytes)

(a) Size vs M (A=10%) (a) Size vs A (M=10k)
Figure 4.1: Size comparison (ε=0.5%)

Figure 4.2 examines the space consumption of the
proposed methods for various approximation ratios, using
the median values of M (=10k) and A (=10%). For
comparison, we also illustrate the sizes of MVSB and aR-
trees. As expected, the approximate solutions require
more space for higher precision, e.g., for the lowest tested
value of ε=0.1%, both structures require half the data base
size.

MVB B+R

60

40

0
10
20
30

50

70

0.1% 0.3% 0.5% 0.7% 0.9%

size (mega bytes)

εapproximate ratio

aR

MVSB

Figure 4.2: Size vs approximation ratio (M=10k, A=10%)

4.2 Query cost evaluation of theoretical solutions
In this section, we compare the query performance of the
MVSB-tree and the proposed MVB-tree technique, since
they both require specialized access methods not available
in the existing products. In Figure 4.3a, we test the query
cost (averaged over all queries in a workload) as a
function of M (i.e., the number of intervals alive at the
same timestamp), fixing agility A to 10%, and the query
parameters |qk|, |qt| to 0.3. For MVB-trees we use ε=0.5%
(the same value used for the size experiments in Figure
4.1) and we also illustrate the corresponding relative error
of the approximate results. Specifically, let acti and apri
denote the actual and approximate results of the i-th
(1≤i≤200) query in the workload respectively; the relative
error is defined as (1/200)·∑200

i=1 |acti−apri|/acti.

The query cost of the MVB is considerably lower than
that of MVSB, and remains (almost) constant as M
increases (while the cost of MVSB degrades
continuously). Recall that the performance of MVB and
MVSB is determined by the heights of the logical trees

(i.e., B- and SB-trees) in the respective multi-version
structures. The height is lower for MVB since its logical
tree only needs to index the anchor intervals, the number
of which is smaller than the number of original data
intervals, indexed by a logical tree in MVSB. As
mentioned earlier, the number of anchor intervals kept at
each timestamp does not increase with M, which explains
the constant cost of MVB (the “step-wise” growth of
MVSB cost corresponds to height increases). The
accuracy of our approximate results is very high
(maximum relative error 4%) since the absolute error is
bounded using a very small ε. Furthermore, the relative
error does not vary with M because larger M increases
both the query result and the absolute error.

MVSB MVB

the number M of alive intervals
at each timestamp

number of node accesses

0
5

10
15
20
25
30

1k 5k 10k 15k 20k

3% 3% 3%

3%

3%

relative error

 dataset agility A

number of node accesses

0

5

10

15

20

1% 5% 10% 15% 20%

3% 3% 3%3%4%

(a) Cost vs M (A=10%,
|qk|=|qt|=0.3,ε=0.5%)

(b) Cost vs A (M=10k,
|qk|=|qt|=0.3,ε=0.5%)

query key range length |qk|

number of node accesses

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5

3%3%4% 3% 2%

 query time range length |qt|

number of node accesses

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5

3% 1%3%4%4%

(c) Cost vs |qk| (A=10%,
M=10k,|qt|=0.3,ε=0.5%)

(d) Cost vs |qt| (A=10%,
 M=10k,|qk|=0.3,ε=0.5%)

Figure 4.3: Query performance comparison

Figure 4.3b evaluates the query performance by varying
the agility from 1% to 10%. The overhead of both
structures remains the same, because the heights of their
logical trees depend only on the number of intervals alive
at a single timestamp (which is not relevant to the dataset
agility). Figures 4.3c and 4.3d plot the query cost as a
function of query parameters |qk| and |qt|, respectively. As
expected, the costs of both structures are not affected by
the query size, i.e., their costs do not depend on how
many intervals qualify the query predicates (while larger
queries lead to even smaller relative error). In all cases,
the MVB-tree outperforms the MVSB-tree by a factor of 2,
although its size is 20 times smaller (as shown in Figure
4.1a) and the relative error is at most 4%.

