Topic #6

Processor Design

Major Goals

o To present the single-cycle implementation and to develop
the student's understanding of combinational and clocked
sequential circuits and the relationship between them.

o To present the multiple-cycle implementation and to further
develop the student's understanding of combinational and
clocked sequential circuits and the relationship between them.

o To introduce microprogramming.

How Are These Several Topics Related?

O The performance of a computer is determined by (Topic #2):
O Instruction count
O Clock cycle time
O Clock cycles per instruction (CPI)

Q The instruction count is determined by the compiler and the
Instruction set architecture (Topics #3, #4 and #5).

O The clock cycle time and the CPI are determined by the
Implementation of the processor (Topic #6 - this topic).

A MIPS Subset Implementation

Q For illustration, we will study an implementation of a subset of
the core MIPS instruction set:

O Memory-reference instructions: | w, sw
O Arithmetic-logical instructions: add, sub, and, or, sl t
O Branch and jump instructions: beq, |

O Instructions not included:
O Integer instructions such as those for multiplication and
division
O Floating-point instructions

Steps to Execute MIPS Instructions

O Send the program counter (PC) to the memory location that contains
the code and fetch the instruction from that memory location.

O Read one or two registers, using fields of the instruction to select the
registers to read. For the load word and store word instructions we
need to read only one register, but most other instructions require that
we read two registers.

O Perform the operation required by the instruction using the ALU.
Memory-reference instructions use the ALU for address calculation;
arithmetic-logical instructions for operation execution; and branches for
comparison.

O Store the result in registers or memory locations, and change the value
of the program counter in case of a branch instruction.

High-Level View of the MIPS Subset
Implementation

»| Data

Register #
PCt==» Address Instruction —[Registers >AL Address

Instruction] Register #

memory > Datall
> Register # memory

»| Data

Sequential Logic Circuits

g

MIPS computers are designed using both combinational and
sequential logic circuits.

Sequential logic circults are circuits whose output depends
on both the current input and the value stored in memory
(called state).

We will review: clocks and memory elements

Reference: Appendix B (B.4-B.5) of textbook

Clocks

O A clock is a free-running signal with a fixed cycle time (or
called clock period) or, equivalently, a fixed clock frequency
(i.e., inverse of the cycle time).

O Clocks are needed in sequential logic to decide when an element
that contains state should be updated.

O Edge-triggered clocking:

O Design methodology for sequential logic circuits in which all
state changes occur on a clock edge (rising edge or falling

edge).
Falling edge

T
] N

Clock period Rising edge

Clocked Systems

O Clocked systems are also called synchronous systems.

O Relationship among state elements and combinational logic
blocks in a synchronous, sequential logic design:

StatelJ
elementCl——————»{ Combinational logic
1

Stated
element(]
2

Clock cycle

Statel]
| element

Combinational logic

Memory Elements

a All memory elements store state: the output from any
memory element depends both on the current inputs and on the
value that has been stored inside the memory element.

O S-R latches (set-reset latches):

O Unclocked memory elements built from a pair of cross-
coupled NOR gates (i.e., OR gates with inverted outputs).

Ql

10

D Latches

O Unlike S-R latches which are unclocked, D latches are clocked (i.e.,
state changes are triggered by a clock).

O The output is equal to the value of the stored state inside it.

D —1—— Q

O Operation:

O When the clock C is asserted, the latch is open and the Q output
Immediately assumes the value of the D input.

O Clocked latches are used to build flip-flops.

11

D Flip-Flops
Q D flip-flops, like D latches, are clocked.
O The outputs change only on the (rising or falling) clock edge.

a D flip-flop with a falling-edge trigger:

D D DO Q D DO Q Q D J |
latch latch _ _
_[C C Q Q c | | [|
7 >] Q | |_

O Operation:

O When the clock input C changes from asserted to deasserted, the Q
output stores the value of the D input.

O An array of D flip-flops can be used to build a register that can hold a
multibit datum, such as a byte or word. 12

Register Files

O A register file is a structure in the datapath consisting of a set
of registers that can be read and written by supplying a register
number to be accessed.

O A register file can be implemented with a decoder for each
read or write port and an array of registers built from D flip-
flops.

