
Topic #7Topic #7

Memory OrganizationMemory Organization

2

Major GoalsMajor Goals

! To introduce the memory hierarchy and the principle of
locality.

! To introduce basic cache concepts and cache organizations.

! To introduce basic concepts of virtual memory and its
implementation.

! To explain memory hierarchy design challenges in modern
processors.

3

Memory vs. Processor ImprovementsMemory vs. Processor Improvements

! Memory improvement has not kept up with the improvement of
processors -> processors are much faster than memories.

! It is impractical and not economical to include a large amount of
fast memory inside the processor.

! As a result, memory access can be a bottleneck -> the
processor has to wait for memory access for every instruction.

! Solution: Using a memory hierarchy that exploits the
principle of locality.

4

Principle of LocalityPrinciple of Locality

! Programs usually access a relatively small portion of their
address space (for instructions or data) at any instant of time.

! Two types of locality:
" Temporal locality:

• If an instruction or data item is referenced, it will tend to
be referenced again soon.

• Loops in programs contribute to temporal locality.
" Spatial locality:

• If an instruction or data item is referenced, items whose
addresses are close by will tend to be referenced soon.

• Sequential statements in programs and data arrays
contribute to spatial locality.

5

ExampleExample

! Summing up 100 values stored in memory:

addi $s0, $zero, 0 # $s0: accumulator

addi $s1, $zero, 100 # $s1: counter

L1: lw $t1, 0($s2) # $s2: memory addr

add $s0, $s0, $t1

addi $s2, $s2, 4

subi $s1, $s1, 1

bne $s1, $zero, L1

! Temporal and spatial locality can be observed in instructions
and data.

6

Memory HierarchyMemory Hierarchy

! A memory hierarchy consists of multiple levels of memory.
The user has the illusion of a memory that is as large as the
largest level.

SRAM
(cache)

DRAM
(main memory)

Magnetic disk
(secondary storage)

Memory

CPU

Memory

Size Cost ($/bit)Speed

Smallest

Biggest

Highest

Lowest

Fastest

Slowest Memory

7

Memory HierarchyMemory Hierarchy

! With the appropriate operating
mechanisms, the processor can
have an access time that is
determined primarily by level 1
(fastest level) of the hierarchy
and yet can have a memory as
large as level n (largest level).

! Memory hierarchy and
principle of locality:

" Memory hierarchy takes
advantage of temporal
locality by keeping more
recently accessed data
items closer to the
processor.

" Memory hierarchy takes
advantage of spatial
locality by moving blocks
consisting of multiple
contiguous words in
memory to upper levels of
the hierarchy.

CPU

Level n

Level 2

Level 1

Levels in the�
memory hierarchy

Increasing distance �
from the CPU in �

access time

Size of the memory at each level

8

Data Transfer Between LevelsData Transfer Between Levels

! A level closer to the processor is
a subset of any level further
away.

! Data are copied in blocks
between only two adjacent
levels at a time.

! Hit: when the data item
requested by the processor
appears in some block in the
upper level.

! Miss: when the data item
requested by the processor is
not in the upper level -> data
transfer occurs from the lower
level to the upper level.

Processor

Data are transferred

9

Performance MeasuresPerformance Measures

! Hit rate (or hit ratio): fraction of memory accesses found in the
upper level

! Miss rate: 1 - hit rate

! Hit time:
time to access a data item which is in the upper level
(= time to determine miss or hit + time to access data item)

! Miss penalty:
time to replace a block in the upper level with the corresponding block
from the lower level + time to deliver the block to the processor

! Hit time << miss penalty

10

CachesCaches

! Cache was the name chosen to represent the level of the
memory hierarchy between the CPU and the main memory in
the first commercial machine.

! Today, although this remains the dominant use of the word
cache, the term is also used to refer to any storage managed to
take advantage of locality of access.

! Cache inside processor:
" Takes advantage of temporal locality by storing

instructions and data recently fetched from the main memory.
" Takes advantage of spatial locality by fetching instructions

and data from the main memory in blocks.