The next experiment explores the behavior of MVB with
various approximation ratios ε (from 0.1% to 0.5%). As
shown in Figure 4.4, the query cost is higher for small ε
(which offers better precision, i.e., less than 1% relative

error) due to the increase in the height of the logical tree
(in particular, note that the costs for ε=0.1%, 0.3% are
double those for higher ε values). Nevertheless, MVSB is
still more expensive in all cases.

εapproximate ratio

0

5

10

15

20

0.1% 0.3% 0.5% 0.7% 0.9%

number of node accesses

3% 4% 5%

2%1%
MVSB

MVBrelative
error

Figure 4.4: Cost vs. ε (A=10%, M=10k, |qk|=|qt|=0.3)

4.3 Query cost evaluation of practical solutions
This section compares the costs of the aR-tree and the
proposed B+R technique. Figure 4.5 repeats the
experiments of Figure 4.3. It is clear that the B+R tree
outperforms the aR-tree, usually by more than an order of
magnitude (note that the y-axis is in logarithmic scale). In
particular, its performance is independent of all
parameters, due to the fact that the cost of a constrained
nearest neighbor search only relies on the fractal
dimension of the dataset (which is the same in all cases),
as discussed in Section 2.3. On the other hand, the
overhead of the aR-tree is prohibitive, and increases with
the number of qualifying intervals, which is consistent
with the existing understanding of this structure
[PKZT01]. In summary, the B+R technique is about an
order of magnitude faster, and consumes an order of
magnitude less space than the aR-tree, while its maximum
error for these settings is only 4%.

aR B+R

the number M of alive intervals
at each timestamp

number of node accesses

1

10

100

1k

10k

1k 5k 10k 15k 20k

3% 3% 3%

3%

3%

relative error

dataset agility A

number of node accesses

1

10

100

1k

10k

1% 5% 10% 15% 20%

3% 3% 3%3%

4%

(a) Cost vs M (A=10%,
|qk|=|qt|=0.3,ε=0.5%)

(b) Cost vs A (M=10k,
|qk|=|qt|=0.3,ε=0.5%)

query key range length |qk|

number of node accesses

1

10

100

1k

10k

0.1 0.2 0.3 0.4 0.5

3%3%4% 3% 2%

 query time range length |qt|

number of node accesses

1

10

100

1k

10k

0.1 0.2 0.3 0.4 0.5

3% 1%3%4%4%

(c) Cost vs |qk| (A=10%,
M=10k,|qt|=0.3,ε=0.5%)

(d) Cost vs |qt| (A=10%,
 M=10k,|qk|=0.3,ε=0.5%)

Figure 4.5: Query performance comparison

Similar to Figure 4.4, Figure 4.6 evaluates the effect of
the approximation ratio ε on the query performance. The
cost of R+B increases only slightly, even for the smallest
ε, and is always considerably lower than its competitor.

1k

εapproximate ratio

1

10

100

10k

0.1% 0.3% 0.5% 0.7% 0.9%

number of node accesses

aR

R+B

1% 2% 3% 4% 5%

relative error

Figure 4.6: Cost vs. ε (A=10%, M=10k, |qk|=|qt|=0.3)

5. Conclusion
This paper presents novel techniques for approximate
aggregate processing in temporal databases. In particular,
we propose two sets of solutions. The first one utilizes a
specialized structure (i.e., the MVB-tree) and achieves
linear space (with respect to the database size) and
logarithmic query time in the worst case. The second
solution leverages off-the-shelf B- and R-trees, and
provides the same performance in the expected case. As
confirmed through extensive experimentation, our
techniques are economical in terms of space consumption
and outperform significantly (usually by more than an
order of magnitude) the exact methods, while at the same
time offering high approximation accuracy.

In this work we address the count and sum aggregate
functions, leaving the other aggregate functions open. In
particular, it would be interesting to investigate the
average processing (i.e., the quotient of count and sum),
where the main difficulty is that bounding the absolute
error of both count and sum does not necessarily limit the
error of the quotient. Another promising direction for
future work is to extend this technique to spatio-temporal
aggregation [PTKZ02], where the database contains the
object (e.g., vehicle) locations at any timestamp in
history, and the goal is to find (approximately) the
number of objects in a specific query region during a
certain time interval. The potential solution requires
applying the proposed method in higher dimensionality
which, however, may require more sophisticated
reductions.

