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Major GoalsMajor Goals

! To introduce two's complement numbers and their addition 
and subtraction.

! To introduce basic logic operations (AND, OR, logical shift) 
and hardware building blocks (AND, OR, NOT gates and 
multiplexor).

! To explain the construction of a 32-bit arithmetic logic unit
(ALU) that performs AND, OR, add, and slt.

! To show algorithms that perform multiplication and division
and hardware that implements these algorithms.

! To demonstrate floating-point representation and arithmetic 
operations.
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NumbersNumbers

! Bits are the basis for binary number representation in 
digital computers.

! Conventions are needed to define relationships between bit 
patterns and numbers, e.g., conversion between non-
negative (i.e., unsigned) binary and decimal numbers.

! However, things can get more complicated:
" How to represent negative numbers
" How to represent fractions and real numbers
" How to handle numbers that go beyond the representable

range
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WordsWords

! A MIPS word is a 32-bit pattern:

! A MIPS word can represent 232 different 32-bit patterns.

0010

28293031

. . .

. . .
0101

0123

least significant bitmost significant bit
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Possible RepresentationsPossible Representations

! Three possibilities:

! Issues:
" Balance
" Number of zeros
" Ease of arithmetic operations

! Which representation is the best?  Why?

111 = -1111 = -0111 = -3
110 = -2110 = -1110 = -2
101 = -3101 = -2101 = -1
100 = -4100 = -3100 = -0
011 = +3011 = +3011 = +3
010 = +2010 = +2010 = +2
001 = +1001 = +1001 = +1
000 = +0000 = +0000 = +0

Two’s ComplementOne’s ComplementSign and Magnitude
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Two's Complement RepresentationTwo's Complement Representation

! Bit 31 is called the sign bit:
" 0 for non-negative
" 1 for negative

! Largest integer represented by a MIPS word:
0111 1111 1111 1111 1111 1111 1111 1111two =  2,147,483,647ten

! Smallest integer represented by a MIPS word:
1000 0000 0000 0000 0000 0000 0000 0000two = -2,147,483,648ten

! All computers today use the two's complement representation 
for representing signed numbers.
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Decimal to Binary ConversionDecimal to Binary Conversion

! Let -N be a negative decimal number.

! Steps:
1. Convert N to 32-bit binary representation (sign bit is 0).
2. Invert all 32 bits (i.e., 1 to 0 and 0 to 1).
3. Add 1 to the inverted representation to obtain the two's 

complement representation of -N.

! Property used:
" The sum of a binary number (x) and its inverted 

representation (  ) is 111...111two, which represents -1.x

x1x    01xx      1xx −=+⇒=++⇒−=+
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Binary to Decimal ConversionBinary to Decimal Conversion

! Method 1:
" Let      denote the i th bit of a negative number in two's 

complement representation.
" Decimal representation:

! Method 2:
" Steps:

1. Invert all 32 bits.
2. Add 1 to the inverted pattern.
3. Compute decimal representation (let      denote the i th

bit of the inverted number;       must be 0):

0
0

1
1

29
29

30
30

31
31 2b2b...2b2b)2(b ×+×++×+×+−×

ib

)2b2b...2b2b( 0
0

1
1

29
29

30
30 ×+×++×+×−

ib
31b
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Signed and Unsigned NumbersSigned and Unsigned Numbers

! Signed numbers refer to integers that can be negative or 
non-negative (cf. int in C/C++).

! Unsigned numbers refer to non-negative integers (cf. 
unsigned int in C/C++).

! Operations for unsigned numbers:
" Comparison: sltu, sltiu
" Arithmetic: addu, addiu, subu
" Load: lbu
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Sign ExtensionSign Extension

! The instruction lb copies a byte as a signed number into the 8 
rightmost bits of a register and copies the sign bit repeatedly to 
fill the rest of the register.

! Conversion of 16-bit binary signed numbers into 32-bit 
numbers (in general n bits to >n bits) is done by filling the 
leftmost bits with the sign bit.

! Examples:
" 2 (16 bits -> 32 bits):
0000 0000 0000 0010  ->  0000 0000 0000 0000 0000 0000 0000 0010

" -2 (16 bits -> 32 bits):
1111 1111 1111 1110  ->  1111 1111 1111 1111 1111 1111 1111 1110
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Hexadecimal NumbersHexadecimal Numbers

! To avoid reading and writing long binary numbers, a higher 
base than binary that can be converted easily into binary is 
desirable.

! Since almost all computer data sizes are multiples of 4, 
hexadecimal (base 16) numbers are commonly used.  Since 
base 16 is a power of 2, we can simply convert by replacing 
each group of four bits by a single hexadecimal digit, and 
vice versa.

