Complsl

Generic Programming:
Overloading Operator Functions

From Math Notation to Operators
In Programming Languages

Depending on what programming language you’re using,
to program the mathematical equation

c=2(a-3)+5b
you might have to write out each function calls, as in

c = add(mult(2, sub(a, 3)), mult(5, b))
But most programming languages have operators which
allow us to mimic the mathematical notation by writing:

c = 2*(a-3) + 5*b;
However, most languages (like C) only have operators
defined for the built-in types.

C++ Is an exception: it allows you to redefine most of its

operators for user-defined types. e.g. you may redefine
+, —, etc. for types Complex, Matrix, Array, String,

etc.

Example: Additions of Vectors

class Vector
{
double x, y;
public:
Vector(double x, double y) : _ x(x), _y(y) {}
double x() const { return _x; }
double y() const { return _y; }

3
 To add 2 vectors, traditionally we would do it like this:

Vector add (const Vector& a, const Vector& b)

{
return Vector(a.x() + b.x(), a.y() + b.y());

}

Vector a(1, 3), b(-5, 7), c(22, 2), d;
d = add(a, add(b, ¢));

Non-Member Operator Function

It would be nicer if we could write the last expression
d = add(a, add(b, c));

Insteadasd = a + b + C.

 We can achieve that in C++ by simply replacing the
name of the function add() by operator+().

Vector operator+ (const Vector& a, const Vector& b)

{
return Vector(a.x() + b.x(), a.y() + b.y());

}

Vector a(1, 3), b(-5, 7), c(22, 2), d;
d=a+b+c;

Operator Syntax

e operator+ is a formal function name that can be used like any
other function name.

— (It's just like add in the example from the first slide.)

 Here we have used the “nickname”-syntax to call operator+.

Technically, we could instead have used the “formal address”
operator+ as follows:
d = operator+(operator+(a, b), c);

(But nobody would really write code like this.)
« Operators in C++ are just like ordinary functions, except that they

also have a nicer syntax for calling them similar to the usual
mathematical notations.

 The operator + has a formal name, namely operator+ (consisting
of 2 keywords), and a “nickname" namely +.

Operator Syntax

The nickname can only be used when calling the function.

The formal name can be used in any context, when declaring the
function, defining it, calling it, or taking its address.

There is nothing that you can do with operators that cannot be done
with ordinary functions. In other words, operators are just syntactic
sugar.

Be careful when defining operators. There is nothing that inhibits
you from defining + to denote subtraction. There is nothing that
Inhibits you from defininga = a + banda += b to have two
different meanings. However, this would be extremely bad style —
your code will become unreadable.

Don't shock the user!

C++ Operators

« Almost all operators in C++ can be overloaded except:
; e ?: sizeof
 The C++ parser is fixed. That means that you can only

redefine existing operators, but you CANNOT define new
operators.

 Nor can you change the following properties of an
operator:

— Arity: the number of arguments an operator takes.
eg. Ix x+y a%b s[j]
(So you are not allowed to re-define the plus operator to take 3
arguments instead of 2.)
— Associativity: e.g. at+b+c is always identical to (a+b)+c.
— Precedence: which operator is done first?
e.g. atb*c is treated as a+(b*c).

C++ Operators

« All C++ operators already have predefined meaning for
the built-in types. It is impossible to change this meaning;
you can only overload the operator to have a meaning
for your own (user-defined) classes (such as Vector in

the example above).

 Therefore, every operator you define must have at least
one argument of a user-defined class type.

* As a global function, operator+ has two arguments.
When it is called in an expression suchasa + b, thisis
equivalent to writing operator+(a, b).

Member Operator Function

 Member functions are called using the “dot syntax" by
specifying an object of, for example, type Vector.

— The expression a + b is equivalent to a.operator+(b).

— Thus, when we define operator+ as a member function of
Vector, it has only one argument — the first argument is implicitly
the object on which the member function is invoked.

class Vector {
double x, y;
public:
Vector(double x, double y) : _x(x), _y(y) {}
double x() const { return _x; }
double y() const { return _y;}
Vector operator+ (const Vector& b) const
{return Vector(_x+b. x, y+b. y);}

Member and Non-Member Operator Function

 Whenever the compiler sees an expression of the form

a+tb, it converts this to the two possible representations
operator+(a, b)
a.operator+(b)

and verifies whether one of those two operator functions
are defined.

e Note: It is an error to define both.

Example: Member or Non-Member Function?

* Let's define a multiplication operator to multiply a vector
with a scalar. This should all work:

Vector a(1,0), b(2, 3);
Vectorc =2 * ga; Il c==(2,0)
a=c+b*3; /la==(8,9)

e Can we define the multiplication operator as a member
function of Vector?

« Remember that the compiler converts the expression
a*b to a.operator*(b). So the expression 2*a is

converted to 2.operator*(a)!

Example: Member or Non-Member Function?

This doesn't work! 2 Is an object of type Int, and we
cannot define a new member function for this type.

So our only choice is to define the multiplication operator
as a global non-member function:

Vector operator* (double s, const Vector& a)

{

return Vector(s * a.x(), s * a.y());

}

Example: Operator Function for Printing

* Very often you would like to provide a printing service for your user-

defined classes, and the most natural way of doing that is to define
the << operator for your class.

ostreamé& operator<<(ostreamé& os, const Vector& a)

{
0s<<)<< ax()<< ''<< ay()<<)
return os;

}

e ostream is the base class for all possible output streams.

» In particular, the standard output stream cout and the error output
stream cerr are objects of classes derived from ostream.

Example: Operator Function for Printing

Why does the operator return an output stream?

Because we like to write expressions such as:
Vector a(1, 0);
cout<<"a="<<a<<"\n";

The second line is equivalent to:

operator<<(operator<<(operator<<(cout, "a ="), a), "\n");
This can only work if operator<< returns the output
stream itself.

Quiz: Could we have defined operator<< as a member
function?

Operator: Member or Non-Member Functions?

The operators: “=" (assignment), “[]" (indexing), “()" (call) are
required by C++ to be defined as class member functions.

A member operator function has an implicit first argument of the
class. => if the left operand of an operator must be an object of the
class, it can be a member function.

If the left operand of an operator must be an object of other classes,
It must be a non-member function. e.g. operator<<

To allow automatic conversion of types using the conversion
constructor, for commutative operators like “+", “-", “*" it is usually
preferred to be defined as non-member functions. e.g.

String x("dot"), y("com"), z;
Z=X+Y;

Z=X+"com",

z ="dog" +Yy;

How to Differentiate Prefix and Postfix Operators?

class Vector {
...
public:
Vector() : _x(0.0), y(0.0){}
Vector(double x, double y) : _x(x), _y(y) {}
Vector operator++() { ++ _Xx; ++ _y; return *this; }
Vector operator++(int)
{ Vector temp(_X, _Yy); _x++; _y++; return temp; }

3

int main() {
Vector a(1.2, 3.4), c, d;
C = ++a; lla=(2.2,4.4)and c=(2.2,4.4)
d = a++; lla=(3.2,5.4)and d = (2.2, 4.4)

}

	Comp151
	From Math Notation to Operators�in Programming Languages
	Example: Additions of Vectors
	Non-Member Operator Function
	Operator Syntax
	Operator Syntax
	C++ Operators
	C++ Operators
	Member Operator Function
	Member and Non-Member Operator Function
	Example: Member or Non-Member Function?
	Example: Member or Non-Member Function?
	Example: Operator Function for Printing
	Example: Operator Function for Printing
	Operator: Member or Non-Member Functions?
	How to Differentiate Prefix and Postfix Operators?

