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Abstract 

Temporal aggregate queries retrieve summarized 
information about records with time-evolving attributes. 
Existing approaches have at least one of the following 
shortcomings: (i) they incur large space requirements, (ii) 
they have high processing cost and (iii) they are based on 
complex structures, which are not available in commercial 
systems. In this paper we solve these problems by 
approximation techniques with bounded error. We 
propose two methods: the first one is based on multi-
version B-trees and has logarithmic worst-case query cost, 
while the second technique uses off-the-shelf B- and R-
trees, and achieves the same performance in the expected 
case. We experimentally demonstrate that the proposed 
methods consume an order of magnitude less space than 
their competitors and are significantly faster, even for 
cases that the permissible error bound is very small. 

1. Introduction 
Temporal databases have received considerable attention 
due to the large number of applications that require 
efficient management of data with time-evolving 
attributes. In the related systems, records are typically 
represented as two-dimensional intervals in the so-called 
key-time space. Consider, for example, a telecom 
company that preserves the following information about 
phone calls made by its customers: (i) the starting/ending 
time of each call, and (ii) its cost (in dollars). Figure 1.1 
illustrates the interval representation of 6 calls, where the 
key of each interval (i.e., its projection on the vertical 
axis) denotes its cost, while the horizontal projection 
corresponds to its duration or, following the common 
terminology in the literature, its lifespan. For example, the 
lifespan of f is the open interval [1,5) (we represent this 
using different colors for its end points). A data interval is 
alive during its lifespan, and dead outside of it.  

While the majority of research (see [ST99] for a survey) 
in temporal databases aims at retrieving information about 
individual objects that satisfy certain (temporal and non-
temporal) predicates, the motivation of this work is that 
many applications require only aggregate results and can 
often accept approximate answers with small bounded 
error. Given a key range qk and an interval qt, a temporal 

count query retrieves the total number of data intervals 
that are alive during qt with keys in range qk. For 
example, the shaded rectangle in Figure 1.1 represents the 
query “return the number of phone calls in period 
qt=[6,8], with costs in qk=[1.75,3]”. Equivalently, the 
goal is to count the number of intervals intersecting the 
query rectangle (i.e., in our example the result is 2). An 
alternative is the temporal sum query, which, assuming 
that each data interval is associated with a weight, 
retrieves the sum of the weights of the qualifying records. 
For instance, if the database also stores the number of 
persons involved in each call (i.e., it is possible to have 
conference calls with more than two users), then a 
temporal sum query returns the total number of persons in 
all calls that qualify qk and qt.  
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Figure 1.1: Interval representation of temporal data 

•  Motivation 

Existing temporal aggregation techniques focus on exact 
query processing. The best existing structure, the MVSB-
tree [ZMT+01], consumes O(N/B⋅logBN/B) space and 
answers any query with O(logBN/B) node accesses, where 
N is the number of intervals in the database and B is the 
number of intervals that fit in one disk page. As 
demonstrated in our experiments, in spite of its good 
query cost, the size of this structure is much larger than 
that of the database (due to its sub-optimal space 
complexity), seriously hampering its usefulness for 
(typically very voluminous) practical datasets.  

Furthermore, the MVSB-tree (as well as most other 
methods for this problem) is currently inapplicable in 
practice since it is based on some complex, specialized 
indexes that are not implemented in any commercial 
database product. A practical solution should leverage 
only tools that are “off-the-shelf” from the market and at 
the same time provide excellent query performance.   



 

 

•  Contribution 

This paper presents the first work on approximate 
temporal aggregate processing. Specifically, for count 
queries, the goal is to provide answers guaranteed to 
deviate from the actual ones within threshold ε·N, where ε 
is an arbitrary positive constant smaller than 1 (i.e., the 
maximum error is specified as a percentage of the dataset 
cardinality). We address this problem from both 
theoretical and practical perspectives: (i) using the multi-
version B-tree, we show that any query can be answered 
in O(logBN/B) cost and linear space O(N/B); (ii) for 
practical scenarios, we reduce the problem to constrained 
nearest neighbor search [FSAA01], which can be 
answered by an R-tree (available in latest products from 
Informix and Oracle) probabilistically in O(logBN/B) time 
and O(N/B) space. The methodology also leads to the 
same bounds for approximate sum queries, where the 
maximum approximation error is defined as ε·∑N

i=1wi and 
wi (1≤i≤N) is the weight of the i-th data interval.   

The rest of the paper is organized as follows. Section 2 
reviews related work. Section 3 formally defines the 
problem of approximate temporal aggregation and 
presents our methods. Section 4 contains an extensive 
experimental evaluation that confirms the applicability of 
our approaches, while Section 5 concludes the paper with 
directions for future work. 

2. Related work 
Section 2.1 first describes the multi-version B-tree, since 
it is the basic structure of previous methods and 
constitutes a part of the proposed solutions. Then, Section 
2.2 discusses existing approaches on multi-dimensional 
aggregate processing, covering both temporal and non-
temporal databases. Finally, Section 2.3 briefly reviews 
algorithms for constrained nearest neighbor search using 
R-trees.  

2.1 The multi-version B-tree (MVB-tree) 
The MVB-tree [BGO+96, VV97] aims at processing 
timestamp key range queries in temporal databases. Such 
a query retrieves all data intervals that are alive at a 
timestamp qt, and whose keys fall in a range qk. For 
instance, the query with qt=6 and qk=[1.75,3] will return 
intervals d and e in Figure 1.1.  

The MVB-tree can be regarded as a space-efficient 
scheme for storing multiple (logical) B-trees. Each entry 
has the form <key, tst, ted>, where tst denotes the starting 
time of a data interval, and ted denotes the ending time 
(i.e., [tst,ted) is the entry’s lifespan). For leaf entries, key is 
the key of an interval (e.g., the cost of a call in Figure 
1.1), while for an intermediate entry e, key equals the 
minimum key of the leaf entries in its subtree that are 
alive in the lifespan of e. The inclusion of a data interval 

in the tree involves two separate operations at its starting 
and ending timestamps respectively (all the operations are 
performed chronologically). Specifically, if the current 
processing time is t, intervals starting at this time are 
inserted with their tst set to t and ted to “*”, indicating that 
their ending time is temporarily unknown (such entries 
are said to be alive). Similarly, intervals ending at this 
time have their ted changed (from *) to t (they die at t). 
Figure 2.1 illustrates an example of an MVB-tree with 
both alive and dead entries. 