O Reading a register:
O Input: a register number
O Output: data contained in the specified register

O Writing a regqister:

O Inputs: a register number, the data to write, and a clock that
controls the writing into the register

13

Example: A Register File with Two Read Ports and
One Write Port

g

a

There are five inputs and two outputs.

The read ports can be implemented with a pair of
multiplexors, each of which is as wide as the number of bits in

the reqister file.

L]

Read register[]
number 1

Read register[]
number 2

. Regqister file
Write

register

Writed
data Write

Readl
data 1

lu

Readll]
data 2

T

14

Implementation of Two Read Ports

O To implement two

read ports for a Read registeri
register file with n number 1 A
. Register 0 p————¢—>
registers, we use two Register 1 L
n-to-1 multiplexors, T U Read data
each of which is 32 e DR N
bItS Wlde' Read register3 u
number 2 A\
MO

O The read register
number signal is used
as the multiplexor
selector signal.

ud » Read data 2

Yy V v Y

15

Implementation of a Write Port

O To implement the write port for a register file with n registers,
we use an n-to-1 decoder to generate a signal that can be
used to determine which register to write.

Write

C
Register 0
D

C
Register 1
D

n-to-10 :
decoder

Register number —>

Rk

n-1

C
Registern— 1
D

C
Register n
D

[t

Register data -

SRAMs and DRAMS

Q Unlike registers which are small, fast memories inside the
processor, larger amounts of memory are in the form of:

O Static random access memories (SRAMS)
O Dynamic random access memories (DRAMS)

O SRAMs are usually used for relatively small memories (e.g.,
cache) while DRAMs are used for larger memories (e.g., main
memory).

O SRAMs are typically built using flip-flops while DRAMs are built
using capacitors.

O SRAMs are somewhat simpler in design than DRAMs, but they
are also more expensive and less dense.

17

SRAMs

O 256K x 1 SRAM:
O Length (i.e., number of addressable locations) = 256K
O Width (i.e., number of bits per entry) =1
O 18 address lines, 1 data input line, 1 data output line

15
Address +

Chip select ——

SRAMO| 8
Output enable ——» 32K x 8 +> Dout[7—- 0]
Write enable —»

Din[7— 0]&r>

aQ 32K x 8 SRAM:
O 15 address lines, 8 data input lines, 8 data output lines

18

SRAMs

Qg

Q

Large SRAMs cannot be built
like register files using
multiplexors, as a 64K-to-1
multiplexor (too large!) would

be needed for a 64K x 1 SRAM.

Instead, a shared output line,
called bit line, is used so that
multiple memory cells in the
memory array can assert.

A three-state buffer (or tri-
state buffer) is used to allow
multiple sources to drive a
single line.

g

A multiplexor constructed
from four three-state
buffers:

Select 0

Enable
In Out
Data 0
|~
Select 1 Enable
Data 1 In Out !
|~
Select 2 Enable $— Output
Data 2 In Out !
L~
Select 3 Enable
Data 3 In Out
L~

19

A 4 x 2 SRAM

Write enable

Address

Din[0]
D po +—1P bOo
C latch C latch —®
Enable Enable
0
)
|/
2-t0-40] D pOo —1D bO
decoder C latch * C latch —®
Enable Enable
1
)
|/
D po +—1DP bOo
C latch * C latch —®
Enable Enable
2
)
|/
D po —D bpOo
C latch C latch —®
Enable Enable

U

Dout[1]

Dout[0]

20

A 32K x 8 SRAM as an Array of 512 x 64 Arrays

9-t0-512[512 x 640512 x 640512 x 64512 x 64512 x 64512 x 64[}512 x 64512 x 64[
decoder | 512 SRAM | SRAM | SRAM | SRAM | SRAM | SRAM | SRAM | SRAM
Address[] \
\\64
Address[] . " . " o . .
[5_0] v v v v v v v v
Mux Mux Mux Mux Mux Mux Mux Mux
Dout7 Dout6 Dout5 Dout4 Dout3 Dout2 Doutl DoutO

21

DRAMs

O The value kept in a cell is stored as a charge in a capacitor.

O Only a single transistor is needed to access the stored charge
(either to read the value or to overwrite the charge stored
there), and hence DRAMs are much denser and cheaper per bit.

