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Major GoalsMajor Goals

! To present the single-cycle implementation and to develop 
the student's understanding of combinational and clocked 
sequential circuits and the relationship between them.

! To present the multiple-cycle implementation and to further 
develop the student's understanding of combinational and 
clocked sequential circuits and the relationship between them.

! To introduce microprogramming.
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How Are These Several Topics Related?How Are These Several Topics Related?

! The performance of a computer is determined by (Topic #2):
" Instruction count
" Clock cycle time
" Clock cycles per instruction (CPI)

! The instruction count is determined by the compiler and the 
instruction set architecture (Topics #3, #4 and #5).

! The clock cycle time and the CPI are determined by the 
implementation of the processor (Topic #6 - this topic).
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A MIPS Subset ImplementationA MIPS Subset Implementation

! For illustration, we will study an implementation of a subset of
the core MIPS instruction set:

" Memory-reference instructions: lw, sw
" Arithmetic-logical instructions: add, sub, and, or, slt
" Branch and jump instructions: beq, j

! Instructions not included:
" Integer instructions such as those for multiplication and 

division
" Floating-point instructions
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Steps to Execute MIPS InstructionsSteps to Execute MIPS Instructions

! Send the program counter (PC) to the memory location that contains 
the code and fetch the instruction from that memory location.

! Read one or two registers, using fields of the instruction to select the 
registers to read.  For the load word and store word instructions we 
need to read only one register, but most other instructions require that 
we read two registers.

! Perform the operation required by the instruction using the ALU.
Memory-reference instructions use the ALU for address calculation; 
arithmetic-logical instructions for operation execution; and branches for 
comparison.

! Store the result in registers or memory locations, and change the value 
of the program counter in case of a branch instruction.
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HighHigh--Level View of the MIPS Subset Level View of the MIPS Subset 
ImplementationImplementation

Registers
Register #

Data

Register #

Data�
memory

Address

Data

Register #

PC Instruction ALU

Instruction�
memory

Address
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Sequential Logic CircuitsSequential Logic Circuits

! MIPS computers are designed using both combinational and 
sequential logic circuits.

! Sequential logic circults are circuits whose output depends 
on both the current input and the value stored in memory 
(called state).

! We will review: clocks and memory elements

! Reference: Appendix B (B.4-B.5) of textbook
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ClocksClocks

! A clock is a free-running signal with a fixed cycle time (or 
called clock period) or, equivalently, a fixed clock frequency
(i.e., inverse of the cycle time).

! Clocks are needed in sequential logic to decide when an element 
that contains state should be updated.

! Edge-triggered clocking:
" Design methodology for sequential logic circuits in which all 

state changes occur on a clock edge (rising edge or falling 
edge).

Clock period Rising edge

Falling edge
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Clocked SystemsClocked Systems

! Clocked systems are also called synchronous systems.

! Relationship among state elements and combinational logic 
blocks in a synchronous, sequential logic design:

Clock cycle

State�
element�

1
Combinational logic

State�
element�

2

State�
element Combinational logic
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Memory ElementsMemory Elements

! All memory elements store state: the output from any 
memory element depends both on the current inputs and on the 
value that has been stored inside the memory element.

! S-R latches (set-reset latches):
" Unclocked memory elements built from a pair of cross-

coupled NOR gates (i.e., OR gates with inverted outputs).

Q

_
Q

R

S
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D LatchesD Latches

! Unlike S-R latches which are unclocked, D latches are clocked (i.e., 
state changes are triggered by a clock).

! The output is equal to the value of the stored state inside it.

! Operation:
" When the clock C is asserted, the latch is open and the Q output

immediately assumes the value of the D input.

! Clocked latches are used to build flip-flops.

Q

C

D

_
Q

D

C

Q
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D FlipD Flip--FlopsFlops

! D flip-flops, like D latches, are clocked.

! The outputs change only on the (rising or falling) clock edge.

