
Becerra-Fernandez, et al. -- Knowledge
Management 1/e -- © 2004 Prentice Hall

Additional material © 2009 Dekai Wu

Chapter 8

Preserving and Applying Human
Expertise: Knowledge-Based

Systems

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Chapter Objectives

• Recall: KB systems are adept at preserving
captured and/or discovered knowledge for later
sharing and/or application.

• Introduce the student to the internal operation of
knowledge-based systems, including:

Knowledge representation
Automated reasoning

• Introduce the art of knowledge engineering -
how to develop knowledge-based systems

the tools
the techniques.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Chapter Objectives

• Today it’s become much easier to learn about
knowledge-based systems, because so many AI
knowledge representation techniques from the
Lisp Machine days have now been completely embraced
and extended by mainstream CS & IT:

Object-oriented representations (frames, classes, UML)
Class inheritance hierarchies
Logical databases (relational and object-relational)
Integrated development environments (IDE)

• What you may still find less familiar:
Inference engines and shells
Knowledge engineering
Forward vs backward reasoning
Default-based reasoning using frames

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Section 8.2 Objectives

• Introduces a knowledge-based system from the
points of view of those that work with them:

The user
The knowledge engineer

• Introduce the different components of a KBS
The inference engine
The knowledge base
The user interface
The fact base
The development environment

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
User’s View

• From end-user’s perspective, KB system has
three components:

Intelligent program
User interface
Problem-specific database (“workspace”)

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
User’s View

User
Interface

Intelligent
Program

Workspace

User

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
User’s View

• Intelligent program
A black box, to the end user
Encapsulates most of the knowledge, including
possibly knowledge representations of rules, frames,
defaults, is-a and has-a hierarchies, etc.
Typically rarely necessary for end users to access,
and often dangerous from a security standpoint

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
User’s View

• User interface
May enable the intelligent program to pose questions to the user
about the problem at hand
May provide explanations about why the intelligent program is
asking particular questions
May allow the user to query the intelligent program as to why or
how a particular decision was made
Displays results
May provide graphic representations of the results (e.g., decision
tree paths, parts of the instantiated class hierarchy, etc.)
May allow the user to save or print results
…

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
User’s View

• Problem-specific database (“workspace”)
“Database” in this context refers not to some flat or relational
database, but rather a logical representation of known facts
(beginning with axioms, from which inferences are drawn)
The working space where the system reads any inputs and
writes its outputs (in logic form)
The inputs consist of all information provided either automatically
or by the user via the UI
The outputs consist of all conclusions the intelligent program is
able to drive, including both the final solution required by the
user, as well as intermediate conclusions that act as stepping-
stones in the path to the final conclusion

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

• In fact, two kinds of “developers”:
Developer of the core platforms or languages

develop “shells”, inference engines, UIs, etc.
not usually necessary; just use one or more of the many existing
development environments

Knowledge engineer (KE)
use the development environment (e.g., rule language, object-
oriented language, etc.) to “program” a KB system
traditionally, personally interview domain experts to elicit knowledge
modern automated tools can assist, and supplement face-to-face
interviews

• Unless we say otherwise, when we say “developer” we
mean “knowledge engineer”

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

• From developer’s perspective, KB system has
two main components:

Intelligent program
Development environment

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

Test Case
Database

Knowledge
Acquisition

Tool

Developer’s
Interface

Development
Shell

Knowledge
base

Inference
Engine

Intelligent
Program

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

• Intelligent program
Unlike the end user, the KE can open the black box.
Recall from previous lecture these key differences of
KB systems vs. conventional software:

The use of highly specific domain knowledge.
The heuristic nature of the knowledge employed, instead of
exact.
The separation of the knowledge from how it is used.

Inside the black box are:
Knowledge base (the knowledge; declarative)
Inference engine (how it is used; procedural)

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

• Intelligent program: the knowledge base (KB)
Arguably the most important component of a KB
system
Contains the entire relevant, domain-specific,
problem-solving knowledge gathered and integrated
by KEs from the various available sources
I.e.: contains the knowledge to be managed!