O Since the charge is stored on a capacitor, it cannot be kept
Indefinitely but has to be refreshed periodically.

Q To refresh a cell, we read its content and then write it back.

QO Typically, refresh operations consume 1-2% of the active cycles,
leaving 98-99% of the cycles available for reading and writing
data.

22

A 4M x 1 DRAM Built with a 2048 x 2048 Array

Rowl]
—t] decoder] fr—— 204%;;&2048D
11-t0-2048 y

l

Address[10— 0] =& Column latches

23

Synchronous RAMs

O Synchronous SRAMs (SSRAMs) and synchronous DRAMs
(SDRAMS)

O The key capability provided by synchronous RAMs is the abllity
to transfer a burst of data from a series of sequential addresses
within an array or row. The burst is defined by a starting
address, supplied in the usual fashion, and a burst length.

aQ The speed advantage of synchronous RAMs comes from the
ability to transfer the bits in the burst without having to specify
additional address bits. Instead, a clock is used to transfer the
successive bits in the burst.

24

Building a Datapath

O Some basic datapath elements:

O Instruction memory: a memory unit that stores the
Instructions of a program and supplies an instruction given its
address.

O Program counter: a register that stores the address of the
Instruction being executed.

O Adder: a unit that increments the program counter to the
address of the next instruction.

Instructiond
address —

InStruction je——> >Add Sum

InstructionO
memory —

a. Instruction memory b. Program counter c. Adder 25

Building a Datapath

O To execute any instruction, we first fetch the instruction from
memory.

O To prepare for executing the next instruction, we increment the

program counter so that it points at the next instruction (4 bytes
later).

ReadOd
address

INStruction fr————

Instruction
memory

26

Datapath for Arithmetic-Logical (R-Format)
Instructions

ALU operation
Read[gieElt
register 1 Read
ReadD data 1 s
Instruction register 2
Registers
Write[result
register Read
Write [data 2
data

RegWrite

27

Datapath for Load and Store (I-Format)

Instructions
Readl
register 1 Read|
Read[] data 1
Instruction register 2
. _Reqisters
Writeld
register Read
Write data 2
data
RegWrite
16 _ 32
\ Sign| \
N Tlextend[M

3 ALU operation

MemWrite
Zero—»
ALU ALuf
_ Read
result - Address data
/ Datal]
. memory
_| Writel
| data
MemRead

28

Datapath for Branch (I-Format) Instructions

Instruction

PC + 4 from instruction datapath ==

> Add Sum

L 4

>ALU Zero

| Read[]
| register 1 Read]
| ReadD data 1
register 2
Reqisters
Write [
register Read(l
Write[d data 2
data
RegWrite,
16 _
\ .| SignQ
N | extend

Branch target

ALU operation

To branch
control logic

29

A Simple Single-Cycle Implementation

d We have already built a datapath for each instruction
separately. Now, we need to combine them into a single
datapath, by devising ways to share some of the resources
(e.g., ALU) among the different instructions instead of
duplicating them.

O This simple implementation is based on the (unrealistic)

assumption that all instructions take just one clock cycle each to
complete.

O Implication: No datapath resource can be used more than
once per instruction, so any element needed more than once
must be duplicated. As a conseguence, we need a memory
for instructions separate from one for data.

30

Combined Datapath for R-Format Instructions
and Memory Instructions

4 ity

Readl
address

Instruction

Instruction
memory

Read[] Registers
register 1

ReadO Read
register 2 datal
Write[Read
register data 2
Write[

data

\

| extend

Address Read
data
Datall
Write[] memory
data

31

Combined Datapath for Different Instruction
Classes

ALUL
4—>/ >Addresult
@
|
Registers .
Readl ’ 34 ALU operation | MemWrite
| pc & | Readd >l register 1 Read
address Readd data 1 MemtoReg
_ register 2
Instruction _ Readl
ygnitgtgr dRea20| E\ddressD d%?
Instructionl] g_ ata)
memory — \é\gq';em Datall
: ,| Write[] MeMOry
RegWr|te| data
16
o> MemRead

32

ALU Control

aQ The control unit controls the whole operation of the datapath
by generating appropriate control signals (e.g., write signals
for state elements, selector inputs for multiplexors, ALU control
Inputs) for the proper operation of the datapath.