! D flip-flop with a falling-edge trigger:

! Operation:
" When the clock input C changes from asserted to deasserted, the Q 

output stores the value of the D input.

! An array of D flip-flops can be used to build a register that can hold a 
multibit datum, such as a byte or word.

�

QQ

_
Q

Q

_
Q

D�
latch

D

C

D�
latch

DD

C

C

D

C

Q
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Register FilesRegister Files

! A register file is a structure in the datapath consisting of a set 
of registers that can be read and written by supplying a register 
number to be accessed.

! A register file can be implemented with a decoder for each 
read or write port and an array of registers built from D flip-
flops.

! Reading a register:
" Input: a register number
" Output: data contained in the specified register

! Writing a register:
" Inputs: a register number, the data to write, and a clock that 

controls the writing into the register
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Example: A Register File with Two Read Ports and Example: A Register File with Two Read Ports and 
One Write PortOne Write Port

! There are five inputs and two outputs.

! The read ports can be implemented with a pair of 
multiplexors, each of which is as wide as the number of bits in 
the register file.

Read register�
number 1 Read�

data 1

Read�
data 2

Read register�
number 2

Register file
Write�
register

Write�
data Write



15

Implementation of Two Read PortsImplementation of Two Read Ports

! To implement two 
read ports for a 
register file with n 
registers, we use two 
n-to-1 multiplexors, 
each of which is 32 
bits wide.

! The read register 
number signal is used 
as the multiplexor
selector signal.

M�
u�
x

Register 0
Register 1

Register n –  1
Register n

M�
u�
x

Read data 1

Read data 2

Read register�
number 1

Read register�
number 2
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Implementation of a Write PortImplementation of a Write Port

! To implement the write port for a register file with n registers, 
we use an n-to-1 decoder to generate a signal that can be 
used to determine which register to write.

n-to-1�
decoder

Register 0

Register 1

Register n –  1
C

C

D

D
Register n

C

C

D

D

Register number

Write

Register data

0
1

n –  1
n
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SRAMsSRAMs and and DRAMsDRAMs

! Unlike registers which are small, fast memories inside the 
processor, larger amounts of memory are in the form of:
" Static random access memories (SRAMs)
" Dynamic random access memories (DRAMs)

! SRAMs are usually used for relatively small memories (e.g., 
cache) while DRAMs are used for larger memories (e.g., main 
memory).

! SRAMs are typically built using flip-flops while DRAMs are built 
using capacitors.

! SRAMs are somewhat simpler in design than DRAMs, but they 
are also more expensive and less dense.
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SRAMsSRAMs

! 256K x 1 SRAM:
" Length (i.e., number of addressable locations) = 256K
" Width (i.e., number of bits per entry) = 1
" 18 address lines, 1 data input line, 1 data output line

! 32K x 8 SRAM:
" 15 address lines, 8 data input lines, 8 data output lines

SRAM�
32K × 8

8

15

8

Dout[7– 0]

Address

Chip select
Output enable

Write enable

Din[7– 0]
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SRAMsSRAMs

! Large SRAMs cannot be built 
like register files using 
multiplexors, as a 64K-to-1 
multiplexor (too large!) would 
be needed for a 64K x 1 SRAM.

! Instead, a shared output line, 
called bit line, is used so that 
multiple memory cells in the 
memory array can assert.

! A three-state buffer (or tri-
state buffer) is used to allow 
multiple sources to drive a 
single line.