11

Issues to ConsiderIssues to Consider

! Block placement:
" Where is a block placed in the cache?

! Block identification:
" How can a block be found if it is in the cache?

! Block replacement:
" When a miss occurs, how can a block in the cache be

selected for replacement?

! Write strategy:
" When a write occurs, is the information written only to the

cache?

12

A Simple Block Placement Scheme:A Simple Block Placement Scheme:
Direct MappedDirect Mapped

! Each memory location is mapped to one location in the cache.

! A common mapping strategy:
cache_location = block_address MOD number_of_blocks_in_cache

" If the number of cache blocks (N) is a power of 2, then MOD
can be computed simply by using only the low-order log2N
bits of the block address.

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1

13

Other Block Placement SchemesOther Block Placement Schemes

! Disadvantage of direct mapped
scheme: Blocks with the same
location in the cache cannot be
present simultaneously.

! Fully associative:
" Each block can be placed

anywhere in the cache.
" Disadvantage: quite costly

(hardware and time) to
search for a block in the
cache.

! Set associative:
" Each block can be placed in

a certain number of
locations in the cache.

" A good compromise
between direct mapped and
fully associative schemes.

7654321

Fully associative
cache

0
Block number

3210
Set number

7654321

Set associative
cache

0
Block number

Memory

14

Set Associative SchemesSet Associative Schemes

! An N-way set associative cache consists of a number of sets,
each of which consists of N blocks.

! Mapping strategy:
cache_location = block_address MOD number_of_sets_in_cache

! Special cases:
" A direct mapped cache can be considered as a one-way set

associative cache.
" A fully associative cache with M blocks can be considered

as an M-way set associative cache.

15

Possible Possible AssociativityAssociativity StructuresStructures

! Increase in degree of
associativity =>

" Decrease in miss rate
(advantage)

" Increase in hit time
(disadvantage)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data

Four-way set associative

Set

0

1

Tag Data

One way set associative�
(direct mapped)

Block

0

7

1
2

3
4
5
6

Tag Data

Two-way set associative

Set

0

1

2
3

Tag Data

One-way set associative
(direct mapped)

Two-way set associative

Four-way set associative

Eight-way set associative (fully associative)

16

Block IdentificationBlock Identification

! Each cache location can
contain a block from a
number of different memory
locations.

! A tag is used to store the
address information. The
tag needs only to contain
those high-order bits that
are not used as an index into
the cache.

! A valid bit is needed to
indicate whether a cache
block contains valid
information.

Address (showing bit positions)

20 10

Byte�
offset

Valid Tag DataIndex
0
1
2

1021
1022
1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

Address (showing bit positions)

17

Block Identification in NBlock Identification in N--Way Set Associative Way Set Associative
Cache as Parallel SearchCache as Parallel Search

22 8

V TagIndex
0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0
Address

18

Block ReplacementBlock Replacement

! When a miss occurs in a cache, we must decide which block to
replace.

" Direct mapped: only one candidate (trivial case)
" Fully associative: all blocks are candidates
" Set associative: only blocks within a particular set are

candidates

! Two primary replacement strategies for associative
caches:

" Random: To spread allocation uniformly, candidate blocks
are randomly selected, possibly with hardware assistance.

" Least recently used (LRU): The block replaced is the one
that has not been used for the longest time.

• Can be costly to implement for a degree of associativity
higher than 2 or 4.

19

WriteWrite--Through StrategyThrough Strategy

! The information is written to both the block in the cache and to
the block in the main memory.

! Advantages:
" Misses are simpler and cheaper because they do not require a

block to be written back to the main memory.
" Write-through is easier to implement than write-back,

although a write buffer is needed for a high-speed system.

20

WriteWrite--Back StrategyBack Strategy

! The information is written only to the block in the cache. The modified
block is written to the main memory only when it is replaced.

! Advantages:
" Individual words can be written by the processor at the rate that the

cache, rather than the memory, can accept them.
" Multiple writes within a block require only one write to the main

memory.
" When blocks are written back, the system can make effective use of

a high bandwidth transfer since the entire block is written.