<5, 1, *, A>
<43, 1, *, B>

<5, 1, *>

<13, 1, *>
<25, 1, 3>
<27, 1, 3>

<8, 1, *>

<39, 1, 3>

<43, 1, *>

<52, 1, 2>
<59, 1, 3>
<68, 1, 3>

<48, 1, *>

A BRoot

<72, 1, *>

<83, 1, *>
<95, 1, 3>
<99, 1, *>

<78, 1, *>

C

<72, 1, *, C>

<102, 1, *>  
Figure 2.1: A MVB-tree example 

For each timestamp t and each node, except for the roots, 
it is required that either none, or at least B⋅Pversion entries 
are alive at t, where Pversion is a tree parameter and B the 
disk page size (for the following examples Pversion=1/3 and 
B=6). This weak version condition ensures that entries 
alive at the same timestamp are mostly grouped together. 
A weak version underflow occurs if this condition is 
violated (e.g., due to deletion at the current processing 
time). A block overflow occurs when an entry is inserted 
into a full node, in which case a version split is 
performed. To be specific, all the alive entries of the node 
are copied to a new node, with their tst modified to the 
current time. The value of ted of these entries in the 
original node is also set to the insertion time1. The 
insertion of <28,4,*> into node A at timestamp 4 (in the 
tree of Figure 2.1) will cause node A to overflow. As 
shown in Figure 2.2, a new node D is created to store the 
alive entries of A, and A dies meaning that it will not be 
modified any more in the future. A new entry <5,4,*,D> 
(pointing to the new node) is inserted into the root node. 
When the root generates a version split, the new node of 
the split becomes the root of another logical tree. 

<5, 1, 4, A>
<43, 1, *, B>

<5, 1, 4>

<13, 1, 4>
<25, 1, 3>
<27, 1, 3>

<8, 1, 4>

<39, 1, 3>

<43, 1, *>

<52, 1, 2>
<59, 1, 3>
<68, 1, 3>

<48, 1, *>

A BRoot

<72, 1, *>

<83, 1, *>
<95, 1, 3>
<99, 1, *>

<78, 1, *>

C

<72, 1, *, C>

<102, 1, *>

<5, 4, *>

<13, 4, *>
<8, 4, *>

D

<28, 4, *><5, 4, *, D>

 
Figure 2.2: Version split in the MVB-tree 

In some cases, the new node may be almost full after a 
version split so that a small number of insertions would 
cause its overflow again. On the other hand, if it contains 
too few entries, a small number of deletions will cause its 

                                                           
1 In practice this step can be avoided since the deletion time is 
implied by the entry in the parent node. 



 

 

underflow. To avoid these problems, after a version split 
the number of entries in the new node must be in the 
range [B⋅Psvu,B⋅Psvo] (Psvu and Psvo are tree parameters). A 
strong version overflow (underflow) occurs when the 
number of entries exceeds B⋅Psvo (becomes lower than 
B⋅Psvu). A strong version overflow is handled by a key 
split, which is a version-independent split according to the 
keys of the entries in the node, and is processed in the 
same way as the B-tree. The strong version underflow is 
similar to the weak version underflow; the only difference 
is that the former happens after a version split, while the 
latter occurs when the weak version condition is violated 
after a deletion. In both cases, a merge is attempted with 
the copy of a sibling node, using only its alive entries. If 
the merged node strong version overflows, a key split is 
performed. In [VV97], the merging process is improved 
to reduce the tree size. 
As shown in [BGO+96], given N data intervals, the 
MVB-tree consumes O(N/B) space, and answers 
timestamp range queries with O(logBN/B + K/B) I/Os, 
where K is the number of intervals retrieved, i.e., both 
space consumption and query cost are optimal. 
Furthermore, the MVB-tree can also optimally process the 
timestamp search query TS(qt,qk), which retrieves the 
interval, alive at qt, with the largest key ≤ qk. For instance, 
in Figure 1.1, TS(6,3) returns interval e. The following 
theorem summarizes the performance bounds for MVB-
trees, which we utilize in Section 3.2.  
Theorem 2.1: Given N data intervals, a MVB-tree 
consumes O(N/B) space and answers any timestamp 
search query in O(logBN/B) time.     ■ 

2.2 Aggregate processing techniques 
Zhang et al. [ZMT+01] address exact retrieval of 
temporal aggregation. According to their terminology, 
given a value qk and a timestamp qt, a data interval 
satisfies the less-key-less-time condition LKLT(qt,qk) if its 
key (starting timestamp) is no larger than qk (qt). As 
shown in Figure 2.3a (qt=1), such intervals intersect the 
rectangular region r, whose main diagonal starts at the 
origin of the axes and ends at point (qt,qk). Similarly, an 
interval satisfies the less-key-single-time condition 
LKST(qt,qk), if it is alive at timestamp qt and its key is no 
larger than qk. In Figure 2.3a (qt=2), the qualifying 
intervals intersect the line segment s defined by points 
(2,0) and (2,qk). The corresponding count LKLT query 
returns the number of intervals satisfying the LKLT 
condition. The sum LKLT query returns the sum of their 
weights. Without ambiguity, in the sequel we use the 
notation LKLT(qt,qk) to denote both the LKLT condition, 
and the result of a LKLT count or sum query. The 
semantics of LKST(qt,qk) are similar. 

A temporal count/sum query with key range [qk1, qk2] and 
interval [qt1,qt2] can be reduced to 4 LKLT and 2 LKST 

queries, or equivalently, the result equals LKLT(qt1,qk1) + 
LKLT(qt2,qk2) − LKLT(qt2,qk1) − LKLT(qt1,qk2) + 
LKST(qt1,qk2) − LKST(qt1,qk1). Figure 2.3b illustrates the 
two types of intervals that qualify a counting query q 
(shaded region): (i) those (e.g., a) whose starting points 
fall in q, and (ii) those (e.g., b) that cross the left edge of 
q. The number of intervals of type (i) is given by 
LKLT(qt1,qk1) + LKLT(qt2,qk2) − LKLT(qt2,qk1) − 
LKLT(qt1,qk2), while that of type (ii) by LKST(qt1,qk2) − 
LKST(qt1,qk1). Based on this reduction, Zhang et al. 
[ZMT+01] propose the MVSB-tree, which is the multi-
version counterpart2 of the SB-tree [YW01]. For N data 
intervals, the MVSB-tree answers a temporal count/sum 
query optimally in O(logBN/B) time, but consumes sub-
optimal O(N/B⋅logBN/B) space.  

time 
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(a) LKLT and LKST  (b) 2 qualifying interval types  
Figure 2.3: Reduction of temporal aggregate queries 