! A multiplexor constructed 
from four three-state 
buffers:

In
Data 0

Select 0 Enable

Out

In
Data 1

Select 1 Enable

Out

In
Data 2

Select 2 Enable

Out

In
Data 3

Select 3 Enable

Out

Output
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A 4 x 2 SRAMA 4 x 2 SRAM

D�
latch Q

D
C
Enable

D�
latch Q

D
C
Enable

D�
latch Q

D
C
Enable

D�
latch Q

D
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Enable
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latch Q

D
C
Enable

D�
latch Q

D
C
Enable

D�
latch Q

D
C
Enable

D�
latch Q

D
C
Enable

2-to-4�
decoder

Write enable

Address

Din[0]Din[1]

Dout[1] Dout[0]

0

1

2

3
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A 32K x 8 SRAM as an Array of 512 x 64 ArraysA 32K x 8 SRAM as an Array of 512 x 64 Arrays

512 × 64�
SRAM

Mux

Dout7

512 × 64�
SRAM

Mux

Dout6

512 × 64�
SRAM

Mux

Dout5

512 × 64�
SRAM

Mux

Dout4

512 × 64�
SRAM

Mux

Dout3

512 × 64�
SRAM

Mux

Dout2

512 × 64�
SRAM

Mux

Dout1

512 × 64�
SRAM

Mux

Dout0

9-to-512�
decoder

Address�
[14– 6]

64

512

Address�
[5– 0]
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DRAMsDRAMs

! The value kept in a cell is stored as a charge in a capacitor.

! Only a single transistor is needed to access the stored charge 
(either to read the value or to overwrite the charge stored 
there), and hence DRAMs are much denser and cheaper per bit.

! Since the charge is stored on a capacitor, it cannot be kept 
indefinitely but has to be refreshed periodically.

! To refresh a cell, we read its content and then write it back.

! Typically, refresh operations consume 1-2% of the active cycles, 
leaving 98-99% of the cycles available for reading and writing 
data.
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A 4M x 1 DRAM Built with a 2048 x 2048 ArrayA 4M x 1 DRAM Built with a 2048 x 2048 Array

Address[10– 0]

�
Row�

decoder�
11-to-2048

2048 × 2048�
array

Column latches

Mux

Dout
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Synchronous Synchronous RAMsRAMs

! Synchronous SRAMs (SSRAMs) and synchronous DRAMs
(SDRAMs)

! The key capability provided by synchronous RAMs is the ability 
to transfer a burst of data from a series of sequential addresses 
within an array or row.  The burst is defined by a starting 
address, supplied in the usual fashion, and a burst length.

! The speed advantage of synchronous RAMs comes from the 
ability to transfer the bits in the burst without having to specify 
additional address bits.  Instead, a clock is used to transfer the 
successive bits in the burst.
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Building a Building a DatapathDatapath

! Some basic datapath elements:
" Instruction memory: a memory unit that stores the 

instructions of a program and supplies an instruction given its 
address.

" Program counter: a register that stores the address of the 
instruction being executed.

" Adder: a unit that increments the program counter to the 
address of the next instruction.

PC

Instruction�
memory

Instruction�
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder
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Building a Building a DatapathDatapath

! To execute any instruction, we first fetch the instruction from 
memory.

! To prepare for executing the next instruction, we increment the 
program counter so that it points at the next instruction (4 bytes 
later).

PC

Instruction�
memory

Read�
address

Instruction

4

Add
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DatapathDatapath for Arithmeticfor Arithmetic--Logical (RLogical (R--Format) Format) 
InstructionsInstructions

Instruction
Registers

Write�
register

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Write�
data

ALU�
result

ALU
Zero

RegWrite

ALU operation3



28

DatapathDatapath for Load and Store (Ifor Load and Store (I--Format) Format) 
InstructionsInstructions

Instruction

16 32

Registers
Write�
register

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Data�
memory

Write�
data

Read�
data

Write�
data

Sign�
extend

ALU�
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3
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DatapathDatapath for Branch (Ifor Branch (I--Format) InstructionsFormat) Instructions

16 32
Sign�

extend

ZeroALU

Sum

Shift�
left 2

To branch�
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write�
register

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Write�
data

RegWrite

ALU operation3
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A Simple SingleA Simple Single--Cycle ImplementationCycle Implementation

! We have already built a datapath for each instruction 
separately.  Now, we need to combine them into a single 
datapath, by devising ways to share some of the resources 
(e.g., ALU) among the different instructions instead of 
duplicating them.