O The ALU control is part of the main control unit.

A Control input bits for ALU:

ALU Control Input Function
000 and
001 or
010 add
110 subtract
111 set on less than e

ALU Control Input Bits

g

Inputs used by control unit to generate ALU control input bits:

o ALUOp (2 bits)

O Function code of instruction (6 bits)

Instruction ALUOp Instrucf(ion Function Desire.d ALQ control
opcode operation code ALU action input
Load word 00 load word XXXXXX add 010
Store word 00 store word XXXXXX add 010
Branch equal 01 branch equal XXXXXX subtract 110
R-type 10 add 100000 add 010
R-type 10 subtract 100010 subtract 110
R-type 10 and 100100 and 000
R-type 10 or 100101 or 001
R-type 10 setonless | 01010 | Sefonless 111

34

Multiple Levels of Decoding

O Level 1: Generation of ALUOp bits by main control unit - to be
discussed later

O Level 2: Generation of ALU control input bits from ALUOp bits
and function code of instruction

O Why multiple levels?

O Using multiple levels of control can reduce the size of the
main control unit, and may also potentially increase the speed
of the control unit.

O A common implementation technique.

35

Truth Table for ALU Control Block

aQ The truth table contains many don't-care terms, which can lead
to simplified hardware implementation.

ALUOp Function code _
Operation
ALUOp1 | ALUOpO | F5 |F4A | F3 | F2 | F1 | FO
0 0 X X X X X1 X 010
X 1 X X X X X 1 X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

36

Hardware Implementation of ALU Control Block

F (5-0)

ALUOp

'

ALU control block

F3

4

ALUOpPO

ALUOp1

F2

Operation2

O

F1

FO

Operationl

‘D

Operation0

)
|/

) Operation

37

Datapath with ALU Control

PCSr
;\ .
>Add M
X
Y/ p— 0
RegWrite —~
I
Instruction [25-21] | ReadO
| Readl register 1 Read[d MemWrite
=P address Instruction [20— 16] Read] data 1 T | MemtoReg
Instruction(]] 1 register 2 Readh Zero
[31-0] M ritel] data 2 > 1 ALU re'g\ll]ILtJ Address Read 1
.) U gister M data M
Instruction] Instruction [15k 11] | x rite] u ML
memory * 0| PWiata Redgisters .)(() X
o Writeld Datal] 0
RegDst »|Jata Memory
Instruction [15-0] 7 ;
MemRead
Instruction [5— 0]
: i i] \A‘LUOp
Destination register:
R-format: rd field (bits 15-11)
| w: rt field (bits 20-16)
38

Effects of Control Signals

Signal name Effect when deasserted Effect when asserted
The register destination number for The register destination number for the
RegDst the Write register comes from the rt Write register comes from the rd field
field (bits 20-16). (bits 15-11).
The register on the Write register input
RegWrite None is written with the value on the Write
data input.
The second ALU operand comes from | The second ALU operand is the sign-
ALUSrc the second register file output (Read extended, lower 16 bits of the
data 2). instruction.
VS (PO [plieess) [0 i eUisLs o The PC is replaced by the output of the
PCSrc the adder that computes the value of
PC + 4. adder that computes the branch target.
Data memory contents designated by
MemRead None the address input are put on the Read
data output.
Data memory contents designated by
MemWrite None the address input are replaced by the
value on the Write data input.
MemtoReg The v_alue fed to the register Write _The value fed to the register Write data
data input comes from the ALU. input comes from the data memory.

39

Setting of Control Signals

AQ The 9 control signals (7 from the previous table + 2 from

ALUOp) can be set based entirely on the 6-bit opcode, with the
exception of PCSrc.

d PCSrc control line:

O Set if both conditions hold simultaneously:
e Instruction is beq.

e Zero output of ALU is true (i.e., the two source operands
are equal).

40

Datapath with Control Unit

PC

S\

/

PCSrc

RegDst

Branch

MemRead
Instrucon [31 -26] c MemtoReg

ReadO
address

Instruction
[31-0]
Instructiond
memory

RegWrite

Instruction [2!