The aP-tree [TPZ02b] aims at the aggregate processing of 
planar points. Although the method could also be applied, 
with appropriate transformations, for temporal 
aggregation, it also requires O(N/B⋅logBN/B) space. 
Another aggregation structure for multi-dimensional 
points, the CRB-tree [GAA03], consumes linear space, 
however, under the very restrictive assumption, that most 
of the tree is stored in sequential pages (which can only 
hold for static data). Furthermore, its extension for 
temporal aggregation is unclear. In [ZTG02], Zhang et al. 
develop two versions of the ECDF-B-tree for aggregate 
processing on rectangular objects (also applicable to 
intervals) with different space-query time tradeoffs. 
Specifically, the first version consumes O(N/B⋅logBN/B) 
space and answers a query in O(B·logB

2N/B) time, while 
the corresponding complexities of the second version are 
O(N·logBN/B) (for space) and O(logB

2N/B) (for query 
cost). These bounds are worse than those of the MVSB-
tree (due to the higher applicability of the ECDF-B-tree).  

The above techniques rely on specialized index structures 
not available in any commercial product. The most 
“practical” method in the literature is the aggregate R-
tree3 (aR-tee) [PKZT01], which augments the traditional 
R-tree with aggregate information in the intermediate 

                                                           
2 As discussed in [BGO+96], the algorithms introduced in 
Section 2.1 can be applied to obtain the multi-version 
counterpart of any “ephemeral” structure. 
3 Strictly speaking the aR-tree is not available in current DBMS 
either. Here we categorize it as “practical” because the necessary 
changes (with respect to the R-tree) are small. Our solutions, 
however, are not based on aR-trees. 



 

 

entries. The main idea is that if the MBR of an 
intermediate entry is totally contained in the query region, 
its sub-tree is not visited; instead, the aggregate number 
stored with the entry is retrieved directly. As shown in 
[PKZT01], aR-trees achieve significant speedup 
compared to conventional R-tree for large query 
windows. The aR-tree can be used for temporal 
aggregation by treating each interval as an MBR with zero 
extent on the y axis. 

Aggregate processing has also been considered in other 
applications, e.g., Papadias et al [PTKZ02] deal with 
spatio-temporal aggregation, while Zhang et al [ZGTS03] 
consider data streams. These approaches are specific to 
the targeted problems and cannot be applied in our case. 
Finally, approximate query answering in non-temporal 
databases has been addressed using various techniques 
such as histograms [TGIK02], sampling [CDD+01], 
randomized data access [HHW97], function-fitting 
[CR94], etc. All these methods, however, assume a single 
“snapshot” of the database and do not support temporal 
(historical) data (the only histograms with a temporal 
aspect focus on spatio-temporal prediction [TSP03]).   

2.3 Constrained nearest neighbor search 
Given a set of multi-dimensional points, a query region qr 
and a point qp, a constrained nearest neighbor query 
retrieves the data point that is closest to qp among all 
points that fall in qr. Figure 2.4 illustrates 12 points and 
the MBRs of the corresponding R-tree. To answer the 
query with qr and qp shown in Figure 2.4a, the algorithm 
of [FSAA01] first retrieves the root of the R-tree, and 
(because the MBRs of both N1 and N2 intersect qr) visits 
the subtrees of the root entries in ascending order of their 
minimum distances to the query point. In this example, N2 
has zero distance to qr and its contents N5, N6 are fetched. 
Since the MBR of N6 does not intersect qr, only N5 is 
retrieved and point p9 becomes the current nearest 
neighbor (NN). Then, the algorithm backtracks to the root 
and terminates after discovering that the distance from qp 
to N1 is longer than that between qp and p9, which 
becomes the final result. A conventional (unconstrained) 
nearest neighbor query would return p10 as the result for 
qp.  
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(a) Points and node extents (b) Corresponding R-tree 
Figure 2.4: A constrained NN query and its processing 

The performance of NN queries has been very well 
studied. The cost models of [B00, KPF01] indicate that 
the expected query cost depends only on the (i) fractal 
dimension [FK94] of the dataset, and (ii) the height of the 
R-tree. Specifically, they show that the cost is bounded by 
O((B+1)f/B·logBN/B), where B is the disk page size, and f 
the fractal dimension. Since for 2D points f≤2, we have 
O((B+1)f/B·logBN/B) = O((B+1)·logBN/B) = O(logBN/B), 
leading to Theorem 2.2.  

Theorem 2.2: Given N 2D data points, an R-tree answers 
a (constrained or not) nearest neighbor query in expected 
O(logBN/B) time.     ■ 

In Section 3.3 we illustrate the connection between 
nearest neighbor search and temporal aggregation, and 
show how it leads to practical solutions with good 
performance in the expected case. 

3. Approximate Temporal Aggregation  
Section 3.1 formally defines approximate temporal 
aggregate queries and illustrates how they can be reduced 
to approximate LKST queries (following the terminology 
of [ZMT+01]). Sections 3.2 and 3.3 solve LKST count 
queries using techniques based on MVB-trees and 
combination of R- and B-trees, respectively. Section 3.4 
extends the solutions to temporal sum.   

3.1 Problem definition and basic reductions 
We consider the popular transaction time database model 
[ST99], where records can only be appended to the 
database chronologically. When a new data interval 
begins/ends (i.e., in the context of Figure 1.1, a call 
starts/finishes), the database sets its starting/ending 
timestamp to the current time. Intervals already written to 
the database are never removed. Further, we assume the 
typical word-wise machine, where each value occupies 
the whole memory word4. Our goal is to design access 
methods for approximate processing of temporal count 
and sum queries.   

Problem 3.1: Given N data intervals with arbitrary 
lengths5 and weights w1, w2,…, wN, an approximate 
temporal count (sum) query returns a value, which 
deviates from the precise result by less than ε·N (ε·∑N

i=1wi), 
where ε is a constant (referred to as the approximation 
ratio in the sequel) in [0,1].     ■ 
                                                           
4 In the alternative bit-wise machine [GAA03], any integer v is 
represented by exactly log2v bits, so that multiple integers may 
be compressed into a single word. Structures implemented in 
bit-wise machines usually consume less space, at the expense of 
significant implementation overhead.  
5 The problem is substantially simpler if the intervals are of the 
same length, or their lengths are smaller than a constant. In both 
cases the problem can be reduced to point aggregation by 
enlarging the query region accordingly.  