! This simple implementation is based on the (unrealistic) 
assumption that all instructions take just one clock cycle each to 
complete.

" Implication: No datapath resource can be used more than 
once per instruction, so any element needed more than once 
must be duplicated.  As a consequence, we need a memory 
for instructions separate from one for data.
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Combined Combined DatapathDatapath for Rfor R--Format Instructions Format Instructions 
and Memory Instructionsand Memory Instructions

PC

Instruction�
memory

Read�
address

Instruction

16 32

Registers

Write�
register
Write�
data

Read�
data 1

Read�
data 2

Read�
register 1
Read�
register 2

Sign�
extend

ALU�
result

Zero

Data�
memory

Address

Write�
data

Read�
data M�

u�
x

4

Add

M�
u�
x

ALU

RegWrite

ALU operation3

MemRead

MemWrite

ALUSrc
MemtoReg
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Combined Combined DatapathDatapath for Different Instruction for Different Instruction 
ClassesClasses

PC

Instruction�
memory

Read�
address

Instruction

16 32

Add ALU�
result

M�
u�
x

Registers

Write�
register
Write�
data

Read�
data 1

Read�
data 2

Read�
register 1
Read�
register 2

Shift�
left 2

4

M�
u�
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc
MemtoReg

ALU�
result

Zero
ALU

Data�
memory

Address�
�

Write�
data

Read�
data M�

u�
x

Sign�
extend

Add
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ALU ControlALU Control

! The control unit controls the whole operation of the datapath
by generating appropriate control signals (e.g., write signals 
for state elements, selector inputs for multiplexors, ALU control 
inputs) for the proper operation of the datapath.

! The ALU control is part of the main control unit.

! Control input bits for ALU:

set on less than111

subtract110

add010

or001

and000

FunctionALU Control Input
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ALU Control Input BitsALU Control Input Bits

! Inputs used by control unit to generate ALU control input bits:
" ALUOp (2 bits)
" Function code of instruction (6 bits)

010add100000add10R-type

110subtract100010subtract10R-type

000and100100and10R-type

set on less 
than

or

branch equal

store word

load word

Instruction 
operation

101010

100101

XXXXXX

XXXXXX

XXXXXX

Function 
code

10

10

01

00

00

ALUOp

set on less 
than

or

subtract

add

add

Desired 
ALU action

111R-type

001R-type

110Branch equal

010Store word

010Load word

ALU control 
input

Instruction 
opcode
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Multiple Levels of DecodingMultiple Levels of Decoding

! Level 1:: Generation of ALUOp bits by main control unit - to be 
discussed later

! Level 2:: Generation of ALU control input bits from ALUOp bits 
and function code of instruction

! Why multiple levels?
" Using multiple levels of control can reduce the size of the 

main control unit, and may also potentially increase the speed 
of the control unit.

" A common implementation technique.
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Truth Table for ALU Control BlockTruth Table for ALU Control Block

! The truth table contains many don't-care terms, which can lead 
to simplified hardware implementation.

010XXXXXX00

110XXXXXX1X

Operation
Function codeALUOp

1

1

1

1

1

ALUOp1

X

X

X

X

X

ALUOp0

X

X

X

X

X

F5

X

X

X

X

X

F4

1

0

0

0

0

F3

0

1

1

0

0

F2

1

0

0

1

0

F1

0

1

0

0

0

F0

111

001

000

110

010
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Hardware Implementation of ALU Control BlockHardware Implementation of ALU Control Block

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block
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DatapathDatapath with ALU Controlwith ALU Control

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write�
register
Write�
data

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1
Read�
register 2

Sign�
extend

ALU�
result

Zero

Data�
memory

Address Read�
data M�

u�
x

1

0

M�
u�
x

1

0

M�
u�
x

1

0

M�
u�
x

1

Instruction [15– 11]

ALU�
control

Shift�
left 2

PCSrc

ALU

Add ALU�
result

Destination register:
R-format: rd field (bits 15-11)
lw: rt field (bits 20-16)
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Effects of Control SignalsEffects of Control Signals

The PC is replaced by the output of the 
adder that computes the branch target.