Instruction [20 -16]

chgo

] W
Ny regj 1

Read
Read] datal
register 2

Registers Read[

Write[d data 2
register
Write[)
data

Instruction [15 1:]7_G_'
p—) |

Instruction [15 -0]

16 . 32
\ SignO] \

P xcz9)

Zero
ALU ALu

ontrol \\ /
ALUOp g
MemWrite
| ALUSrc /

result

N\ Tlextend | N

Instruction [5-0]

Address

Write[d
data

Read
data

Datal
memory

Oxeczr

41

Setting of Control Signals

O Setting of control lines is completely determined by opcode:

Instruction Rgsq[_ Asl‘rlé_ MeRrgéo— V%?ﬂ; I\éggg \I\//IVTHT(; Branch | ALUOp1 | ALUOpPO
R-format 1 0 1 0 0 0 1 0
| w 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1
Input to datapath control unit:
Instrietion Opco_de in Opcode in binary

decimal | op5 | Op4 | Op3 | Op2 | Op1 | OpO
R-format 0 0 0 0 0 0 0
| w 35 1 0 0 0 1 1
sw 43 1 0 1 0 1 1
beq 4 0 0 0 1 0 0

42

Truth Table for Datapath Control Unit

Input or output

Signal name

R-format

3

%
=

O
(9]
®)

Inputs

Op5

0

Op4

Op3

Op2

Op1l

Op0

Outputs

RegDst

ALUSIrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOPO

oO|r|O|O|O|P|IO|O|P|O|J|OCO|OC|O|O

o|loco|loco|o|(Fr((FP|IFP|IP|IO|IFRP|P|IOC|OC|O|PF

O|0o|0O|rRr|O|IOCO|X|FP|X|FP|IP|O|FR,|[O]|F

R |O|lPr|O|lO|IO|X|O|X|O|O|RL,|O|O|O

43

Hardware Implementation of Datapath Control
Unit

Inputs

OpS - v v ?
Op4 * * »
Op3 9 ¢ t)
Op2 v * * 3

Opl
OpO T I

Outputs

S

=
.
E

=

RegDst

?

ALUSrc

¢ MemtoReg

L 4
i) RegWrite

MemRead

® MemWrite

| & Branch

+— ALUOp1

- ALUOPO

Simple Datapath and Control Extended to Handle
the Jump Instruction

\ “|extend

Instruction [5-0]

\

Instruction [25-0] | % Jump address [31-0]
Y \!
26 @28 A 1
PC+4 [31-28] "J' '\S
\ X X
ALU
Add result 1 0
>Add
4 —l
Instruction [31-26]
Control
Instruction [25—-21] Readl]
Read register 1
—(PC address _ g Read[l]
Instruction [20—16] Read] data 1
: l register 2
Instr[g(itlo(rﬁtl 0 ~Registers Readlls 0 ALU ALu Readl:
. M Writel] data 2 result Address eadl (1
Instructiond u register M data M
memory Instruction [15—11 X : u uf]
[] 1 \é\;rg;eL 1>< Datall X
memo
Write[D v 0
| data
Instruction [15-0] 1\6 Signd :’12

45

Problems with Single-Cycle Datapath
Implementation

a Every instruction takes one clock cycle (CPI = 1). The clock
cycle is determined by the longest possible path in the machine.

O The longest path is for a load instruction which involves five
functional units in series: instruction memory, register file,
ALU, data memory, register file.

O Even though each instruction takes just one clock cycle, the
clock cycle is expected to be large and hence the overall
performance is poor because many instructions cannot fully
utilize the unnecessarily long clock cycle.

O No sharing of hardware functional units is possible.

46

Different Instruction Classes

Insg;;:;uon Functional units used by the instruction class
R-format Instruction fetch | Register access | ALU | Register access
Load word Instruction fetch | Register access | ALU | Memory access | Register access
Store word Instruction fetch | Register access | ALU | Memory access
Branch Instruction fetch | Register access | ALU
Jump Instruction fetch
E.g., memory units: 2 ns ALU: 2 ns register file (read/write): 1 ns
Instruction| Instruction | Register ALU_ Data Regi_ster Total
class memory read operation | memory write
R-format 2 1 2 0 6 ns
Load word 2 1 2 2 8 ns
Store word 2 1 2 2 7 ns
Branch 2 1 2 5ns
Jump 2 2 ns

47

Problems with Single-Cycle Datapath
Implementation

O Although a variable clock implementation would be faster, it
Is very difficult to implement a variable-speed clock.