 

 

Notice that the error bound is related to the maximum 
possible query result. Specifically, the “largest” count 
query retrieves all intervals (i.e., the maximum result is 
N), and similarly, the highest value returned by a sum 
query is ∑N

i=1wi. Consider, for instance, that N=104 and 
ε=0.001; then, the output of any temporal count query 
may deviate by less than 10 from the actual result. On the 
other hand, if N becomes 105, the maximum error is less 
than 100 for the same ε. Motivated by the reduction of 
[ZMT+01] (see Section 2.2), we consider the approximate 
versions of LKLT and LKST queries defined as follows: 

Problem 3.2: Given N data intervals with arbitrary 
lengths, an approximate LKLT(qt,qk) count (sum) query 
returns a value that deviates from the actual result, i.e., the 
number of intervals (or the sum of their weights) 
satisfying condition LKLT(qt,qk), by no more than ε·N 
(ε·∑N

i=1wi), where ε is the approximation ratio in the range 
[0,1]. The approximate LKST query can be defined in the 
same way.     ■ 

The approximate version of the reduction (from temporal 
count/sum to LKLT and LKST) is more complex than its 
exact counterpart. As shown in Section 3.2, our methods 
for approximate LKLT and LKST queries always return 
values smaller than the actual result. Given this fact, we 
prove the following lemma.  

Lemma 3.1: An approximate count/sum query with ratio 
ε, can be reduced to 4 approximate LKLT and 2 LKST 
queries, all with approximation ratio ε/3.  

Proof: Let the count/sum query have key range 
qK=[qk1,qk2] and interval qT=[qt1,qt2]. Then, as mentioned 
in Section 2.2, the actual result act =  LKLT(qt1,qk1) + 
LKLT(qt2,qk2) − LKLT(qt2,qk1) − LKLT(qt1,qk2) + 
LKST(qt1,qk2) − LKST(qt1,qk1). Let the actual values of 
the 6 terms in this equation be v1, v2, …, v6, respectively 
(i.e., act = v1 + v2 − v3 − v4 + v5 + v6). Accordingly, let v1', 
v2', …, v6' denote the approximate results returned by our 
method with approximation ratio ε/3. The approximate 
result for the original query is computed as est = v1' + v2' − 
v3' − v4' + v5' + v6'. Given that vi' ≤ vi ≤ vi' + ε/3, for 1≤i≤6, 
it is easy to obtain that −ε ≤ est − act ≤ ε.  ■ 

Recall that LKLT queries are used by [ZMT+01] to obtain 
the intervals (of type (i) in Figure 2.3b) whose starting 
points fall in the query region. It turns out that each LKLT 
can be further reduced to a LKST query by a simple 
transformation. Consider query LKLT(6,1.75) in Figure 
3.1a, returning the number (3) of intervals starting in the 
shaded region. Figure 3.1b demonstrates the transformed 
query LKST(6,1.75) and data, where the ending time of 
each transformed interval is fixed to the last timestamp 
(i.e., 8) of the history, and its key and starting time are the 
same as those of the original interval. Observe that 
LKST(6,1.75) (on the transformed data in Figure 3.1b) has 
the same result as LKLT(6,1.75) (in Figure 3.1a). Note 

that the transformed intervals6 are not actually 
materialized to the hard disk (in fact, as elaborated 
shortly, our technique only requires storing a fraction of 
the database).  
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(b) The transformed data and LKST query 

Figure 3.1: Reduction from LKLT to LKST 

The following lemma summarizes the above discussion.    

Lemma 3.2: An approximate count/sum query with 
approximation ratio ε can be reduced to 6 approximate 
LKST queries with approximation ratio ε/3.  

Proof: This lemma results from Lemma 3.1 and the 
reduction from LKLT to LKST.    ■ 

It is worth mentioning that the LKST query, in addition to 
being the core of temporal count/sum queries, is also an 
important stand-alone operation in practice. Focusing first 
on LKST count, in the next section we present a solution 
for its approximate processing based on the MVB-tree. In 
Section 3.3, we present an alternative method that adopts 
only B- and R-trees (hence it is readily applicable in 
commercial systems). The same methodology is applied 
to sum queries in Section 3.4.  

3.2 Approximate LKST count using MVB-trees 
We define the rank of an interval e at timestamp t (t is 
within the lifespan of e) as the output of LKST(t,e.key), 
namely, the number of intervals (i.e., including e itself) 
alive at t with keys≤e.key. Obviously, the rank of an 
interval may change at different timestamps. In Figure 
3.2a, for example, the rank of f equals 2, 3, 4 during 
intervals [1,2), [2,3), and [3,5), respectively. 

                                                           
6 A similar transformation (but for a different problem) is 
applied in [TPZ02b]. 



 

 

Now let us consider query q=LKST(6,3) in Figure 3.2a, 
whose actual result is 3, since intervals e, d, c are alive at 
timestamp 6 and have keys ≤ 3. Our solution is based on 
the observation that the result equals the largest rank 
among those of the qualifying intervals (in this case the 
rank of e). In order to obtain this rank efficiently, we 
“clip” every data interval into several smaller ones, each 
corresponding to the period when its rank remains fixed. 
Figure 3.2b illustrates the clipped intervals for the data of 
Figure 3.2a. For example, f is partitioned into 3 intervals 
with lifespans [1,2), [2,3), [3,5), and ranks 2, 3, 4 
respectively, while d generates a single interval because 
its rank remains 2 throughout its lifespan. The clipped 
intervals are indexed by a MVB-tree, where each leaf 
entry contains in addition to key, tst, ted, also the rank of 
the interval during [tst, ted). The LKST(6,3) query can now 
be answered by the timestamp search query TS(6,3) (see 
Section 2.1), which finds the qualifying interval with the 
largest key (i.e., the clipped interval of e with lifespan 
[3,7)). The rank (3) of this interval constitutes the (actual) 
result. 
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(b) The clipped intervals with ranks 

a timestamp 

time 1 2 3 4 5 6 7 8

b

d

f
key 

1
f2

e1

1

(2)

(2)

(2)

(4)

(2)

search query q

1

0.5
1

1.5

2
2.5

3
3.5

 
(c) The anchor intervals 

Figure 3.2: Generating anchor intervals based on ranks 

The problem of this method is that in the worst case, each 
interval will be clipped into O(N) smaller ones, incurring 

O(N2) space consumption (which is higher than the 
MVSB-tree). Fortunately, the space consumption can be 
significantly reduced for approximate processing. 
Assume, for example, that we want the absolute error to 
be less than 2 (i.e., ε =2/6=1/3). This implies that we only 
need to store even ranks because even if the actual result 
is an odd number, we can retrieve the next (lower) rank 
(which must be even)7. Therefore, the difference between 
the approximate and actual answers is at most 1. This is 
illustrated in Figure 3.2c that shows the intervals with 
even ranks, as well as, the timestamp search query 
TS(6,3), which now retrieves interval d1, with rank 2 as 
the approximate result (recall that the actual result is 3).  