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

• How to represent the knowledge in a KB depends on its nature:
Functional

in the realm of traditional mathematical functions
addressed by conventional programming techniques

Heuristic
most KB applications occur in domains where conventional computational
problem-solving approaches either don’t exist or don’t work well
thus the knowledge consists of heuristics – rules of thumb and shortcuts
learned and developed by experts over years of practical problem solving
experience
often naturally expressed as rules (IF-THEN statements)

• e.g., if the house plan includes a swimming pool, then add $100K to price
Structured

where knowledge expresses the association of several components (parts)
that, when composed, form a larger assembly (whole)
often naturally expressed as frames (objects)

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

• Intelligent program: the inference engine
The interpreter of the knowledge stored in the KB
Examines the contents of the knowledge base and
the input data accumulated about the current problem
Exercises the knowledge to derive the conclusions or
answer the user’s question

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

• Intelligent program: the inference engine
• The knowledge base can be thought of as a huge graph (see next

slide w/example of a heuristic system to classify fruits)
Nodes on left side: represent all the signs, symptoms, characteristics,
and features used as inputs when attempting to solve a relevant
problem
Nodes on right side: represent all possible solutions to the problem
Nodes in middle: represent intermediate conclusions, which the system
derives in the progression of deriving the final solution(s)
Edges: represent the knowledge used by the expert during problem
solving (elicited from experts and stored in the KB)

node on its left end: an antecedent of an IF-THEN rule
node on its right end: the consequent of the same IF-THEN rule

Short arcs linking some edges: represent a logical AND of the
antecedents on the edges’ left ends, in the IF-THEN rule

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

• The job of the inference engine can be thought
of as:

exploring this huge graph (which typically can be
exponentially large)
finding path(s) connecting the nodes on the right to
the left

• Note: this graph is just a conceptual aid
Logic representations are used within the actual
system implementation

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

• Development environment
Like any IDE, assists the developer with structuring,
debugging, modifying, and expanding the “program”,
which in this case is knowledge gathered from
experts.
Inside are:

Knowledge acquisition tool
Test case database
Developer’s interface

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

Test Case
Database

Knowledge
Acquisition

Tool

Developer’s
Interface

Development
Shell

Knowledge
base

Inference
Engine

Intelligent
Program

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

• Development environment: Knowledge acquisition tool
Assists the KE in the construction of the KB
Simplest form:

A KB editor, providing a view of the knowledge (rules, frames, etc)
and offering editing functions

Sophisticated form can add a wide range of features:
Multiple browsers for the KB, in both text and graphical forms,
hierarchical as well as linear
Debuggers and checkers to assist KE in locating “bugs” (logical
inconsistencies, typos, etc)
Tools that compare existing knowledge to new knowledge, to
attempt to guess what the KE really means in case the KE is not as
precise as required (analogy: word completion)
Version control mechanisms to provide fine-grained bookkeeping
…

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

• Development environment: Test case database
The KE often makes potentially significant (and dangerous!)
changes to the KB.

Deleting existing knowledge could accidentally eliminate important
relationships, preventing needed inferences
Modifying existing knowledge could also accidentally change
important relationships
Adding new knowledge could accidentally introduce contradictions
with existing knowledge, or even reprioritize inferences such that the
desired conclusions are no longer drawn

Any of these could compromise the accuracy/integrity of the
knowledge base – checks are essential.
Many KB systems include a test case database

Sample problems that have been successfully executed on the
system in the past
Whenever the KB is edited, the test cases are all re-executed to
verify that these benchmark cases are still solved correctly.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge-Based System:
Developer’s View

• Development environment: Developer’s
interface

Usually, an augmented version of the UI seen by the
end user
Allows the KE to exercise the KB as it is modified and
retested
Permits the KE to see exactly how the system can
operate when delivered to the end user

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Section 8.3 Objectives

• Introduce the various means of representing
knowledge:

Rules
Frames

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

• Heuristic knowledge is often nicely represented as rules.
• IF-THEN rules are highly intuitive for both KEs and experts to think about,

and to understand once implemented.
• If you ask skilled experts about how they solve problems or how they

reached a certain conclusion, they typically respond with knowledge
expressed in a rule format

e.g., Well, I noticed that A, B, and C were present in this problem, and these
three facts imply that D is true.
i.e., IF A, B, C THEN D
i.e., A ∧ B ∧ C ⇒ D
i.e., A