O The penalty for using a single-length clock cycle becomes more
severe if we also consider other computationally demanding
Instructions such as multiplication and floating-point operations.

O As a result, the best solution is to consider a shorter clock
cycle (derived from the basic functional unit delays) and allow
different instructions to require different numbers of clock
cycles.

48

A Multicycle Implementation

O The execution of each instruction is broken into a series of steps
that correspond to the functional unit operations. Each step
takes one clock cycle to complete.

O A single functional unit can be used more than once per
Instruction, as long as it is used on different clock cycles. This
sharing can help to reduce the amount of hardware required. In
particular,

O A single memory unit is used for both instructions and
data.

O There is a single ALU, rather than an ALU and two adders.

O One or more registers are added after every major
functional unit to hold the output of that unit until the value is
used in a subsequent clock cycle.

49

High-Level View of the Multicycle Datapath

Instructionl}
register
Y giste Data
PC Address
| Register #
nstruction .
Me or data Registers ALUOuUt]
MemoryD Register #
Dat data OJ
ata i
register Register #

50

Need for Additional Registers

Q Instruction register (IR) and memory data register (MDR):

O Hold output of memory for an instruction read and a data
read, respectively.

O A and B regqisters:
O Hold register operand values from register file.

O ALUOuUt register:
O Holds output of ALU.

51

Need for Additional Control Signals

g

All except the IR hold data only between a pair of adjacent clock
cycles. Thus there is no need for a write control signal.

The IR needs to hold the instruction until the end of execution
of that instruction. Thus it requires a write control signal.

Since several functional units are shared for different purposes,
some multiplexors have to be added or expanded. Thus
additional control signals are needed.

52

Simple Multicycle Datapath with Multiplexors
Added

new

dress

WriteO
= data

Memory

MemDatal

Instruction

y

[25-21]

Instructiong

[20-16] !
0
Instructionl M
[15- 0]l [instructionfpu
Instructiond [15-11] | X
register >
Instruction(]
[15-0]
Memory >
datall
register

ReadO
register 1
Read[] Read][]
register 2 datal

. Registers
Writel[l ead
register g4ata 2
Writel
data

ALUOUF

expanded

53

Complete Datapath and Control Unit for
Multicycle Implementation

.

/DCWmeCond/\ PCSourCE\

PCWrit
\—l I Imr[‘je/Oulputs\ALUOp

» o
xcZ

\ / ALUSrcB
MemRead
\ / Memwrite| Control | ALUSICA
MemtoReg fREglIte
IRWrite [5?%]5 CRQQDS‘
X
Jump0
Instr 2\6‘ Shift 28 address [31-0]
N\ left 2
Instruction
31-26
PC 0 [] 5 PC [31-28]
M Instruction Readl M
u Address [25-21] " | register 1 u
_>1X Memory Instruction Read dRealr” > A X
[20- 16] | | register 2 data 1 |
MemData >) 0 _ Registers »| ALUOu
Instruction L M Write[] Readll ol B |
] 15-011 T instruction| u register gata 2 " [>0
- \éVrtlteD Instructiond [15-11] | X Write[4upl1 M
a@ register 1 data 2 ;’
Instruction] 0 3
[15-0] M
u
X
»| Memory[h »{1
datal] S A\
register —
Instruction [5- 0]

Multiple Execution Steps Per Instruction

O Typical execution steps:

Q
Q
Q

Q
Q

Instruction fetch
Instruction decode and register fetch

Execution, memory address computation, or branch
completion

Memory access or R-type instruction completion
Memory read completion

O Each instruction takes a few (3-5) steps.