In the general case, where ε is an arbitrary number in 
[0,1], we need to keep only the clipped intervals whose 
rank is a multiple of ε·N, so that any approximate output 
deviates at most ε·N−1 from the actual result. In the 
sequel, we refer to these intervals as the anchor intervals. 
As shown in the following lemma, the number of anchor 
intervals is O(N), i.e., we reduce the space consumption 
from quadratic to linear. 

Lemma 3.3: Given N data intervals, the total number of 
anchor intervals, whose ranks are multiples of ε·N, is 
O(N).  

Proof: First observe that at any timestamp, there can be at 
most 1/ε = O(1) anchor intervals (i.e., since O(N) 
intervals are alive at each timestamp, and the ranks of 
consecutive anchor intervals differ by ε·N). On the other 
hand, a new anchor interval can be created only at 
timestamps when an interval starts/ends, and the number 
of such timestamps is at most 2N. Therefore, the total 
number of anchor intervals is at most 2N·1/ε = O(N). ■  

It is worth mentioning that, although the number of 
anchor intervals (i.e., after discarding those whose ranks 
are not multiples of ε·N) produced by a particular data 
interval may still be O(N), Lemma 3.3 indicates that there 
can be only O(1) such (data) intervals. As mentioned 
earlier, we index the O(N) anchor intervals using an 
MVB-tree, which, as stated in Theorem 2.1, consumes 
O(N/B) space, and answers a time search query (and 
hence the original LKST query) in O(logBN/B) I/Os. 

Next we discuss the algorithm for efficiently generating 
the anchor intervals. To facilitate illustration, we refer to 
the starting/ending timestamps of all the intervals 
collectively as event timestamps, which are first sorted 
and processed in ascending order. In practice, however, 
this sorting step can be avoided as data intervals start/end 
chronologically. Processing a starting (ending) event 
timestamp t involves inserting (removing) the 
corresponding data interval into (from) a B-tree, using its 

                                                           
7 Applying the same methodology, we can easily obtain 
approximate results that are always larger.  



 

 

key as the index key. In other words, the B-tree always 
maintains the set of O(N) data intervals alive at t. On the 
other hand, we store the set of anchor intervals alive at t in 
an anchor list Lanchor, using O(1) space. At the end of each 
timestamp (i.e., the next event timestamp is larger than t), 
we empty Lanchor, and select, from the B-tree (as described 
in detail shortly), the set of O(1) intervals, whose ranks at 
t are multiples of ε·N, and place them in Lanchor.   

It remains to clarify how to select, from a B-tree, the 
record with a specific rank r, i.e., the record whose key is 
the r-th smallest among all records in the tree. Towards 
this, we augment each intermediate entry of the B-tree 
with an additional value, specifying the number of data 
records in its subtree. Figure 3.3 shows an example with 
10 records (e.g., the aggregate 5 in parenthesis of the first 
entry of G denotes that there are 5 entries in its subtree). 
Then, a record with any rank can be found by accessing 
O(h) nodes, where h is the height of the tree. For instance, 
to find the record with rank r=8, we first retrieve the root 
G, and since the aggregate in the first entry is 5<r, we 
follow the second entry and reach F. Now we search for 
the record with rank r=8−5=3 in the subtree of F; thus, we 
follow the first entry of F (since its aggregate 3≥r) and 
reach C, where we simply select the 3rd record (i.e., 8).  

1 2 3 4 5 6 7 8 9 10

1(2) 3(3) 6(3) 9(2)

1(5) 3(5)

A B C D

E F

G

 
Figure 3.3: A B-tree with aggregate information 

We are now ready to analyze the execution time of the 
algorithm for producing the anchor intervals. Processing 
each timestamp t involves (i) inserting/removing K 
intervals (where K is the number of intervals starting or 
ending at t) into the B-tree, (ii) performing O(1) queries to 
find the anchor intervals at t, and (iii) updating the anchor 
list. Since the number of intervals alive at the same 
timestamp is O(N), step (i) requires O(K·logBN/B) time, 
step (ii) O(logBN/B) time, and step (i) O(1) time. Thus, the 
total overhead of the algorithm is bounded by 
inserting/removing N intervals, namely, O(N·logBN/B). It 
is worth mentioning that our algorithm is “append-only” 
(since we process the intervals in ascending order of the 
event timestamps), and thus is suitable for incremental 
maintenance in transaction time databases. The following 
theorem summarizes the above discussion.  

Theorem 3.1: Given N data intervals, any approximate 
LKST query can be solved using a MVB-tree in 
O(logBN/B) time and O(N/B) space. The MVB-tree can be 
updated in amortized O(logBN/B) time per interval.     ■ 

Since, by Lemma 3.2, a count query is reduced to 6 LKST 
queries, Theorem 3.1 also describes the bounds for 
approximate count queries. Note that although 

approximate results of LKST queries are always lower 
than the actual values, the final output of an approximate 
count (or sum) query may be actually larger than the 
precise answer (but within the bounds), because the 
partial results of some LKST queries are subtracted.  

If the LKST query is issued as a stand-alone operation, 
Theorem 3.1 still holds even if we further decrease the 
error upper bound as follows. Specifically, given 
LKST(qt,qk), we require that the approximate result 
deviates from the actual value by less than ε·Nt (instead of 
ε·N), where Nt is the number of data intervals alive at time 
qt. This can be achieved using the same algorithm for 
generating the anchor intervals, except that the intervals 
maintained at time qt are those whose ranks are multiples 
of ε·Nt. Further, note that this upper bound is indeed the 
lowest that can be guaranteed by our methodology, given 
that we are allowed to use only linear space.  