! Hexadecimal-to-binary conversion:
" 0hex - 9hex for    0000two - 1001two

" ahex - fhex for    1010two - 1111two
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Addition and SubtractionAddition and Subtraction

! Addition:
" Digits are added bit by bit from right to left, with carries

passed to the next digit to the left.

! Subtraction:
" Subtraction uses addition.
" The appropriate operand is negated before being added to 

the other operand.

! Overflow:
" The result is too large to fit into a word.
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ExamplesExamples

! Addition (7 + 6 = 13):

0000 0000 0000 0000 0000 0000 0000 0111two = 7ten
+ 0000 0000 0000 0000 0000 0000 0000 0110two = 6ten

= 0000 0000 0000 0000 0000 0000 0000 1101two = 13ten

! Subtraction (7 - 6 = 1):

0000 0000 0000 0000 0000 0000 0000 0111two = 7ten
+ 1111 1111 1111 1111 1111 1111 1111 1010two = -6ten

= 0000 0000 0000 0000 0000 0000 0000 0001two = 1ten
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Detecting OverflowDetecting Overflow

Addition (X + Y)

! No overflow occurs when:
" X and Y are of different 

signs.

! Overflow occurs when:
" X and Y are of the same 

sign, but X + Y is 
represented in a different 
sign.

Subtraction (X - Y)

! No overflow occurs when:
" X and Y are of the same 

sign.

! Overflow occurs when:
" X and Y are of different 

signs, but X - Y is 
represented in a different 
sign from X.
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Overflow ConditionsOverflow Conditions

001X – Y

110X – Y

011X + Y

100X + Y

Sign Bit of ResultSign Bit of YSign Bit of XOperation
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Effects of OverflowEffects of Overflow

! When an overflow exception (or called interrupt) occurs:
" Control jumps to a predefined address for handling the 

exception.
" The interrupted address is saved for possible resumption.

! Details of exception handling depend on software system and 
language:

" E.g., flight control system vs. homework assignment

! Some instructions are designed in the way that they do not 
cause exceptions on overflow (for efficiency), requiring the 
programmer to be responsible for using them correctly:

" E.g., addu, addiu, subu
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Logical OperationsLogical Operations

! Some programs need to operate on fields of bits or even 
individual bits within a word.

! One class of such operations is called shifts.  They move all the 
bits in a word to the left or to the right by a specified number 
of bits, filling the emptied bits with 0s.

! Example:
" Original value:

0000 0000 0000 0000 0000 0000 0000 1101two

" Shifted value (shift left by 8; equivalent to multiplying it by 
256):

0000 0000 0000 0000 0000 1101 0000 0000two



18

Shift InstructionsShift Instructions

! sll ('shift left logical') and srl ('shift right logical'):

! Example:
sll $t2, $s0, 8 # $t2 gets $s0 << 8 bits

" The encoding of sll is 0 in both the op and funct fields.
" rd contains $t2; rt contains $s0; shamt contains 8.
" rs is not used, and thus is set to 0.

08101600

functshamtrdrtrsop
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Logical AND OperationLogical AND Operation

! It is a bit-by-bit operation that leaves a 1 in the result only if 
both bits of the two operands are 1.  A bit pattern, called mask, 
can be used in conjunction with AND to force 0s where there is 
a 0 in the mask.

! Example:
and $t0, $t1, $t2 # $t0 gets $t1 AND $t2

" Source operands:
Content of $t1:     0000 0000 0000 0000 0011 1100 0000 0000two

Content of $t2:     0000 0000 0000 0000 0000 1101 0000 0000two

" Destination operand:
Content of $t0:     0000 0000 0000 0000 0000 1100 0000 0000two

! andi ('and immediate'): one operand is a constant
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Logical OR OperationLogical OR Operation

! Similar to AND, it is a bit-by-bit operation that leaves a 1 in 
the result if either operand bit is a 1.