Acknowledgements
This work was supported by grant HKUST 6197/02E
from Hong Kong RGC.

References
[B00] Bohm, C. A Cost Model for Query Processing in

High Dimensional Data Spaces. TODS, 25(2): 129-

178, 2000.
[BGO+96] Becker, B., Gschwind, S., Ohler, T., Seeger, B.,

Widmayer, P. An Asymptotically Optimal
Multiversion B-tree. The VLDB Journal, 5: 246-
275, 1996.

[CDD+01] Chaudhuri, S., Das, G., Datar, M., Motwani, R.,
Narasayya, V. Overcoming Limitations of Sampling
for Aggregation Queries. ICDE, 2001.

[CR94] Chen, C., Roussopoulos, N. Adaptive Selectivity
Estimation Using Query Feedback. SIGMOD, 1994.

[FK94] Faloutsos, C., Kamel, I. Beyond Uniformity and
Independence, Analysis of R-trees Using the
Concept of Fractal Dimension. PODS, 1994.

[FSAA01] Ferhatosmanoglu, H., Stanoi, I., Agarwal, D.,
Abbadi, A. Constrained Nearest Neighbor Queries.
SSTD, 2001.

[GAA03] Govindarajan, S., Agarwal, P., Arge, L. CRB-Tree:
An Efficient Indexing Scheme for Range Aggregate
Queries. ICDT, 2003.

[HHW97] Hellerstein, J., Haas, P., Wang, H. Online
Aggregation. SIGMOD, 1997.

[KPF01] Korn, F., Pagel, B., Faloutsos, C. On the
Dimensionality Curse and the Self-Similarity
Blessing. TKDE, 13(1): 96-111, 2001.

[PKZT01] Papadias, D., Kalnis, P., Zhang, J., Tao, Y. Efficient
OLAP Operations in Spatial Data Warehouses.
SSTD, 2001.

[PTKZ02] Papadias, D., Tao, Y., Kalnis, P., Zhang, J. Indexing
Spatio-Temporal Data Warehouses. ICDE, 2002.

[ST99] Salzberg, B., Tsotras, V. A Comparison of Access
Methods for Temporal Data. ACM Computing
Survey, 31(2): 158-221, 1999.

[TGIK02] Thaper, N., Guha, S., Indyk, P., Koudas, N.
Dynamic Multidimensional Histograms. SIGMOD,
2002.

[TPZ02a] Tao, Y., Papadias, D., Zhang, J. Cost Models for
Overlapping and Multiversion Structures. TODS,
27(3): 299-342, 2002.

[TPZ02b] Tao, Y., Papadias, D., Zhang, J. Aggregate
Processing of Planar Points. EDBT, 2002.

[TSP03] Tao, Y., Sun, J., Papadias, D. Selectivity Estimation
for Predictive Spatio-Temporal Queries. ICDE,
2003.

[VV97] Varman, P., Verma, R. Optimal Storage and Access
to Multiversion Data. TKDE, 9(3): 391-409, 1997.

[YW01] Yang, J., Widom, J. Incremental Computation and
Maintenance of Temporal Aggregates. ICDE, 2001.

[ZGTS03] Zhang, D., Gunopulos, D., Tsotras, V., Seeger, B.
Temporal and Spatio-Temporal Aggregations over
Data Streams using Multiple Time Granularities.
Information Systems, 28(1-2): 61-84: 2003.

[ZMT+01] Zhang, D., Markowetz, A., Tsotras, V., Gunopulos,
D., Seeger, B. Efficient Computation of Temporal
Aggregates with Range Predicates. PODS, 2001.

[ZTG02] Zhang, D., Tsotras, V., Gunopulos, D. Efficient
Aggregation over Objects with Extent. PODS,
2002.