55

Summary of Execution Steps

Action for R- Action for memory :
Action for : .
Step name type reference Action for jumps
: : : . branches
instructions instructions
Instruction IR = Memory[PC]
fetch PC=PC+4
Instruction A = Reg[IR[25-21]]
decode / B = Reg[IR[20-16]]

register fetch

ALUOut = PC + (sign-extend(IR[15-0]) << 2)

Execution,
address

_ _ ALUOuUt = A + If (A==B) | PC=PC[31-28] ||
computation, | ALUOUt=Aop B sign-extend(IR[15-0]) | PC = ALUOut | (IR[25-0] << 2)
branch/jump
completion

Load: MDR =

Memory Memory[ALUOut]
access or R- Reg[IR[15-11]] = or
type ALUOut _
completion SO

Memory[ALUOut] = B

Memory read
completion

Load: Reg[IR[20-16]]
= MDR

56

Instruction Fetch Step

Q Fetch the instruction from memory and compute the address of
the next sequential instruction:

| R = Menory[PC| ;
PC = PC + 4,

O Operations:

Q
Q
Q
Q

Send the PC to the memory as address.
Read an instruction from memory.
Write the instruction into the IR.
Increment the PC by 4.

57

Instruction Decode & Register Fetch Step

O Assuming the existence of two registers and an offset field (no
harm to do the computation early even if they do not exist),
fetch the two registers from the register file and compute the
branch target address:

A = Reg[I R[25-21]];
B = Reg[| R 20-16]];
ALUQut = PC + (sign-extend(I R 15-0]) << 2);

O Operations:
O Access the register file to read rs and rt.
Q Store the results into registers A and B.

QO Compute the branch target address (sign extension and left
shift).

QO Store the address in ALUOuULt.

58

Execution, Memory Address Computation, or
Branch Completion Step

a In this step, the datapath operation is determined by the
Instruction class.

O Memory reference instructions:
O Compute the memory address:
ALUQut = A + sign-extend(I R 15-0]);
QO Operations:
e Sign-extend the 16-bit offset to a 32-bit value.

e Send both register A and the 32-bit offset to the ALU.

e Add the two values.
e Store the result in ALUOut.

59

Execution, Memory Address Computation, or
Branch Completion Step

QO Arithmetic-logical (R-type) instructions:

O Perform the ALU operation specified by the function code:

ALUQuUt = A op B;
O Operations:
e Send both registers A and B to the ALU.
e Perform the specified operation on the two values.
e Store the result in ALUOuULt.

60

Execution, Memory Address Computation, or
Branch Completion Step

O Branch instructions:

O Compare registers A and B and set the PC to the branch
target address if A and B are equal:

if (A == B)
PC = ALUCuUt ;
O Operations:
« Send both registers A and B to the ALU.

e Compare A and B by performing subtraction in the ALU and
set the Zero output signal to 1 if A and B are equal.

e If Zero is equal to 1, then write ALUOut to the PC.

61

Execution, Memory Address Computation, or
Branch Completion Step

d Jump instructions:
O Compute the jump address and set the PC to this address:
PC = P([31-28] || (IR 25-0] << 2)
O Operations:

e Left-shift the 26-bit address field by 2 bits to give a 28-bit
value.

e Concatenate the four leftmost bits of the PC with the 28-bit
value to form a 32-bit jump address.

e Write the jump address to the PC.

62

Memory Access or R-Type Instruction Completion
Step

O Memory reference instructions:
O Read from or write to memory:

MDR = Menory[ALUCut | ; /1 for load instruction
or
Menory[ALUQUt] = B; /| for store instruction

O Operations:

e Use the address computed during the previous step and
stored in ALUOut.

e For a load instruction, a data word is retrieved from
memory with the specified address.

e For a store instruction, a data word is written into memory
with the specified address.

63

Memory Access or R-Type Instruction Completion
Step
QO Arithmetic-logical (R-type) instructions:
O Write the result of the ALU operation into a destination
register inside the register file:
Reg[| R[15-11]] = ALUQut;
O Operations:

e Get from ALUOut the value which was the result of the ALU
operation in the previous step.

e Write the value into a register in the register file.

64

Memory Read Completion Step

a A load instruction completes by writing back the value from
memory into a register in the register file:

Reg[| Rl 20-16]] = MDR;

O Operations:

O Get from MDR the value which was read from memory in the
previous step.

O Write the value into a register in the register file.

