HKUST COMP 171 Fall 2002 Written Assignment 1 Reference Solution 3
2002-10-07 Wing Kuen Lee <cswkl@ust.hk>

6.1-3

Let i denote the index of the element at the root of a subtree of a heap. Then its left child is A[2i] and its right
child is A[2i + 1], if available. Recall that the definition of the max-heap property is: For every node i other than
root, A[Parent(i)] > A[i] where Parent(/) = i/2J. Therefore,

For the left child 2i, A[Parent(2i)] = A[L2i/2]] = A[i] > A[2i]
For the right child 2i+1, A[Parent(2i+1)] = A[L(2i+1)/2J]=A[Li+1/2]] = A[i] = A[2i + 1]

Since i is arbitrary, the largest element in a subtree of a heap is at the root of the subtree.

6.2-1

The array index begins at 1:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

27 17 3 16 13 10 1 5 7 12 4 8

1)

2)

3)

1/1

HKUST COMP 171 Fall 2002 Written Assignment 1 Reference Solution 3
2002-10-07 Wing Kuen Lee <cswkl@ust.hk>

4)

6.3-2

Notice that the conversion of an array into a heap is in a bottom-up manner. When processing node i, we want
the subtrees of node i already be heaps. In the other words, we want the node processing order to guarantee that
the subtrees rooted at children of a node i are heaps before HEAPIFY is executed at that node. Because the
elements at the bottom have larger index number than their parents’, we want the loop index i in line 2 of
BUILD-MAX HEAP to decrease to 1.

[We may not obtain a heap if the process starts from the root to the bottom. Try apply the algorithm on
<4,1,3,8,6>].

2/2

HKUST COMP 171 Fall 2002 Written Assignment 1 Reference Solution 3
2002-10-07 Wing Kuen Lee <cswkl@ust.hk>

7.11

[This solution is done using the algorithm from the lecture, which also appears in the first edition of the
textbook. It now appears as Q7-1 on page 159.]

pivot = A[1]=13

1
i X Jj
| 3 19] 9 | 5 [12] 8 | 7 | 4 [1] 2] 6]2]
2)
X, 1 J
[3 [19] 9 [5 J 12] 8] 7] 4 1] 21 6 | 21]
(swap 1,j)
3)
i x,J
l 6 [19] 9o | 5 J 12] 8 | 7 | 4 | 1] 2] 13] 2]
4)
i J X
L 6 19] 9 [5 [12 8 [7 [4 [11t] 2 [13]2]
(swap i,j)
5)
i J X
L 6 | 2 [9 [5 [12 8 [7 [4 [11 [19] 13]2]
6)
J i x
l 6 | 2 | 9 | 5 | 12| 8 | 7 | 4 | 11 | 19 | 13 | 21 |

Return 9 (index begins at 1)

7.2-4

The performance of quicksort is at best ®(nlgn). However, the performance of insertion-sort is at best ®(n).
Now consider the algorithm of insertion-sort on page 24 of the textbook. For an almost-sorted input, the while-
loop will be executed a few times more than in the best case. Since the extra steps are still constant, the
performance of insertion-sort is still @(#). Indeed, using the analysis similar to the one on page 24, T(n) = cl*n
+ c2*(n-1) + c4*(n-1) + c5*(n-1+kl) + c6*k2 + c7*k2 + c8*(n-1) = O(n), where k1, k2 are some extra steps.

On the other hand, no matter if the input is already sorted or not, the best-case of quicksort is @(nlgn). Thus,
when the input is almost-sorted, insertion-sort beats quicksort.

8.3-3

Base case:
Let d=1. We only sort on the least significant digit. Obviously, the radix sort works on the least sig. digit.

Hypothesis:
Radix sort works on numbers with arbitrary digits, using an intermediate stable-sort.

We need to assume that radix sort uses a stable sort to sort array A on digit i so the intermediate sort is stable.
Assume also that, for d = k, the least k-th sig. digits of the numbers are sorted properly.

3/3

HKUST COMP 171 Fall 2002 Written Assignment 1 Reference Solution 3
2002-10-07 Wing Kuen Lee <cswkl@ust.hk>

Inductive case:

For d =k + 1, use a stable sort to sort array A on digit k+1. Since the least k-th digits are sorted properly by a
stable sort (by assumption), after a stable sort is used on digit k+1, the order of the least k-th digits is preserved.
Thus, the least k+1 th digits of n numbers are in order.

[Not all numbers in array need to have the same number d. The empty digit can be filled with ‘0°]

By induction, radix sort works.

8.6
©)

Suppose there are 2n elements: a;, as, a;, ..., ay, such that a; <a, <... <a,,. Moreover, we have two sorted
arrays Al and A2, where g; in Al and a;.; in A2. Assume that a; will not be compared with a;.;. Then,

Case 1: a; is compared with an element a=a;,; in A2. However, a must be less than a;.; because a; and a;,, are
consecutive. Thus, all such elements in A2 will be merged, and a; will finally be compared with a;.;.

Case 2: a;+;is compared with an element b a; in A1. However, b must be less than a; because a; and a;.; are
consecutive. Thus, all such elements in Al will be merged, and a;.; will finally be compared with a;.

By contradiction, if two elements are consecutive in the sorted order and from opposite lists, then they must be
compared.

d)

Suppose there are 2n elements: a;, aj, as, ..., ay, such that a; <a, <a; <... <a,,. The first sorted list Al=<a;,,
as, ..., ax.;> and the second A2=<a,, ay, ..., a,,>. By part ¢, we must have a; <? a, <? a; <? ... <? a,, where <?
denotes comparison. Therefore, there are 2n-1 comparisons for n elements in each list.

4/4