B D
C

• A, B, C are the antecedents (or premises or conditions/situations)
• D is the consequent (or conclusion or action)
• Note: a big drawback of rules is that KEs have trouble maintaining

consistency in a rule base when the number of interacting rules becomes
too large (say, in the thousands)

Knowledge Representation:
Rules

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Rules can be used to express a
wide range of associations

• Can express situations and actions that must be
taken in those situations (response plans)

If dark clouds are rolling in from the west, the wind is
increasing, and lightning strikes are occurring, then
you should seek cover in a building
If you are driving a car and an emergency vehicle
approaches, then you should slow down and pull to
the side of the road to allow the emergency vehicle to
pass
If baking a cake, test for completion by inserting a
toothpick in the cake’s center. If it emerges clean, the
cake is ready to be taken out of the oven.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Rules can be used to express a
wide range of associations

• Can express premises and conclusions that can be
drawn from those premises (diagnosis/explanation)

If your body temperature is above 37°C, then you have a fever.
If the outside temperature is below freezing, the gas gauge on
your car does not register empty, and the engine turns over but
will not start, then it is highly likely that you have a frozen gas
line.
If the loan applicant’s salary is greater than $50,000, and the
number of outstanding loans is less than two, then the applicant
will pay the loan and is considered “good risk.”

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Rules can be used to express a
wide range of associations

• Can express antecedents and their
consequences (cause-and-effect)

If you don’t read the textbook or attend class, then
you will flunk the exam.
If the tub’s drain is clogged and the water is left
running, then the floor will become wet.
If the electric bill is past due and your credit rating is
bad, then your electricity will be cut off.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Inference chains

• With pattern matching, rule-based systems use
automated reasoning methods to progress
logically from data to conclusions.

• Process of problem-solving in KB systems is to
create a series of inferences that form a “path”
between the problem definition and its solution.

• Such a series of inferences is called an
inference chain.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Inference chains (Example)

Rule base

• Rule 1
IF the ambient temperature is above 90°F
THEN the weather is hot

• Rule 2
IF the relative humidity is greater than 65%
THEN the atmosphere is humid

• Rule 3
IF the weather is hot and the atmosphere is humid
THEN thunderstorms are likely to develop

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Inference chains (Example)

Inputs

• Fact 1
the ambient temperature is 92°F

• Fact 2
the relative humidity is 70%

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Inference chains (Example)

From:

• Fact 1
the ambient temperature is 92°F

• Rule 1
IF the ambient temperature is above 90°F
THEN the weather is hot

The inference engine can deduce:

• Fact 3
the weather is hot

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Inference chains (Example)

From:

• Fact 1
the relative humidity is 70%

• Rule 2
IF the relative humidity is greater than 65%
THEN the atmosphere is humid

The inference engine can deduce:

• Fact 4
the atmosphere is humid

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Inference chains (Example)

From:

• Fact 3
the weather is hot

• Fact 4
the atmosphere is humid

• Rule 3
IF the weather is hot and the atmosphere is humid
THEN thunderstorms are likely to develop

The inference engine can deduce:

• Fact 5
thunderstorms are likely to develop

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Uncertainty

• Note the use of “likely” in “thunderstorms are
likely to develop”

• Ideally we’d like a more precise prediction than
“likely”

• Modern systems provide mechanisms for
reasoning under uncertainty

Probability (especially Bayesian methods)
Fuzzy logic

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge Representation:
Frames

• Rules do not provide a natural representation for:
grouping facts into associated clusters
associating relevant procedural knowledge with some fact or group of
facts

• Frames were developed by Marvin Minsky [1975] for this purpose, in
his landmark paper “A Framework for Representing Knowledge”

• Frames formed the basis of objects and object-oriented
programming (OOP)

In fact, OOP began as a branch of AI in the 1980s (with Smalltalk and
Lisp’s CLOS)

• Frames naturally represent structured knowledge
Just as rules naturally represent heuristic knowledge

• Also quite intuitive, but in a different way than rules
Not quite as natural as rules for the lay person, but typically quite easy
for the technically educated