65

Control Unit Design

O Unlike the single-cycle implementation which only requires a set
of truth tables to specify the setting of the control signals based
on the instruction class, control for the multicycle
Implementation is more complex because an instruction is
executed in a series of steps and hence the signals for both the
current step and the next step have to be specified.

O Two techniques for specifying the control:

O Finite state machine representation
O Microprogramming

66

High-Level View of Finite State Machine Control
for the Datapath

Start

!

'

Instruction fetch/decode and register fetch(
(Figure 5.37)

1

| l

1

Memory accessl]
instructions]
(Figure 5.38)

R-type instructionslj | Branch instruction]
(Figure 5.39) (Figure 5.40)

Jump instruction]
(Figure 5.41)

67

Complete Finite State Machine Control

Memory address[]
computation

ALUSIrcA = 10
ALUSrcB = 100
ALUOp = 00
0
o 2
=
=
I
99; Memory[

access

MemRead[

lorD =1

Start

@ o 00~
_\

00

MemRead 1
ALUSIrcA =00
lorD =00 ALUSIcA = 00
IRWriteJ » ALUSrcB =110
ALUSrcB =010 ALUOp =00
ALUOp =000
PCWrite
PCSource =0 N
0 ?\’\\;Qe\ ~Q7Q/Q 5
< © 4 0
W) Branch[] @Q QQ; JumpO
Execution completion completion

6

Memory[

access

MemWrite
lorD=1

Write-back step

RegDst=00

Instruction decode/[]
register fetch

Instruction fetch

ALUSIrcA = 10
ALUSrcB =000
ALUOp =010
PCWriteCond O
PCSource = 01

PCWrite

ALUSTICA =10
ALUSICcB = 000
ALUOp= 10

PCSource = 10

R-type completion

RegDst = 10
RegWrited

MemtoReg =0

RegWrited
MemtoReg =10
O

68

Finite State Machine Controller

Datapath control outputs

- —
Combinationall] —
control logic —

Outputs < p———
Inputs
A -
r N\
[ITII[A A A A
Inputs from instruction | State register
register opcode field T+ 11

Next state

69

Simplifying Control Design by Microprogramming

O Representing the MIPS control using a finite state machine is
relatively easy and feasible.

O However, in case we have a large instruction set and a large
number of complex addressing modes (e.g., Intel x86/Pentium
Instruction set), the number of states in the finite state machine
would go up to thousands, which becomes too large and
cumbersome to handle.

O The solution to this problem comes from programming -
creating functions and procedures.

O As programs become large, additional structuring technigques
are needed to keep the programs comprehensible.

70

Microprogramming

O Microinstructions:

O The set of control signals that must be asserted in a state can be
considered as an instruction to be executed by the datapath.

O To distinguish such low-level control instructions from
Instructions of the MIPS instruction set, they are called
microinstructions.

O Executing a microinstruction has the effect of asserting the
control signals specified by the microinstruction.

O Microprogramming: designing the control unit as a program that
Implements machine instructions in terms of simpler
microinstructions.

O The asserted values on the control lines are represented
symbolically in a microprogram, which is a representation of the
microinstructions.

71

Microcode Controller

Microcodel] -
storage
Datapathl
Outputs < control[]
outputs
-
Input =

I

1 {
1 Sequencing]]

Microprogram counter
N prog control
Adder I

Address select logic

Ar A

5

Inputs from instruction]
register opcode field

Key Concepts to Remember

Q

Sequential logic circuits are needed for the implementation
of state elements such as registers and memory units.

Latches and flip-flops are building blocks for state elements
such as registers and some types of RAM.

A register file is a structure in the datapath consisting of a set
of registers and some read and write ports.

There are two types of RAM: static RAM and dynamic RAM.

A two-stage decoding process is typically used in the
addressing scheme of RAMs.

73

Key Concepts to Remember

O A single-cycle implementation of the dathpath and control

a

a

assumes that each instruction takes only one clock cycle.

Disadvantages of single-cycle implementation: long
execution time and no sharing of hardware.

A multicycle implementation of the datapath and control
allows different instructions to take different numbers of clock
cycles.

Specification of the control for a multicycle implementation can
be done using the finite state machine representation (for
simple instruction sets) or through microprogramming (for
complex instruction sets).

74