The PC is replaced by the output of 
the adder that computes the value of 
PC + 4.

PCSrc

Data memory contents designated by 
the address input are put on the Read 
data output.

NoneMemRead

Data memory contents designated by 
the address input are replaced by the 
value on the Write data input.

NoneMemWrite

The value fed to the register Write data 
input comes from the data memory.

The second ALU operand is the sign-
extended, lower 16 bits of the 
instruction.

The register on the Write register input 
is written with the value on the Write 
data input.

The register destination number for the 
Write register comes from the rd field 
(bits 15-11).

Effect when asserted

The value fed to the register Write 
data input comes from the ALU.

The second ALU operand comes from 
the second register file output (Read 
data 2).

None

The register destination number for 
the Write register comes from the rt
field (bits 20-16).

Effect when deasserted

MemtoReg

ALUSrc

RegWrite

RegDst

Signal name
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Setting of Control SignalsSetting of Control Signals

! The 9 control signals (7 from the previous table + 2 from 
ALUOp) can be set based entirely on the 6-bit opcode, with the 
exception of PCSrc.

! PCSrc control line:
" Set if both conditions hold simultaneously:

• Instruction is beq.
• Zero output of ALU is true (i.e., the two source operands 

are equal).
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DatapathDatapath with Control Unitwith Control Unit

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Instruction [20  16]

Instruction [25  21]

Add

Instruction [5  0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31  26]

4

16 32Instruction [15  0]

0

0M�
u�
x

0

1

Control

Add ALU�
result

M�
u�
x

0

1

Registers
Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Sign�
extend

M�
u�
x

1

ALU�
result

Zero

PCSrc

Data�
memory

Write�
data

Read�
data

M�
u�
x

1

Instruction [15  11]

ALU�
control

Shift�
left 2

ALU
Address
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Setting of Control SignalsSetting of Control Signals

! Setting of control lines is completely determined by opcode:

! Input to datapath control unit:

0

0

1

0

Mem-
Read

0

1

0

0

Mem-
Write

1

0

0

0

Branch

0

0

0

1

ALUOp1

00X1Xsw

0

1

0

ALU-
Src

X

1

0

Memto-
Reg

X

0

1

Reg-
Dst

0

1

1

Reg-
Write

1beq

0lw

0R-format

ALUOp0Instruction

4
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35

0

Opcode in 
decimal

0

1

1

0

Op5

Opcode in binary

0

0

0

0

Op4

0

1

0

0

Op3

1

0

0

0

Op2

0

1

1

0

Op1

1sw

0

1

0

Op0

beq

lw

R-format

Instruction
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Truth Table for Truth Table for DatapathDatapath Control UnitControl Unit

0100MemWrite

1000Branch

0011RegWrite

0010MemRead

0001ALUOp1

0110ALUSrc

XX10MemtoReg

0110Op0

XX01RegDst

Outputs

1000Op2

0110Op1

1

0

0

0

beq

0

1

0

1

sw

0

0

0

1

lw

ALUOp0

Op3

Op4

Op5

Signal name

0

0

0

0

R-format

Inputs

Input or output
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Hardware Implementation of Hardware Implementation of DatapathDatapath Control Control 
UnitUnit

R-format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO



45

Simple Simple DatapathDatapath and Control Extended to Handle and Control Extended to Handle 
the Jump Instructionthe Jump Instruction

Shift�
left 2

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Data�
memory

Read�
data

Write�
data

Registers
Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU�
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M�
u�
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign�
extend

16 32Instruction [15– 0]

1

M�
u�
x

1

0

M�
u�
x

0

1

M�
u�
x

0

1

ALU�
control

Control

Add ALU�
result

M�
u�
x

0

1 0

ALU

Shift�
left 226 28

Address
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Problems with SingleProblems with Single--Cycle Cycle DatapathDatapath
ImplementationImplementation

! Every instruction takes one clock cycle (CPI = 1).  The clock 
cycle is determined by the longest possible path in the machine.

