ITG for Joint Phrasal Translation Modeling

Colin Cherry
University of Alberta

Dekang Lin
Google Inc.

April 26, 2007
The Gist

• Joint phrasal translation models (JPTM) learn a bilingual phrase table using EM

• Phrasal ITG:
 – Use synchronous parsing to replace hill climbing & sampling with dynamic programming

• Do resulting phrase tables improve translation?
Outline

• Phrasal Translation Models

• We build on:
 – Phrase extraction, JPTM, ITG

• Phrasal ITG
 – Helpful constraints

• Results

• Summary & Future Work
Phrasal translation model

| English | French | P(e|f) | P(f|e) |
|----------------------|----------------------------|-------|-------|
| ethical food | alimentation éthique | 0.95 | 0.16 |
| ethical foreign policy | politique étrangère morale | 0.23 | 0.01 |
| ethical foundations | fondements éthiques | 0.10 | 0.03 |
| ... | | | |

- Ultimately interested in a bilingual phrase table
 - Lists and scores possible phrasal translations
Surface Heuristic

<table>
<thead>
<tr>
<th></th>
<th>cars</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>likes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>he</td>
<td></td>
</tr>
<tr>
<td></td>
<td>il</td>
<td>aime</td>
<td>les</td>
<td>voitures</td>
<td>rouges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Alignments provided by GIZA++ combination
- Surface heuristic:
 - Count each consistent phrase as occurring once
 - Aggregate counts over all sentence pairs
Surface Heuristic

- Alignments provided by GIZA++ combination
- Surface heuristic:
 - Count each consistent phrase as occurring once
 - Aggregate counts over all sentence pairs

<table>
<thead>
<tr>
<th></th>
<th>cars</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>likes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>he</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>il</td>
<td>aime</td>
<td>les</td>
<td>voitures</td>
<td>rouges</td>
<td></td>
</tr>
</tbody>
</table>
Surface Heuristic

- Alignments provided by GIZA++ combination
- Surface heuristic:
 - Count each consistent phrase as occurring once
 - Aggregate counts over all sentence pairs

<table>
<thead>
<tr>
<th></th>
<th>il</th>
<th>aime</th>
<th>les</th>
<th>voitures</th>
<th>rouges</th>
</tr>
</thead>
<tbody>
<tr>
<td>cars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>likes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>he</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>il</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>les</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>voitures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rouges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surface Heuristic

<table>
<thead>
<tr>
<th>cars</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>likes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>he</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>il</td>
<td>aime</td>
<td>les</td>
<td>voitures</td>
<td>rouges</td>
</tr>
</tbody>
</table>

- Alignments provided by GIZA++ combination
- Surface heuristic:
 - Count each consistent phrase as occurring once
 - Aggregate counts over all sentence pairs
Joint Phrasal Model (JPTM)

- Introduced by Marcu and Wong (2002)
- Trained with EM, like the IBM models
- Sentence pair built simultaneously
 - Generate a bag of bilingual phrase pairs
 - Permute the phrases to form e and f

\[
P(e, f) \propto \sum_A \prod_{(\bar{e}_i, \bar{f}_i) \in A} p(\bar{e}_i, \bar{f}_i)
\]
Joint Phrasal Model

<table>
<thead>
<tr>
<th>cars</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>likes</td>
<td>il</td>
<td>aime</td>
<td>les</td>
<td>voitures</td>
<td>rouges</td>
<td></td>
</tr>
<tr>
<td>he</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reason over an exponential number of phrasal alignments

Space is huge - task actually accomplished by sampling around high-probability point
Joint Phrasal Model

<table>
<thead>
<tr>
<th>cars</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>likes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>he</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>il</td>
<td>aime</td>
<td>les</td>
<td>voitures</td>
<td>rouges</td>
<td></td>
</tr>
</tbody>
</table>