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Frame

• A frame provides the structure or framework for
representing structured knowledge

• Using a structure consisting of a frame name
and a set of attribute-value pairs, a frame
represents a stereotypical situation (i.e., an
object, concept, or process) from the real world

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Figure 8.4

Frame: MUSTANG
Manufacturer: Ford
Country of Manufacture: USA
Model: Mustang GT
Number of wheels: 4
Number of doors: 2
Year: 2002
Engine Size: 4.6L-V8
Transmission: Standard
Reliability: Medium
Body Style: Convertible
Color: Red
Miles-per-gallon: 19.7
Serial Number: 12345A67890B
Owner: Avelino

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Functional attributes
(Methods)

• Functional attributes are attributes whose values
are executable functions

Also known as methods (“member functions” in C++)
E.g., if we wish to know the reliability of 2002
Mustangs based on the fleets’ experience, this
number could change constantly. A method could
provide more reliable up-to-date numbers than storing
a fixed value.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Default values

• A default value can be associated with each
attribute.

(In C++ or Java, this is like providing default values in
the constructors.)

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Attributes, in more detail

• Attributes are also known as slots (“members” in C++)
• Values are also known as fillers
• Each attribute/slot/member can be filled by a value/filler
• In addition, certain metaproperties can be associated with any

attribute/slot/member (these were originally called “facets” and the
filler was also considered one of the facets):

Range: the range of possible values for this slot
Legal-values: the set of discrete possible values the slot can take (like
enums in C++)
Default: the value to assume if none is explicitly stated
If-needed: Procedure(s) for determining the actual value
If-added: Procedures to execute when a value is specified for the slot
If-changed: Procedures to execute if the value of the slot is changed

• The last three, which evolved into methods, are also called daemons

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Inheritance

• To avoid including, for example, the number of
wheels in every frame for every car, inheritance
was invented.

All attributes that do not change (the general
attributes) are moved up to a higher level frame.
The more specific frames inherit that information.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Figure 8.5
Generic AUTOMOBILE Frame

Specialization–of: VEHICLE
Generalization–of: (STATION–WAGON COUPE SEDAN CONVERTIBLE)

MMaannuuffaaccttuurreerr::
Value:
Legal-values: (FORD MAZDA BMW SAAB GM CHRYSLER)
Default: FORD

CCoouunnttrryy––ooff––MMaannuuffaaccttuurree::
Value:
Legal-values: (USA JAPAN GERMANY SWEDEN)
If-Needed: (GET-ORIGIN)
Default: USA

MMooddeell::
Value:
Legal-values: (TAURUS FOCUS MUSTANG CROWN-VICTORIA))

CCoolloorr::
Value:
Legal-values: (BLACK WHITE RED PERSIAN–AQUA)
If–Needed: (EXAMINE–TITLE or CONSULT–DEALER or LOOK–

AT–AUTOMOBILE)
RReelliiaabbii lliittyy::

Value:
Legal-values: (HIGH MEDIUM LOW)
Default: MEDIUM

MMiilleess––PPeerr––GGaalllloonn::
Value:
Range: (0 – 100)

YYeeaarr::
Value:
Range: (1940 – 1990)
If–Changed: (ERROR: Value cannot be modified)

OOwwnneerr::
Value:
If–Added: (APPLY–FOR–TITLE and OBTAIN–TAG and PAY–

SALES–TAX)

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Figure 8.6

Generic COUPE Frame
SSppeecciiaalliizzaattiioonn––ooff: AUTOMOBILE
GGeenneerraalliizzaattiioonn––ooff: (SUZIE-SMITH’S-AUTOMOBILE, JOHN-DOE’S-

AUTOMOBILE AVELINO’S-AUTOMOBILE)
DDoooorrss::

Value: 2

• By exploiting inheritance, notice how simple it
can become to define new frames.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Figure 8.7

VEHICLE

AUTOMOBILE

COUPE

MUSTANG

AVELINO’S-
AUTOMOBILE

Instance-level frame
(Describes a real automobile)