! The longest path is for a load instruction which involves five 
functional units in series: instruction memory, register file, 
ALU, data memory, register file.

! Even though each instruction takes just one clock cycle, the 
clock cycle is expected to be large and hence the overall 
performance is poor because many instructions cannot fully 
utilize the unnecessarily long clock cycle.

! No sharing of hardware functional units is possible.
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Different Instruction ClassesDifferent Instruction Classes

E.g., memory units: 2 ns    ALU: 2 ns    register file (read/write): 1 ns

ALURegister accessInstruction fetchBranch

Register access

Memory accessALURegister accessInstruction fetchStore word

Register access

Register access

ALU

ALU

Instruction fetch

Instruction fetch

Instruction fetch

Functional units used by the instruction class

Memory access

Register access

Jump

Load word

R-format

Instruction 
class

5 ns212Branch

1

1

Register 
write

2 ns

7 ns

8 ns

6 ns

Total

2212Store word

1

1

Register 
read

2

2

ALU 
operation

2

2

2

Instruction 
memory

2

0

Data 
memory

Jump

Load word

R-format

Instruction 
class
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Problems with SingleProblems with Single--Cycle Cycle DatapathDatapath
ImplementationImplementation

! Although a variable clock implementation would be faster, it 
is very difficult to implement a variable-speed clock.

! The penalty for using a single-length clock cycle becomes more 
severe if we also consider other computationally demanding 
instructions such as multiplication and floating-point operations.

! As a result, the best solution is to consider a shorter clock 
cycle (derived from the basic functional unit delays) and allow 
different instructions to require different numbers of clock 
cycles.
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A A MulticycleMulticycle ImplementationImplementation

! The execution of each instruction is broken into a series of steps 
that correspond to the functional unit operations.  Each step 
takes one clock cycle to complete.

! A single functional unit can be used more than once per 
instruction, as long as it is used on different clock cycles.  This 
sharing can help to reduce the amount of hardware required.  In 
particular,

" A single memory unit is used for both instructions and 
data.

" There is a single ALU, rather than an ALU and two adders.
" One or more registers are added after every major 

functional unit to hold the output of that unit until the value is 
used in a subsequent clock cycle.
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HighHigh--Level View of the Level View of the Multicycle DatapathMulticycle Datapath

PC

Memory

Address

Instruction�
or data

Data

Instruction�
register

Registers
Register #

Data

Register #

Register #

ALU

Memory�
data �

register

A

B

ALUOut
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Need for Additional RegistersNeed for Additional Registers

! Instruction register (IR) and memory data register (MDR):
" Hold output of memory for an instruction read and a data 

read, respectively.

! A and B registers:
" Hold register operand values from register file.

! ALUOut register:
" Holds output of ALU.



52

Need for Additional Control SignalsNeed for Additional Control Signals

! All except the IR hold data only between a pair of adjacent clock 
cycles. Thus there is no need for a write control signal.

! The IR needs to hold the instruction until the end of execution 
of that instruction.  Thus it requires a write control signal.

! Since several functional units are shared for different purposes, 
some multiplexors have to be added or expanded.  Thus 
additional control signals are needed.
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Simple Simple Multicycle DatapathMulticycle Datapath with with MultiplexorsMultiplexors
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Complete Complete DatapathDatapath and Control Unit for and Control Unit for 
MulticycleMulticycle ImplementationImplementation
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Multiple Execution Steps Per InstructionMultiple Execution Steps Per Instruction

! Typical execution steps:
" Instruction fetch
" Instruction decode and register fetch
" Execution, memory address computation, or branch 

completion
" Memory access or R-type instruction completion
" Memory read completion