3.3 Approximate LKST count using B-, R-trees 
To enable the application of R-trees, we convert 
approximate LKST queries to constrained nearest 
neighbor search on a set of 2D points. Towards this, we 
first obtain, as discussed in the previous section, a set of 
O(N) anchor intervals (i.e., the clipped intervals whose 
ranks are multiples of ε·N). Then, each interval with key 
k and lifespan [ts,te) generates a set of anchor points with 
the same key k as follows: (i) the starting point of the 
interval is the first anchor point, and (ii) at every 
timestamp t∈ [ts,te) when another anchor interval starts or 
ends, a new anchor point is created. Figure 3.4a illustrates 
the anchor intervals of Figure 3.2b. Every interval, except 
for f2 and d1, produces a single anchor point (its starting 
point). On the other hand, f2 generates an additional point 
at the timestamp when d1 starts and b1 ends. Similarly, d1 
produces an additional point at the time when f2 ends. 
Figure 3.4b shows the set of anchor points. Each point is 
tagged with the rank of the corresponding anchor interval.  

As with anchor interval generation, anchor points can also 
be obtained using plane-sweep, by maintaining the anchor 
list storing the O(1) anchor intervals alive at the sweeping 
timestamp. The difference is that, at each event timestamp 
(i.e., when an anchor interval starts/ends), a new anchor 
point is created for each interval in the anchor list. Figure 
3.5 illustrates the pseudocode for this process. As shown 
in Lemma 3.4, the number of anchor points is at the order 
of the dataset size. 

Lemma 3.4: Given N data intervals, the total number of 
anchor points is O(N).  

Proof: As stated in the proof of Lemma 3.3, there are 
O(N) event timestamps at which we need to generate 
anchor points. The number of such anchor points at each 
event timestamp is of the same order O(1) as that of the 
anchor intervals at that time, which completes the proof. ■ 
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(b) The corresponding points  

Figure 3.4: Reduction from LKST to constrained NN 

 

Algorithm Generate_Anchor_Point (ε, N) 
// ε is the approximation ratio, and N is the number of intervals  
1. sort the starting/ending time of all intervals into Ltime 

2. initialize a B-tree BT (augmented as in Figure 3.3) 
3. initialize an empty anchor list Lanchor 
4. tlast = the first timestamp in Ltime 
5. for each timestamp t in Ltime 
6.  if t ≠ tlast  
7.   empty Lanchor; tlast = t 
8.   retrieve from BT the intervals whose ranks are 

multiples of ε·N, and put them in Lanchor  
9.   for each interval e in Lanchor generate anchor point 

(t,e.key)  
10.  if t is a starting (ending) timestamp of interval e 
11.   insert (remove) e in (from) BT 
end Generate_Anchor_Point 

Figure 3.5: Algorithm for anchor point generation 

We index all the O(N) event timestamps and anchor 
points in a B- and R-tree, respectively. Given a query 
LKST(qt,qk), we first find, using the B-tree in O(logB N/B) 
time, the latest event time ta before or at qt (we say ta is 
the anchor time of qt). For example, for the query 
LKST(6,3) in Figure 3.2c, ta=5, i.e., the ending time of 
anchor interval f2. Then, we retrieve the nearest anchor 
point of query point (qt,qk) in the constrained region, 
whose key projection is [−∞,qk] and whose time 
projection is [ta, qt]. In Figure 3.4b the constrained region 
is the shaded rectangle, where the nearest anchor point 
retrieved is pd2 (in this example, there is only one point in 
the constrained region, while this number is O(1/ε) in 
general). The tagged rank (i.e., 2) of the retrieved anchor 
point is the result of the approximate LKST query, as 
justified in the following lemma.  

Lemma 3.5: Given query LKST(qt,qk), the rank of the 
nearest anchor point of (qt,qk) in the constrained region 
(with key/time projection [−∞,qk]/[ta, qk]), deviates from 
the actual result of LKST(qt,qk) by less than ε·N. 

Proof: The correctness of the lemma follows the 
observation that the anchor point returned by the 
constrained nearest neighbor query corresponds to the 
anchor interval retrieved by the timestamp search query 
(qt,qk).     ■ 

According to Theorem 2.2, the R-tree answers a 
constrained nearest neighbor query in expected 
O(logBN/B) time, which is also the overall query 
overhead, as stated in Theorem 3.2. Similar to the MVB-
approach, this theorem still holds if the upper bound of 
the absolute error (of the approximate result) is lowered to 
ε·Nt, i.e., the number of data intervals alive at the time 
query time qt. 

Theorem 3.2: Given N data intervals, any approximate 
LKST query can be solved using a B- and R-tree in 
expected O(logBN/B) time using O(N/B) space. Both trees 
can be updated in amortized cost O(logBN/B) per interval. 
■ 

3.4 Approximate temporal sum processing 
The methodology can be easily extended to approximate 
sum processing with the same query and space overhead. 
Given a set of N data intervals with weights w1, w2, ..., wN, 
it suffices to discuss the approximate LKST sum query, 
since, by Lemma 3.2, a temporal sum can be reduced to 6 
such queries.  Let W=∑N

i=1wi be the sum of the weights of 
all data intervals, i.e., W is the largest (actual) result of 
any sum query. Figure 3.6a shows the weights of the 6 
intervals in Figure 3.2a. 

For an interval e we define its w-rank (at an arbitrary 
timestamp t during its lifespan) as the sum of the weights 
of all intervals (including e) alive at t with keys smaller 
than or equal to e.key. As with the rank defined in Section 
3.2, the w-rank of an interval may also vary with time, 
and thus every interval is partitioned so that each clipped 
interval represents the period during which its w-rank 
remains fixed. Figure 3.6b illustrates the resulting clipped 
intervals with their corresponding w-ranks.  

Similar to the approximate count problem, we convert a 
LKST sum query to a timestamp search on a set of chosen 
anchor intervals. Specifically, given the approximation 
ratio ε, we keep, at each timestamp t, the smallest set of 
clipped intervals (among those alive at t) satisfying the 
condition: for any clipped interval a with w-rank ≥ ε·W, 
there exists one anchor interval b such that 0 ≤ b.w-rank − 
a.w-rank ≤ ε·W. Assuming ε=1/3 (i.e., maximum error 
below ε·W=1/3×35=11.7), Figure 3.6c illustrates the 
anchor intervals together with their w-ranks. At 
timestamp 4, for example, there are 4 alive clipped 



 

 

intervals (from b, d, e, c) with w-ranks 2, 12, 22, 31 
respectively, out of which only d1 and f2 (with ranks 12, 
31) are anchor intervals. The algorithm for computing the 
anchor intervals is similar to the one for temporal count 
processing. We omit the details and simply summarize in 
theorem 3.3. 

time 1 2 3 4 5 6 7 8

a

key 
a LKST sum query

w =3
bw =2

cw =2
dw =10

ew =10
fw =9

0.5
1

1.5

2
2.5

3
3.5

 
(a) The original intervals with weights 
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(b) The clipped intervals with w-ranks 
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(c) The anchor intervals with w-ranks 

Figure 3.6: Anchor interval generation for LKST sum 

Theorem 3.3: Given N data intervals, any approximate 
LKST sum query can be answered using a MVB-tree in 
O(logBN/B) time and O(N/B) space. The MVB-tree can be 
updated in amortized cost O(logBN/B) per interval.     ■ 

Similar to Theorem 4.1, the above theorem still holds 
even if we reduce the maximum absolute error from ε·W 
to ε·Wt, where Wt is the sum of the weights of the intervals 
alive at the query time. Furthermore, we can also solve 
the problem with only a B- and an R-tree, by converting a 
query to a constrained nearest neighbor search on a set of 
anchor points computed using an algorithm similar to the 
one of Figure 3.5.  