Generic frame

Generic frame

Generic frame

Generic frame

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Figure 8.8

Generic MUSTANG Frame
Specialization-of: Coupe
Generalization-of: AVELINO’S-AUTOMOBILE

MMaannuuffaaccttuurreerr::
Value: FORD

EEnnggiinnee::
VALUE:
LEGAL-VALUES: (3.0L-V6, 4.6L-V8)

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Figure 8.9

AVELINO’S-AUTOMOBILE Frame
SSppeecciiaalliizzaattiioonn––ooff: Mustang
MMaannuuffaaccttuurreerr::

Value: Ford
VVeehhiiccllee IIDD NNoo..::

Value: 1122334455AAJJGG6677889900
CCoouunnttrryy––OOff––MMaannuuffaaccttuurree::

Value:
CCoolloorr:

Value: Red
RReelliiaabbiilliittyy::

Value: Medium
MMiilleess––PPeerr––GGaalllloonn:

Value: 19.7
YYeeaarr::

Value: 2002
OOwwnneerr::

Value: AVELINO
DDoooorrss::

Value:

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Section 8.4 Objectives

• Introduce the means of manipulating the
knowledge found in a knowledge base.

• Reasoning with frames
• Reasoning with rules

Forward reasoning
Backward reasoning

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Frame-Based Reasoning

• Modern knowledge representations differentiate between
terminological and assertional knowledge [KL-ONE]

• Terminological
E.g.: “a red car belonging to Bob”

is just a term that we can use
does not say anything about the real world
in fact, there might not even exist any red car belonging to Bob in the real
world

Reasoning: respond to queries about the definitions of various
concepts (classes/categories, objects/instances)

• Assertional
E.g.:

“the car belonging to Bob is red”
“the red car belongs to Bob”
“a red car belonging to Bob does not exist”

Reasoning: respond to queries about the known state of the world

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Frame-Based Reasoning

• Frame-based reasoning
Excels at defining terms (i.e., for representing
terminological knowledge)
Is generally used as support for defining terms or
storing concepts, within more complex systems that
use other mechanisms for reasoning about
assertional knowledge
Also excellent for representing cases in case-based
reasoning systems (next lecture)

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Rule-Based Reasoning

• Abstractly: the objective of a reasoning process is to derive a value
(and these days, also a measure of certainty) for a conclusion.

• But there is a wide variance of ways this can be done.
In many situations, human find it most natural to progress from the initial
data to a final answer.

E.g., thunderstorm example earlier.
Makes good sense whenever

• relatively few input data are required, or
• there are many possible conclusions.

Alternatively, when there is much data but only a small portion is
relevant, considering all the data would be highly inefficient.

E.g., you only tell the doctor your abnormal symptoms (headache, fever) and
not all the other things that are okay (neck doesn’t hurt, back feels fine, …).
Doctor tries to determine the most likely diagnosis based on the limited input
data, and then prove the hypothesis via additional questions or tests.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Rule-Based Reasoning

• So there are two means of deriving conclusions:
Start with all the known data and progress toward the
conclusion – data driven, forward chaining, or forward
reasoning
Select a possible conclusion and try to prove its
validity by looking for supporting evidence – goal
driven, backward chaining, or backward reasoning

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Rule-Based Reasoning
(recall this earlier example…)

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Rule-Based Reasoning

• Rule 1
IF Surface = smooth
AND Fruitclass = vine
AND Color = green
THEN Fruit = honeydew

• Each rule describes some characteristic of the different fruits through a series of
parameters, eg:

Fruit
Fruitclass
Seedclass

• Parameters that represent the final answer are conclusions or goals.
Fruit

• The others are called intermediate parameters/conclusions/goals.
• A combination of parameter and value that is considered true is called a fact.
• The workspace (or database) contains all the facts known to the system at any given

point in time during the execution of the KB system.
• By assigning the goal a value (eg, Fruit = apple), the system solves the problem of

classifying a specific instance of a fruit.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Forward chaining

• Moves from the input data toward the
conclusions/goals.

• Inputs are used to satisfy the premises of
applicable rules, which allows them to be
executed (“fired”) thus setting values of other
(intermediate or final) parameters, yielding newly
derived facts.

• These new facts intern may cause the premises
of other rules to be satisfied and fired.