! Each instruction takes a few (3-5) steps.
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Summary of Execution StepsSummary of Execution Steps

Load: MDR = 
Memory[ALUOut]

or
Store: 

Memory[ALUOut] = B

Reg[IR[15-11]] = 
ALUOut

Memory 
access or R-
type 
completion

PC = PC[31-28] || 
(IR[25-0] << 2)

Action for jumps

If (A == B)
PC = ALUOut

ALUOut = A +
sign-extend(IR[15-0])

ALUOut = A op B

Execution, 
address 
computation, 
branch/jump 
completion

Load: Reg[IR[20-16]] 
= MDR

Action for memory 
reference 

instructions

A = Reg[IR[25-21]]
B = Reg[IR[20-16]]

ALUOut = PC + (sign-extend(IR[15-0]) << 2)

IR = Memory[PC]
PC = PC + 4

Action for R-
type 

instructions

Action for 
branches

Memory read 
completion

Instruction 
decode / 
register fetch

Instruction 
fetch

Step name
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Instruction Fetch StepInstruction Fetch Step

! Fetch the instruction from memory and compute the address of 
the next sequential instruction:
IR = Memory[PC];

PC = PC + 4;

! Operations:
" Send the PC to the memory as address.
" Read an instruction from memory.
" Write the instruction into the IR.
" Increment the PC by 4.
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Instruction Decode & Register Fetch StepInstruction Decode & Register Fetch Step

! Assuming the existence of two registers and an offset field (no 
harm to do the computation early even if they do not exist), 
fetch the two registers from the register file and compute the 
branch target address:
A = Reg[IR[25-21]];
B = Reg[IR[20-16]];

ALUOut = PC + (sign-extend(IR[15-0]) << 2);

! Operations:
" Access the register file to read rs and rt.
" Store the results into registers A and B.
" Compute the branch target address (sign extension and left 

shift).
" Store the address in ALUOut.
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Execution, Memory Address Computation, or Execution, Memory Address Computation, or 
Branch Completion StepBranch Completion Step

! In this step, the datapath operation is determined by the 
instruction class.

! Memory reference instructions:
" Compute the memory address:

ALUOut = A + sign-extend(IR[15-0]);

" Operations:
• Sign-extend the 16-bit offset to a 32-bit value.
• Send both register A and the 32-bit offset to the ALU.
• Add the two values.
• Store the result in ALUOut.
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Execution, Memory Address Computation, or Execution, Memory Address Computation, or 
Branch Completion StepBranch Completion Step

! Arithmetic-logical (R-type) instructions:
" Perform the ALU operation specified by the function code:

ALUOut = A op B;

" Operations:
• Send both registers A and B to the ALU.
• Perform the specified operation on the two values.
• Store the result in ALUOut.
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Execution, Memory Address Computation, or Execution, Memory Address Computation, or 
Branch Completion StepBranch Completion Step

! Branch instructions:
" Compare registers A and B and set the PC to the branch 

target address if A and B are equal:
if (A == B)

PC = ALUOut;

" Operations:
• Send both registers A and B to the ALU.
• Compare A and B by performing subtraction in the ALU and 

set the Zero output signal to 1 if A and B are equal.
• If Zero is equal to 1, then write ALUOut to the PC.
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Execution, Memory Address Computation, or Execution, Memory Address Computation, or 
Branch Completion StepBranch Completion Step

! Jump instructions:
" Compute the jump address and set the PC to this address:

PC = PC[31-28] || (IR[25-0] << 2)

" Operations:
• Left-shift the 26-bit address field by 2 bits to give a 28-bit 

value.
• Concatenate the four leftmost bits of the PC with the 28-bit 

value to form a 32-bit jump address.
• Write the jump address to the PC.
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Memory Access or RMemory Access or R--Type Instruction Completion Type Instruction Completion 
StepStep

! Memory reference instructions:
" Read from or write to memory:

