TRAAM
Learning Bilingual Compositional Distributed Vector Representations of Transduction Grammars

Karteek ADDANKI Dekai WU
{ vskaddanki | dekai }@cs.ust.hk

HKUST
Human Language Technology Center
Department of Computer Science and Engineering
University of Science and Technology, Hong Kong
what is **TRAAM?**

Transduction Recursive Auto-Associative Memory

- fully bilingual generalization of monolingual RAAM
- distributed vector representation of SDTGs
- vectors represent *bilingual* constituents
- attractive properties for bilingual grammar induction
modeling recursive structures

- TRAAM *generalizes* from neural network approaches that model *monolingual recursive structures*

- neural language models and SRNs (Bengio *et al.* 2003)
 - contextual history modeled by a RNN

- convolutional networks (Collobert & Weston 2008)
 - learn vector representations of words
 - used in NLP tasks such as POS tagging, chunking and SRL

- recursive auto-associative memory (Pollack 1990)
 - recursive autoencoders are a special case of RAAM: RAE successfully applied in sentiment prediction (Socher *et al.* 2011)
 - RAAM is more flexible than convolutional networks: **URAAM** even performs feature structure unification (Stolcke & Wu 1992)
toward TRAAM bilingual vector space models

- predominantly augment “shake-n-bake” SMT modeling assumptions using feature vectors

- n-gram translation models (Son et al., 2012)
 - bilingual generalization of class based n-grams using distributed representations
 - fails to model compositionality and cross-lingual reordering

- bilingual word embeddings (Zou et al., 2013)
 - recurrent NNLM model with SMT word alignments
 - only learns non-compositional features
toward TRAAM
bilingual vector space models

- NNLMs + input language context (Devlin et al. 2014)
 - does not model input and output language features simultaneously

- recurrent probabilistic models (Kalchbrenner & Blunsom 2013)
 - generates an input sentence representation that generates an output sentence
 - lacks structural constraints and relies on a LM to reorder output

- reordering prediction using RAEs (Li et al. 2013)
 - monolingual RAEs to predict reordering in a maxent ITG model
 - uses only input language context
why use TRAAM to model bilingual relations?

- compact encoding of subtrees in a constituent
- generalizable representation
- task-dependent representation learning
- elegant recursive use of both input and output language features
- feature vector clusters represent soft categories
TRAAM
model definition

- uniform feature vector dimension

- compressor network
 - computes feature vector recursively
 - language bias via dimensionality reduction

- reconstructor network
 - generates child vectors and order from parent
 - provides a loss function to drive learning
bitoken features are model parameters

compressor network

\[v_p = \frac{\tanh(W_c [o; v_l; v_r] + b_c)}{\| \tanh(W_c [o; v_l; v_r] + b_c) \|} \]

reconstructor network

\[[o'; v_l'; v_r'] = \tanh(W_r v_p + b_r) \]
■ initialization
 - bitoken features and \(W_c, b_c, W_r, b_r \sim \mathcal{N}(0, \varepsilon) \)

■ error at each internal node in the biparse
 - linear combination of l2 loss and cross-entropy
 \[
 E_n = \frac{\alpha}{2} |[v_i; v_r] - [v'_i; v'_r]|^2 - (1 - \alpha) [(1 - o) \log(1 - o') + (1 + o) \log(1 + o')]
 \]

■ global loss function with regularization
 \[
 J = \frac{1}{T} \sum_n E_n + \lambda \| \theta \|^2
 \]

■ training to minimize loss function
TRAAM forward propagation

= compressor

permutation order straight

permutation order inverted
TRAAM backpropagation

= reconstructor

compute error δ
experimental setup

- simple Telugu-English dataset
 - to enable manual inspection of learned features

- Telugu is a Dravidian language with an SOV structure

- blocks world dataset
 - commands to manipulate different colored objects over different shapes

- unlabeled biparses from a unsupervised BITG
 - provide structural constraints
why use TRAAM to model bilingual relations?

- compact encoding of subtrees in a constituent
- generalizable representation
- task-dependent representation learning
- elegant recursive use of both input and output language features
- feature vector clusters represent soft categories
output language context matters!

Take the block on the square

Put the block on the square

పతనాంయ తమనె దండి ప్రతాపం దృశ్యం పతనాంయ తమనె దండి ప్రతాపం దృశ్యం
why use TRAAM to model bilingual relations?

- compact encoding of subtrees in a constituent
- generalizable representation
- task-dependent representation learning
- elegant recursive use of both input and output language features
- feature vector clusters represent soft categories
Feature Vectors after Training

<table>
<thead>
<tr>
<th>Biconstituent</th>
<th>Feature Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>A[సంస్థల/block]</td>
<td>-0.07, -0.23, -0.07, 0.02, -0.06</td>
</tr>
<tr>
<td>A[పిలి/take]</td>
<td>-0.19, 0.03, 0.25, 0.11, -0.18</td>
</tr>
<tr>
<td>A[పుచ్చ/on]</td>
<td>0.03, 0.09, -0.16, 0.09, -0.02</td>
</tr>
<tr>
<td>A[పచ్చ/on]</td>
<td>-0.06, 0.08, -0.01, 0.12, -0.04</td>
</tr>
<tr>
<td>A<A[సంస్థల/square]A[పుచ్చ/on]></td>
<td>0.77, 0.61, -0.15, 0.88, -0.60</td>
</tr>
<tr>
<td>A<A[చుట్టు/circle]A[పుచ్చ/on]></td>
<td>0.82, 0.51, -0.12, 0.70, -0.47</td>
</tr>
<tr>
<td>A<A[సంస్థల/square]A<A[A[పచ్చ/on]A[సంస్థల/block]A[పిలి/take]>></td>
<td>0.59, 0.57, 0.02, 0.91, -0.62</td>
</tr>
</tbody>
</table>
dendrogram of biconstituent feature vectors
- fuzzy category
- describe an object wrt position on another object
- single sense of “on” (అంధ) (అంధ)
- other clusters reveal such similarities

zooming in dendrogram of biconstituent feature vectors
conclusions

- **TRAAM** Transduction Recursive Auto-Associative Memory

- fully bilingual generalization of monolingual RAAM
 - can model arbitrary rank SDTGs

- feature vector specifies a relation between
 - two monolingual constituents
 - permutation order

- sensitive to *both* input and output language contexts
 - vectors represent bilingual instead of monolingual similarities
 - attractive for inducing differentiated bilingual categories

- worth detailed exploration!