! Example:
or $t0, $t1, $t2 # $t0 gets $t1 OR $t2

" Source operands:
Content of $t1:     0000 0000 0000 0000 0011 1100 0000 0000two

Content of $t2:     0000 0000 0000 0000 0000 1101 0000 0000two

" Destination operand:
Content of $t0:     0000 0000 0000 0000 0011 1101 0000 0000two

! ori ('or immediate'): one operand is a constant
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Constructing an Arithmetic Logic UnitConstructing an Arithmetic Logic Unit

! The arithmetic logic unit (ALU) of a computer is the 
hardware component that performs:

" Arithmetic operations (like addition and subtraction)
" Logical operations (likes AND and OR)

Control Unit

Registers
& Cache

ALU

Processor
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Hardware Building Blocks for ALUHardware Building Blocks for ALU

c = a . b
ba

000
010
001
111

b

a
c

b

a
c

a c

c = a + bba
000
110
101
111

10
01

c = aa

a0
b1

cd

0

1

a
c

b

d

1.  AND gate (c = a . b)

2.  OR gate (c = a + b)

3.  Inverter (c = a)�

4.  Multiplexor�
     (if d = = 0, c = a;�
               else c = b)

! AND gate:

! OR gate:

! Inverter:

! Multiplexor:

bac ⋅=

bac +=

ac =





=
=

=
1d ifb 
0difa 

c
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Some Basics of Logic DesignSome Basics of Logic Design

! Goal: To give a brief overview of logic design so that we can 
design the components of a computer (i.e., processor, memory, 
etc.).

! Reference: Appendix B (B.2-B.3) of textbook

! For those who are already familiar with logic design, this is an
opportunity for you to refresh your memory.
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Digital Logic CircuitsDigital Logic Circuits

! The electronics inside modern computers are digital.  They 
operate with only two voltage levels of interest - hence the use 
of binary numbers.

! Two types of logic circuits:
" Combinational logic circuits:

• Logic circuits that do not have memory.
• The output depends only on the current input.

" Sequential logic circuits:
• Logic circuits that have memory.
• The output depends on both the current input and the 

value stored in memory (called state).

! We will focus on combinational circuits in this topic.  Sequential 
logic circuits will be needed later.



25

Truth TablesTruth Tables

! Since a combinational logic circuit contains no memory, it can 
be completely specified by defining the values of the outputs 
for each possible set of input values.  Such a description is 
called a truth table.

! For a logic circuit with N inputs, there are 2N entries in the 
truth table.

! Truth tables can completely describe any combinational logic 
function.  However, truth tables grow in size quickly 
(exponential to N) and may not be easy to understand.
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ExampleExample

! Consider a logic function with three inputs (A, B, C) and three 
outputs (D, E, F).  Give the truth table that corresponds to the
function with the following properties: D is true if at least one 
input is true; E is true if exactly two inputs are true; F is true 
only if all three inputs are true.

! Answer:

101111
011011
011101
001001
011110
001010
001100
000000
FEDCBA

OutputsInputs
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Boolean AlgebraBoolean Algebra

! Truth tables have scale-up problem.  Another approach is to 
express the logic function using Boolean algebra.

! All variables have the values 0 or 1.

! Three basic operators:
" AND operator: denoted as ' · ' as in
" OR operator: denoted as '+' as in
" NOT operator: denoted as ' ¯ ' as in

! Any logic function can be implemented using only AND, OR, and 
NOT operations.  AND, OR, and NOT are said to form a 
complete set.

BA ⋅
BA +

A
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Logic EquationsLogic Equations

! Any set of logic functions can be written as a series of logic 
equations, each of which has an output on the left-hand side 
and a formula consisting of variables and the three operators 
(AND, OR, NOT) on the right-hand side.

! Examples:

)CB()CA(E

C)BA(D

⋅+⋅=

⋅+=
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Several Laws in Boolean AlgebraSeveral Laws in Boolean Algebra

! Identity laws:

! Zero and one laws:

! Inverse laws:

! Commutative laws:

! Associative laws:

! Distributive laws:

A1A          A0A =⋅=+

00A          11A =⋅=+

0AA          1AA =⋅=+

ABBA          ABBA ⋅=⋅+=+

CB)A(C)B(  A          C)BA()CB(A ⋅⋅=⋅⋅++=++

C)A(B)A(C)B(       A)CA()BA()CB(A +⋅+=⋅+⋅+⋅=+⋅
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ExampleExample

! Consider a logic function with three inputs (A, B, C) and three 
outputs (D, E, F).  Show the logic equations for the logic 
function that has the following properties: D is true if at least 
one input is true; E is true if exactly two inputs are true; F is 
true only if all three inputs are true.

! Answer:

CBAF

)CBA())CB()CA()BA((E

CBAD

⋅⋅=

⋅⋅⋅⋅+⋅+⋅=

++=



31

GatesGates

! Gates are basic building blocks for constructing logic circuits.