MDR = Memory[ALUOut]; // for load instruction

or

Memory[ALUOut] = B; // for store instruction

" Operations:
• Use the address computed during the previous step and 

stored in ALUOut.
• For a load instruction, a data word is retrieved from 

memory with the specified address.
• For a store instruction, a data word is written into memory 

with the specified address.
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Memory Access or RMemory Access or R--Type Instruction Completion Type Instruction Completion 
StepStep

! Arithmetic-logical (R-type) instructions:
" Write the result of the ALU operation into a destination 

register inside the register file:
Reg[IR[15-11]] = ALUOut;

" Operations:
• Get from ALUOut the value which was the result of the ALU 

operation in the previous step.
• Write the value into a register in the register file.
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Memory Read Completion StepMemory Read Completion Step

! A load instruction completes by writing back the value from 
memory into a register in the register file:
Reg[IR[20-16]] = MDR;

! Operations:
" Get from MDR the value which was read from memory in the 

previous step.
" Write the value into a register in the register file.
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Control Unit DesignControl Unit Design

! Unlike the single-cycle implementation which only requires a set 
of truth tables to specify the setting of the control signals based 
on the instruction class, control for the multicycle
implementation is more complex because an instruction is 
executed in a series of steps and hence the signals for both the
current step and the next step have to be specified.

! Two techniques for specifying the control:
" Finite state machine representation
" Microprogramming
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HighHigh--Level View of Finite State Machine Control Level View of Finite State Machine Control 
for the for the DatapathDatapath

Memory access�
instructions�
(Figure 5.38)

R-type instructions�
(Figure 5.39)

Branch instruction�
(Figure 5.40)

Jump instruction�
(Figure 5.41)

Instruction fetch/decode and register fetch�
(Figure 5.37)

Start



68

Complete Finite State Machine ControlComplete Finite State Machine Control
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Finite State Machine ControllerFinite State Machine Controller
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Simplifying Control Design by MicroprogrammingSimplifying Control Design by Microprogramming

! Representing the MIPS control using a finite state machine is 
relatively easy and feasible.

! However, in case we have a large instruction set and a large 
number of complex addressing modes (e.g., Intel x86/Pentium 
instruction set), the number of states in the finite state machine 
would go up to thousands, which becomes too large and 
cumbersome to handle.

! The solution to this problem comes from programming -
creating functions and procedures.

" As programs become large, additional structuring techniques 
are needed to keep the programs comprehensible.
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MicroprogrammingMicroprogramming

! Microinstructions:
" The set of control signals that must be asserted in a state can be 

considered as an instruction to be executed by the datapath.
" To distinguish such low-level control instructions from 

instructions of the MIPS instruction set, they are called 
microinstructions.

" Executing a microinstruction has the effect of asserting the 
control signals specified by the microinstruction.

! Microprogramming: designing the control unit as a program that 
implements machine instructions in terms of simpler 
microinstructions.

! The asserted values on the control lines are represented 
symbolically in a microprogram, which is a representation of the 
microinstructions.
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MicrocodeMicrocode ControllerController
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Key Concepts to RememberKey Concepts to Remember

! Sequential logic circuits are needed for the implementation 
of state elements such as registers and memory units.

! Latches and flip-flops are building blocks for state elements 
such as registers and some types of RAM.

! A register file is a structure in the datapath consisting of a set 
of registers and some read and write ports.

! There are two types of RAM: static RAM and dynamic RAM.

! A two-stage decoding process is typically used in the 
addressing scheme of RAMs.
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Key Concepts to RememberKey Concepts to Remember

! A single-cycle implementation of the dathpath and control 
assumes that each instruction takes only one clock cycle.

! Disadvantages of single-cycle implementation: long 
execution time and no sharing of hardware.

! A multicycle implementation of the datapath and control 
allows different instructions to take different numbers of clock
cycles.

! Specification of the control for a multicycle implementation can 
be done using the finite state machine representation (for 
simple instruction sets) or through microprogramming (for 
complex instruction sets).