! As CPU performance increases at a rate faster than DRAM-based main
memory, more and more caches use the write-back strategy.

21

Miss Rate vs. Block SizeMiss Rate vs. Block Size

1 KB�
8 KB�
16 KB�
64 KB�
256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

22

Increasing Memory BandwidthIncreasing Memory Bandwidth

! Either the physical or logical width can be increased.

CPU

Cache

Bus

Memory

a. One-word-wide�
 memory organization�
�

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory�
bank 1

Memory�
bank 2

Memory�
bank 3

Memory�
bank 0

c. Interleaved memory organizationInterleaved memory organizationWide memory organization

One-word-wide
memory organization

23

Virtual MemoryVirtual Memory

! Virtual memory is the technique that makes use of the main
memory as a "cache" for magnetic disks (secondary storage).

! Motivations:
" Sharing of memory between programs:

• The total memory required by all programs running on a
machine may be much larger than the amount of main
memory available.

• Only a fraction of the memory is being actively used.
" Allowing a program to exceed the size of the main memory:

• Automatic mapping of virtual addresses to physical
addresses can relieve the otherwise substantial burden of
the programmers.

24

TerminologyTerminology

! Although the concepts at
work in virtual memory and
in caches are the same, their
differing historical roots have
led to the use of different
terminology.

" Page in virtual memory
(cf. block in cache)

" Page fault in virtual
memory (cf. miss in
cache)

! The processor generates
virtual addresses while the
memory is accessed using
physical addresses. Sharing
of physical pages is
necessary.

! Address translation or
memory mapping:

Physical addresses

Disk addresses

Virtual addresses
Address translation

Virtual addresses Physical addressesAddress
translation

Disk
addresses

25

Address Translation ExampleAddress Translation Example

! Virtual address space: 4 GB
! Maximum main memory size: 1 GB
! Page size: 4 KB

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

Physical address

Virtual address

26

Page FaultsPage Faults

! A page fault usually has an enormous penalty dominated by the
time it takes to get the first word for typical page sizes. It can
take millions of clock cycles to process.

! Design choices resulted:
" Pages should be large enough.
" Flexible page placement (e.g., fully associative scheme)

should be used.
" Page faults can be handled in software because the overhead

is small compared to the disk access time. Software can also
afford to use clever page placement algorithms.

" Write-back should be used as write-through would take too
long.

27

Page Placement and IdentificationPage Placement and Identification

! Fully associative placement is used to reduce the page fault
rate.

! Mapping of virtual addresses to physical addresses is done
through a page table, which is a structure that resides in the
memory.

! The starting address of the page table is stored in the page
table register.

! Each page table entry stores a valid bit and the corresponding
physical page number.

! Since every possible virtual page is represented in the page
table, there is no need to have a tag field.

28

Page Placement and IdentificationPage Placement and Identification

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not�
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29

Page Replacement and Write StrategyPage Replacement and Write Strategy

! Page replacement:
" The LRU scheme is used.
" The OS is responsible for keeping track of page usage

information. However, a completely accurate LRU scheme
would be too expensive to implement as it would require
updating a data structure on every memory reference.
Instead, only approximate schemes are used in practice.

! Write strategy:
" Only the write-back scheme is practical because of the long

latency of a disk write.

30

Key Concepts to RememberKey Concepts to Remember

! Ordinary programs exhibit two different notions of locality:
temporal locality and spatial locality.

! Multilevel memory organizations exploit the principle of
locality to achieve cost/performance tradeoff.

! Two important levels: cache and virtual memory

! Data are transferred in blocks from the main memory to the
cache when misses occur; data are transferred in pages from
the disk to the main memory when page faults occur.

31

Key Concepts to RememberKey Concepts to Remember

! Set associative placement is a good compromise of the direct
mapped and fully associative placement schemes.

! A valid bit is used in both a cache and a page table to
indicate whether the corresponding entry is filled with valid
information.

! Block replacement uses either random or least recently used
(LRU) replacement scheme, while page replacement usually
uses the LRU scheme.

! The write strategy for caches is either write-through or
write-back, while virtual memory can only use write-back.