! Three basic gates that correspond to the three basic logic 
operations:

" AND gate
" OR gate
" NOT gate

! Standard representation:

AND OR NOT
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Combinational LogicCombinational Logic

! Other than logic gates that are the most basic building blocks, 
there also exist some higher-level basic building blocks that 
are also commonly used:

" Decoders/encoders
" Multiplexors
" Two-level logic and PLAs

! These building blocks can be implemented using AND, OR, and 
NOT gates.
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DecodersDecoders

! A decoder (N-to-2N decoder) is a logical block with an N-bit 
input and 2N 1-bit outputs.  The output that corresponds to the 
input bit pattern is true while all other outputs are false.

! Example (3-to-8 decoder):

! An encoder performs the inverse function of a decoder, taking 
2N inputs and producing an N-bit output.

Out0
Out1
Out2
Out3
Out4
Out5
Out6
Out7

Decoder

a. A 3-bit decoder

3
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MultiplexorsMultiplexors

! A multiplexor (or selector) selects one of the data inputs as 
output by a control input value.

! A multiplexor can have an arbitrary number of data inputs:
" Two data inputs require one selector input.
" N data inputs require             selector inputs.

! Example (2-input multiplexor):

 Nlog2

1

A

C

B

S

M�
u�
x C

A

B

S

0

)SB()SA(C ⋅+⋅=
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TwoTwo--Level LogicLevel Logic

! Any logic function can be expressed in a canonical form as a 
two-level representation:

" Every input is either a variable or its negated form.
" One level consists of AND gates only.
" The other level consists of OR gates only.

! Sum-of-products representation:
" E.g., 
" More commonly used than product-of-sums representation.

! Product-of-sums representation:
" E.g., 

)ACB()BCA()CBA(E ⋅⋅+⋅⋅+⋅⋅=

)ACB()BCA()CBA(E ++⋅++⋅++=
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ExampleExample

! Show the sum-of-products representation for the following truth 
table:

! Answer:

" Only those table entries for which the output is 1 generate 
corresponding terms in the equation.

OutputInputs

1111
0011
0101
1001
0110
1010
1100
0000
DCBA

)CBA()CBA()CBA()CBA(D ⋅⋅+⋅⋅+⋅⋅+⋅⋅=
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Programmable Logic ArraysProgrammable Logic Arrays

! A programmable logic array (PLA) is a gate-level 
implementation of the two-level representation for any set 
of logic functions, which corresponds to a truth table with 
multiple output columns.

! A PLA corresponds to the sum-of-products representation.

AND plane

OR plane

AND gates

OR gates

Product terms

Outputs

Inputs
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Example Example -- ProblemProblem

! Show a PLA implementation of this example:

101111
011011
011101
001001
011110
001010
001100
000000
FEDCBA

OutputsInputs
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Example Example -- AnswerAnswer

! There are seven unique product terms with at least one true 
value in the output section, and hence there are seven columns 
in the AND plane.  There are three inputs and hence the number 
of rows in the AND plane is three.

! There are three outputs and hence the number of rows in the 
OR plane is three.

D
Outputs

E

F

A
B
C

Inputs
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Example Example -- Answer (cont'd)Answer (cont'd)

! An equivalent PLA representation:

A

B

C

Inputs

D

E

F

Outputs

AND plane

OR plane
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ReadRead--Only MemoriesOnly Memories

! A read-only memory (ROM) is a memory which has a set of 
locations that can be read.

! Like PLA, a ROM can implement any set of logic functions:
" Inputs: address lines that specify a memory location
" Outputs: bits that hold the content of the specified memory 

location

! A ROM can represent a set of logic functions directly from the 
truth table.  For M inputs and N logic functions, we need a ROM 
with:

" Height (i.e., number of addressable entries) = 2M

" Width (i.e., number of output bits) = N
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ReadRead--Only MemoriesOnly Memories

! Typically, the contents of the memory locations in a ROM are fixed at 
the time the ROM is created, and hence it is read-only storage.

! Programmable ROMs (PROMs): ROMs that can be programmed 
electronically when a designer knows their contents.

! Erasable PROMs (EPROMs): PROMs that require a relatively slow 
erasure process (e.g., using UV light).

! ROMs vs. PLAs:
" ROMs are fully decoded: they contain a full output word for every 

possible input combination.  PLAs are only partially decoded.
" PLAs are generally more efficient for implementing logic functions 

because they have fewer terms.
" ROMs are better if the logic functions change over time.
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Don't CaresDon't Cares

! In implementing combinational logic functions, there are 
situations when we do not care what the value of some input or 
output is.  Such situations are referred to as don't cares and 
are represented by 'X' in the truth table.

! Two types: input don't cares and output don't cares

! Don't cares are important because they make it easier to 
optimize the implementation of a logic function.
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Example Example -- ProblemProblem

! Suppose a logic function is represented by the following truth 
table with output don't cares, which has seven product terms:

Simplify the truth table to minimize the number of product 
terms.