• This process is called rule interpretation.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Forward chaining:
Rule Interpretation Process

Applicable
Rules

Step 2 –
Conflict

Resolution

Step 3 -
Execution

Step 1 –
Match

Knowledge

Facts

New Facts

New
Rules

Rules

Facts

Selected
Rule

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Trace of Rule-Based Execution

Execution Applicable Selected Derived
Cycle rules rule Fact

1 3,4 3 Fruitclass = tree
2 3,4 4 Seedclass = stonefruit
3 3,4, 11 11 Fruit = cherry
4 3, 4, 11 — —

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Forward chaining

• Best suited for problem domains involving synthesis:
design
configuration
planning
control
scheduling

• Domains where the data drive the solution approach
• Very well known and widely used free public-domain

implementation is CLIPS.
Originally developed by NASA
Also supports limited backward chaining

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Backward chaining

• Moves from a hypothesized goal backward toward the input data,
looking for some way to assemble enough supporting evidence from
the input data.

• E.g., start with a single top-level goal in our fruit classification
example – the goal is indicated by the goal parameter Fruit

• Backward inference can also already begin without any inputs
specified.

Inputs can be requested from the user or otherwise acquired, only as
they become necessary to derive a value for the selected goal.

• When an answer is found, execution can stop, or it can go on to
attempt to satisfy another goal.

• This process is called tracing a goal.
• The rule interpreter for backward reasoning differs significantly from

that of forward reasoning.
Typically, the workspace is initially empty.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Backward chaining:
Rule Interpretation Process

1. Form a list initially composed of all top-level goals defined in the system. The top-level
goals are predefined by the developer.

2. Consider the first goal from the list. Gather all rules capable of deriving a value for this
goal.

3. For each of these rules, in turn examine its premises:
1. If all its premises are satisfied (ie, each premise has its specified value contained as a fact in

the workspace), then execute this rule to derive its conclusions. Remove this goal from the list
and return to step 2. This is done because a value has been derived for the current goal.

2. If a premise of a rule is not satisfied because of the absence of a fact to satisfy one of its
premises (i.e., one of the premise’s values does not exist as a fact in the workspace), look for
rules that derive the specified value for this premise. If any can be found, then consider this
premise to be a subgoal, place it on the beginning of the goal list, and go back to step 2.

3. If step b cannot find a rule to derive the specified value for the current premise, then query the
user for its value and add it to the workspace as a fact. If this value satisfies the current
premise, then continue with this rule’s next premise. If the premise is not satisfied, then
consider the next rule.

4. If all rules that can satisfy the current goal have been attempted and all have failed to
derive a value, then this goal remains undetermined. Remove it from the list and go
back to step 2. If the list is empty (ie, all top-level goals have been processed), then
halt and announce completion.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Backward chaining:
Closed World Assumption

• Rule-based systems generally follow the closed-
world assumption:

If a fact specifically asserting something is not
present, then assume it to be false.

• Thus backward chaining along a particular path
will fail, if it requires some fact that cannot be
proved from any input facts.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Backward chaining
• Goals: (Fruit)
• System: What is the value for Shape?
• User: round
• Workspace: ((Shape = round))
• Goals: (Fruitclass Fruit)
• System: What is the value of Diameter?
• User: 1 in
• Workspace: ((Shape = round) (Diameter = 1 in))
• Rule 3 premises are satisfied
• Workspace: ((Shape = round) (Diameter = 1 in) (Fruitclass = tree))
• Goals: (Fruit)
• System: What is the value of Color?
• User: red
• Workspace: ((Shape = round) (Diameter = 1 in) (Fruitclass = tree) (Color = red))
• System: What is the value of Seedclass?
• User: stonefruit
• Workspace: ((Shape = round) (Diameter = 1 in) (Fruitclass = tree) (Color = red)

(Seedclass = stonefruit))
• Rule 11 premises are satisfied
• Workspace: ((Shape = round) (Diameter = 1 in) (Fruitclass = tree) (Color = red)

(Seedclass = stonefruit) (Fruit = cherry))
• Goals: ()
• Halt

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Backward chaining

• Best suited for diagnostic problems that have a
relatively small number of possible conclusions