Theorem 3.4: Given N data intervals, any approximate 
LKST sum query can be solved using a B- and R-tree in 
expected O(logBN/B) time using O(N/B) space. Both trees 
can be updated in amortized O(logBN/B) time per interval.  

3.5 Discussion 
To summarize, for each type of aggregate queries (i.e., 
count or sum), our theoretical solution consists of two 
separate MVB-trees, which manage the anchor intervals 
generated for answering LKST and LKLT queries 
respectively (recall that, as shown in Figure 3.1b and 
Lemma 3.2, LKLT can be reduced to LKST). The practical 
solution maintains a B- and an R-tree indexing the anchor 
intervals for LKST processing, and another two trees for 
LKLT. As demonstrated in the experiments, the overall 
space consumption of both solutions is much smaller than 
the original database size. Here we qualitatively illustrate 
this for count queries (the extension to sum is 
straightforward), adopting the following parametric 
modeling [TPZ02a]. The database consists of T+1 
timestamps such that (i) M data intervals (whose keys 
follow arbitrary distribution) start at timestamp 0, and (ii) 
at each of the subsequent T timestamps, A percent of the 
intervals terminate their lifespans, while the same number 
of intervals start at this timestamp with distinct key values 
(A is the dataset agility8). Clearly the total number of 
intervals throughout the history equals N = M+M·A·T ≈ 
M·A·T (assuming large T). On the other hand, as proven in 
the previous sections, the number of anchor 
intervals/points at each timestamp is at most 1/ε. As a 
result, the total number of anchor intervals/points is 
bounded by 1/ε·(T+1), which is smaller than N if M·A>1/ε 
(in fact, with a more complex analysis, we can prove a 
tighter condition M·A>1/(2ε)). This intuitive condition 
essentially says that the number of new intervals starting 
at a timestamp is larger than the number of anchor 
intervals/points we keep, which is indeed the case for 
“agile” datasets (see the settings of our experiments).  

4. Experiments 
This section experimentally demonstrates the efficiency 
of our methods. We generate temporal datasets in the 
same way as [TPZ02a], simulating the phone call history 
of a telecom company. Specifically, at timestamp 0 the 
keys of M intervals (i.e., calls) are generated in [0,100] 
following certain distribution DIST. In practice, each 
timestamp corresponds to the minimum billing period, 
e.g., 6 seconds, and its key denotes its cost. Then, at each 
subsequent timestamp t (1≤t≤1000, i.e., the history 
consists of 1000 timestamps), A% (i.e., the dataset agility) 
of the M intervals are randomly selected to produce key 
changes as follows: each such interval terminates its 
lifespan at t (i.e., the call ends), updates its key by some 
offset uniformly generated in [-1,1], and creates another 

                                                           
8 In general, A may vary at different timestamps, or separate 
agilities may be defined for insertions and deletions (i.e., the 
number of alive intervals at each timestamp may change). Here 
we fix A for simplicity.   



 

 

interval (with the new key) starting at t. Note that, in this 
way the number of alive intervals (calls) at each 
timestamp remains fixed (=M). We vary M from 1k to 
10k, and the dataset agility A from 1% to 20%, so that the 
total number of data records ranges from 11k to 2 million.  

The key (time) range of each temporal count/sum query is 
uniformly generated in [0,100] ([0,1000]), and each 
workload consists of 200 queries with the same 
parameters |qk|, |qt|, ε, which denote the lengths of the key 
range, time range, and approximation ratio, respectively. 
In the sequel, we represent |qk| (|qt|) as the percentages 
over the key (time) axis respectively, e.g., 10% for |qk| 
(|qt|) corresponds to key (time) range of length 10 (100).    

We compare (i) the MVSB-tree [ZMT+01], (ii) the aR-
tree (see Section 2.2), (iii) our MVB-tree-based solution 
(proposed in Section 3.2), and (iv) the combined B- and 
R-trees (proposed in Section 3.3, denoted as B+R in the 
sequel). In particular, methods (i) and (iii) are 
“theoretical” solutions (since they utilize access methods 
currently unavailable in commercial database products), 
while (ii) and (iv) are readily applicable in practice. The 
performance of each method is measured as the average 
number of node accesses (per query) in answering a query 
workload. We have conducted experiments of both 
count/sum queries using different key distributions 
DIST={uniform, Gaussian, Zipf}, obtaining almost 
identical results. Due the space constraint, in the sequel 
we demonstrate the diagrams for count queries and Zipf 
key distribution (specifically, skewed towards 0 with base 
coefficient 0.8, simulating the fact that most calls in 
practice tend to have small costs).  

4.1 Size comparison 
The first experiment evaluates the space consumption of 
the alternative solutions. In Figure 4.1a, we fix the agility 
A to 10%, but vary M (i.e., the number of intervals alive at 
a timestamp) from 1k to 20k. The approximation ratio ε of 
the proposed structures is set to 0.5%9. The space of the 
aR-tree corresponds to the database size, since this 
structure stores each interval exactly once. The size of 
MVSB is around 1.5 times larger than the database size 
(recall that its space complexity is O(N/BlogBN/B)). The 
proposed methods, however, are significantly smaller 
(e.g., for M=20k, they consume about 1/20 of the database 
size) because they only keep a constant (i.e., at most 
1/ε=200) number of anchor intervals/points at each 
timestamp t, regardless of the total number of intervals 
alive at t. Observe that, in contrast to the competitors, the 
space consumption of MVB and B+R actually decreases 
for larger M. This happens because the maximum absolute 
error allowed (with the same ε) grows for higher M, 