X11111
X11011
X11101
X11001
X11110
110010
101100
000000
FEDCBA

OutputsInputs
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Problem Problem -- AnswerAnswer

! The following simplified truth table requires a PLA with only four 
product terms.

X11XX1
X1111X
110010
101100
000000
FEDCBA

OutputsInputs
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Constructing an Arithmetic Logic UnitConstructing an Arithmetic Logic Unit

! Since a word in MIPS is 32 bits wide, we need a 32-bit ALU.

! Assumption: we can build a 32-bit ALU by connecting 32 1-bit 
ALUs together.

! 1-bit logical unit for AND and OR:

" A multiplexor selects the appropriate result depending on the 
operation specified.

b

0

1
Result

Operation

a
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11--Bit AdderBit Adder

! Inputs:
" Two inputs for operands
" One input for carry from right neighbor

! Outputs:
" One output for sum
" One output for carry to left neighbor

! This is also called a full adder or a (3, 2) adder (because it 
has 3 inputs and 2 outputs).

Sum

CarryIn

CarryOut

a

b
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Truth Table and Logic Equations for 1Truth Table and Logic Equations for 1--Bit AdderBit Adder

! Truth table:

! Logic equations:

OutputsInputs

1 + 1 + 1 = 11two11111
1 + 1 + 0 = 10two01011
1 + 0 + 1 = 10two01101
1 + 0 + 0 = 01two10001
0 + 1 + 1 = 10two01110
0 + 1 + 0 = 01two10010
0 + 0 + 1 = 01two10100
0 + 0 + 0 = 00two00000

CommentsSumOutCarryOutCarryInba

)ba()CarryIna()CarryInb(              
)CarryInba()ba()CarryIna()CarryInb(CarryOut

⋅+⋅+⋅=
⋅⋅+⋅+⋅+⋅=

)CarryInba(                
)CarryInba()CarryInba()CarryInba(SumOut

⋅⋅+
⋅⋅+⋅⋅+⋅⋅=
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Hardware Implementation of 1Hardware Implementation of 1--Bit AdderBit Adder

! CarryOut bit:

! SumOut bit:

??

b

CarryOut

a

CarryIn
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11--Bit ALU (AND, OR, and Addition)Bit ALU (AND, OR, and Addition)

b

0

2

Result

Operation

a

1

CarryIn

CarryOut
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3232--Bit ALUBit ALU

! Ripple carry organization of 
a 32-bit ALU constructed 
from 32 1-bit ALUs:

" A single carry out of the 
least significant bit 
(Result0) could ripple all 
the way through the 
adder, causing a carry out 
of the most significant bit 
(Result31).

" There exist more efficient 
implementations (based 
on the carry lookahead
idea). Result31

a31

b31

Result0

CarryIn

a0

b0

Result1
a1

b1

Result2
a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn
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SubtractionSubtraction

! Subtraction is the same as adding the negative version of an 
operand.

! Shortcut for negating a two's complement number:
" Invert each bit (to get the one's complement representation).
" Add 1.

! An adder can be used for both addition and subtraction.  A 2:1 
multiplexor is used to choose between an operand (for 
addition) and its negative version (for subtraction).
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11--Bit ALU (AND, OR, Addition, and Subtraction)Bit ALU (AND, OR, Addition, and Subtraction)

! Binvert is the selector input of a multiplexor that chooses 
between addition and subtraction.

! To connect 32 of these 1-bit ALUs to form a 32-bit ALU, the 
CarryIn input of the least significant bit is set to 1 when 
subtraction is performed (needed for the second step in 
computing a two's complement number).

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b
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Carry Carry LookaheadLookahead

! Using the ripple carry adder, the carry has to propagate from 
the least significant bit to the most significant bit in a sequential 
manner, passing through all the 32 1-bit adders one at a time.  
This is too slow for time-critical hardware.

! Key idea behind fast carry schemes without the ripple effect:

" Substituting the latter into the former, we have:

" Other CarryIn bits can also be expressed using CarryIn0.

)0b0a()0CarryIn0a()0CarryIn0b(1CarryIn
)1b1a()1CarryIn1a()1CarryIn1b(2CarryIn

⋅+⋅+⋅=
⋅+⋅+⋅=

)1b1a(                
)0CarryIn0b1b()0CarryIn0a1b()0b0a1b(                

)0CarryIn0b1a()0CarryIn0a1a()0b0a1a(2CarryIn

⋅+
⋅⋅+⋅⋅+⋅⋅+

⋅⋅+⋅⋅+⋅⋅=