• Best known implementation is Prolog
Of course, since Prolog is a complete programming
language, you can always implement a forward
chainer using Prolog

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Issues in Developing
Knowledge-Based Systems

• Requirements are harder to define than for standard
software

• Human expertise is difficult to define and even more
difficult to elicit

Unlike standard software, requires developer to maintain close
continuous contact with experts throughout the entire
development process

• Desirable qualities of knowledge engineers can be more
challenging than for standard software engineers

Must depend equally on intuition and personal qualities to be
successful, eg

ability to absorb broad and deep knowledge in non-CS domains
the ability to get along well with others

Must still have good “programming” (logic, design, organization,
documentation, debugging, and testing) skills just like other SEs

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge Engineering

• Gonzalez & Dankel [1993] definition:
The acquisition of knowledge in some domain from
one or more non-electronic sources, and its
conversion into a form that can be utilized by a
computer to solve problems that, typically, can only
be solved by persons extensively knowledgeable in
that domain.

• KM standpoint:
The elicitation, capture, and storage of tacit or explicit
knowledge for later application.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Knowledge Engineering

• Involves more than merely translating the knowledge
from human terms to a machine-readable form.

• Involves:
recognizing what knowledge is in use to solve a problem
categorizing this knowledge
determining the best way to represent it

• Improperly represented knowledge may ultimately doom
a KB system development project!

Problem: the impact of a poor representation may not be
immediately felt.
Significant effort may be wasted creating a system that,
ultimately, must be completely redeveloped because of poor
initial knowledge representation choices.

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Tools

• Tools available for developing knowledge-based
systems:

Rule-based shells
Hybrid shells
Special purpose shells
Inductive shells (considered later in this course)
Developing a system from scratch

• Excellent open-source as well as expensive
commercial systems available

Becerra-Fernandez, et al. -- Knowledge Management 1/e -- © 2004 Prentice Hall / Additional material © 2009 Dekai Wu

Conclusions

• The student should be familiar with:
Rules and how they are used to represent and
exercise conditional knowledge.
Frames and how they are used and exercise
structured knowledge.
The meaning of a knowledge-based system shell and
the types of shells commercially available.

Becerra-Fernandez, et al. -- Knowledge
Management 1/e -- © 2004 Prentice Hall

Additional material © 2009 Dekai Wu

Chapter 8

Preserving and Applying Human
Expertise: Knowledge-Based

Systems

	Chapter 8
	Chapter Objectives
	Chapter Objectives
	Section 8.2 Objectives
	Knowledge-Based System:�User’s View
	Knowledge-Based System:�User’s View
	Knowledge-Based System:�User’s View
	Knowledge-Based System:�User’s View
	Knowledge-Based System:�User’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Knowledge-Based System:�Developer’s View
	Section 8.3 Objectives
	Knowledge Representation:�Rules
	Rules can be used to express a wide range of associations
	Rules can be used to express a wide range of associations
	Rules can be used to express a wide range of associations
	Inference chains
	Inference chains (Example)
	Inference chains (Example)
	Inference chains (Example)
	Inference chains (Example)
	Inference chains (Example)
	Uncertainty
	Knowledge Representation:�Frames
	Frame
	Figure 8.4
	Functional attributes�(Methods)
	Default values
	Attributes, in more detail
	Inheritance
	Figure 8.5
	Figure 8.6
	Figure 8.7
	Figure 8.8
	Figure 8.9
	Section 8.4 Objectives
	Frame-Based Reasoning
	Frame-Based Reasoning
	Rule-Based Reasoning
	Rule-Based Reasoning
	Rule-Based Reasoning�(recall this earlier example…)
	Rule-Based Reasoning
	Forward chaining
	Forward chaining:�Rule Interpretation Process
	Trace of Rule-Based Execution
	Forward chaining
	Backward chaining
	Backward chaining:�Rule Interpretation Process
	Backward chaining:�Closed World Assumption
	Backward chaining
	Backward chaining
	Issues in Developing�Knowledge-Based Systems
	Knowledge Engineering
	Knowledge Engineering
	Tools
	Conclusions
	Chapter 8