                                                           
9 We quantify the relative error of different approximation ratios 
in Section 4.2.  

resulting in even fewer anchor intervals/points maintained 
at each timestamp. Figure 4.1b examines the structural 
sizes as a function of dataset agility A, fixing M to 10k, 
confirming similar observations.  
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(a) Size vs M (A=10%) (a) Size vs A (M=10k) 
Figure 4.1: Size comparison (ε=0.5%) 

Figure 4.2 examines the space consumption of the 
proposed methods for various approximation ratios, using 
the median values of M (=10k) and A (=10%). For 
comparison, we also illustrate the sizes of MVSB and aR-
trees. As expected, the approximate solutions require 
more space for higher precision, e.g., for the lowest tested 
value of ε=0.1%, both structures require half the data base 
size.  
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Figure 4.2: Size vs approximation ratio (M=10k, A=10%) 

4.2 Query cost evaluation of theoretical solutions 
In this section, we compare the query performance of the 
MVSB-tree and the proposed MVB-tree technique, since 
they both require specialized access methods not available 
in the existing products. In Figure 4.3a, we test the query 
cost (averaged over all queries in a workload) as a 
function of M (i.e., the number of intervals alive at the 
same timestamp), fixing agility A to 10%, and the query 
parameters |qk|, |qt| to 0.3. For MVB-trees we use ε=0.5% 
(the same value used for the size experiments in Figure 
4.1) and we also illustrate the corresponding relative error 
of the approximate results. Specifically, let acti and apri 
denote the actual and approximate results of the i-th 
(1≤i≤200) query in the workload respectively; the relative 
error is defined as (1/200)·∑200

i=1 |acti−apri|/acti.  

The query cost of the MVB is considerably lower than 
that of MVSB, and remains (almost) constant as M 
increases (while the cost of MVSB degrades 
continuously). Recall that the performance of MVB and 
MVSB is determined by the heights of the logical trees 



 

 

(i.e., B- and SB-trees) in the respective multi-version 
structures. The height is lower for MVB since its logical 
tree only needs to index the anchor intervals, the number 
of which is smaller than the number of original data 
intervals, indexed by a logical tree in MVSB. As 
mentioned earlier, the number of anchor intervals kept at 
each timestamp does not increase with M, which explains 
the constant cost of MVB (the “step-wise” growth of 
MVSB cost corresponds to height increases). The 
accuracy of our approximate results is very high 
(maximum relative error 4%) since the absolute error is 
bounded using a very small ε. Furthermore, the relative 
error does not vary with M because larger M increases 
both the query result and the absolute error.  
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(c) Cost vs |qk| (A=10%, 
M=10k,|qt|=0.3,ε=0.5%) 
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Figure 4.3: Query performance comparison 

Figure 4.3b evaluates the query performance by varying 
the agility from 1% to 10%. The overhead of both 
structures remains the same, because the heights of their 
logical trees depend only on the number of intervals alive 
at a single timestamp (which is not relevant to the dataset 
agility). Figures 4.3c and 4.3d plot the query cost as a 
function of query parameters |qk| and |qt|, respectively. As 
expected, the costs of both structures are not affected by 
the query size, i.e., their costs do not depend on how 
many intervals qualify the query predicates (while larger 
queries lead to even smaller relative error). In all cases, 
the MVB-tree outperforms the MVSB-tree by a factor of 2, 
although its size is 20 times smaller (as shown in Figure 
4.1a) and the relative error is at most 4%.   

The next experiment explores the behavior of MVB with 
various approximation ratios ε (from 0.1% to 0.5%). As 
shown in Figure 4.4, the query cost is higher for small ε 
(which offers better precision, i.e., less than 1% relative 

error) due to the increase in the height of the logical tree 
(in particular, note that the costs for ε=0.1%, 0.3% are 
double those for higher ε values). Nevertheless, MVSB is 
still more expensive in all cases.  
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Figure 4.4: Cost vs. ε (A=10%, M=10k, |qk|=|qt|=0.3) 

4.3 Query cost evaluation of practical solutions 
This section compares the costs of the aR-tree and the 
proposed B+R technique. Figure 4.5 repeats the 
experiments of Figure 4.3. It is clear that the B+R tree 
outperforms the aR-tree, usually by more than an order of 
magnitude (note that the y-axis is in logarithmic scale). In 
particular, its performance is independent of all 
parameters, due to the fact that the cost of a constrained 
nearest neighbor search only relies on the fractal 
dimension of the dataset (which is the same in all cases), 
as discussed in Section 2.3. On the other hand, the 
overhead of the aR-tree is prohibitive, and increases with 
the number of qualifying intervals, which is consistent 
with the existing understanding of this structure 
[PKZT01]. In summary, the B+R technique is about an 
order of magnitude faster, and consumes an order of 
magnitude less space than the aR-tree, while its maximum 
error for these settings is only 4%.  
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(c) Cost vs |qk| (A=10%, 
M=10k,|qt|=0.3,ε=0.5%) 

(d) Cost vs |qt| (A=10%, 
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Figure 4.5: Query performance comparison 



 

 

Similar to Figure 4.4, Figure 4.6 evaluates the effect of 
the approximation ratio ε on the query performance. The 
cost of R+B increases only slightly, even for the smallest 
ε, and is always considerably lower than its competitor.  
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Figure 4.6: Cost vs. ε (A=10%, M=10k, |qk|=|qt|=0.3) 

5. Conclusion 
This paper presents novel techniques for approximate 
aggregate processing in temporal databases. In particular, 
we propose two sets of solutions. The first one utilizes a 
specialized structure (i.e., the MVB-tree) and achieves 
linear space (with respect to the database size) and 
logarithmic query time in the worst case. The second 
solution leverages off-the-shelf B- and R-trees, and 
provides the same performance in the expected case. As 
confirmed through extensive experimentation, our 
techniques are economical in terms of space consumption 
and outperform significantly (usually by more than an 
order of magnitude) the exact methods, while at the same 
time offering high approximation accuracy.  

In this work we address the count and sum aggregate 
functions, leaving the other aggregate functions open. In 
particular, it would be interesting to investigate the 
average processing (i.e., the quotient of count and sum), 
where the main difficulty is that bounding the absolute 
error of both count and sum does not necessarily limit the 
error of the quotient. Another promising direction for 
future work is to extend this technique to spatio-temporal 
aggregation [PTKZ02], where the database contains the 
object (e.g., vehicle) locations at any timestamp in 
history, and the goal is to find (approximately) the 
number of objects in a specific query region during a 
certain time interval. The potential solution requires 
applying the proposed method in higher dimensionality 
which, however, may require more sophisticated 
reductions.   
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