Reason over an exponential number of phrasal alignments

Space is huge - task actually accomplished by sampling around high-probability point
Joint Phrasal Model

Birch et al. (2006): Constrained JPTM

Explore only phrasal alignments consistent with high precision word alignment
Inversion Transduction Grammar

• Introduced in by Wu (1997)

 – Transduction:
 • C → red / rouge

 – Inversion:
 • A → [A C]
 • B → <A C>
he like red cars

il aime les voitures rouges
Phrasal ITG

- Any phrase pair can be produced by the lexicon
- Choose between straight, inverted and now: **phrasal**
Training Phrasal ITG

\[C \rightarrow \bar{e}/\bar{f} \text{ with probability } P(\bar{e}/\bar{f}|C) \]

- All phrase pairs share mass as a joint model
- Can be trained unsupervised with inside-outside
- No more expensive than binary bracketing:
 - Phrases were already being explored as constituents
The hope

• By moving to exact expectation:
 – Create more accurate statistics
 – Find a larger variety of phrase pairs
The problem - still slow: $O(n^6)$

- ITG algorithms can be pruned:
 - $O(n^4)$ potential constituents are considered
 - $O(n^2)$ time spent considering all ways to build each constituent

- **Fixed link pruning**: Eliminate constituents that are not consistent with a given word alignment
 - Skip them and treat them as having 0 probability

- One link can potentially rule out 50% of constituents
Fixed Link Speed-up

- Used GIZA++ intersection alignments
- Inside-outside on first 100 sentences of corpus
- Compared to Tic-tac-toe (Zhang & Gildea 2005)
What about the ITG constraint?

- ITG can’t handle this due to discontinuous constituents
- Check fixed links used for pruning
 - If they are non-ITG, drop from training set
- In our French-English Europarl set, this results in a reduction in data of less than 1%
Experiments

• Conditionalize joint tables to $P(e|f)$ and $P(f|e)$

• French-English Europarl Set
 – 25 length limit, 400k sentence pairs

• SMT Workshop Baseline MT System
 – Pharaoh, MERT Training on 500 tuning pairs

• Included unnormalized IBM Model 1 features for all

• Compared to:
 – JPTM constrained with GIZA++ Intersect
 – Surface Heuristic Extraction with GIZA++ GDF
Results: BLEU Scores

- C-JPTM: 28.5
- Phrasal ITG: 30.5
- Surface: 31.0
Results: Table Size
(in millions of entries)
Summary

• Phrasal ITG that learns phrases from bitext
 – Similar to JPTM

• Complete expectations do matter
 – Other JPTMs could benefit from improving their search and sampling methods

• A new ITG pruning technique
 – 80 times faster inside-outside
Future: Eliminate Frequency Limits

- Must constrain any joint model to use phrases that occur with a minimum frequency
 - Otherwise sentence = phrase is ML solution

<table>
<thead>
<tr>
<th>cars</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>likes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>he</td>
<td>il</td>
<td>aime</td>
<td>les</td>
<td>voitures</td>
</tr>
</tbody>
</table>
Future: Eliminate Frequency Limits

- Must constrain any joint model to use phrases that occur with a minimum frequency
 - Otherwise sentence = phrase is ML solution
Future: Eliminate Frequency Limits

• Must constrain any joint model to use phrases that occur with a minimum frequency
 – Otherwise sentence = phrase is ML solution

Apply Bayesian methods (priors) to replace these limits (Goldwater et al. 2006)
This isn’t the whole story…

• Explored the same model as a **phrasal aligner**

• Needs additional constraints to work:
 – Fixed links help select phrases that are non-compositional

• Alignments work well with surface heuristic

• Details in the paper!
Questions? Comments? Suggestions?

Support provided by:

Alberta Ingenuity Fund

Alberta Informatics Circle of Research Excellence
Along the way…

• Adapt consistency constraints from heuristic phrase extraction for ITG parsing

• Deal with the ITG constraint in large data