Outline of Lecture

• Designing Cache Memory

HKUST

Computer Science

Types of Cache Memory

- Direct mapped: Each block has only one place to appear in the cache. The mapping is (block address MOD number of blocks in cache).
- It is easy to locate blocks in the cache (only one possibility)
 - Certain blocks cannot be simultaneously present in the cache (they can only have the same cache location)
 - Fully associative: A block can be placed anywhere in the cache.
 - No restriction on the placement of blocks. any combination of blocks can be simultaneously present on the cache.
 - Quite costly (hardware and time) to search for a block.
 - Set associative: Each block has only a certain number of places to appear in the cache. The mapping is (block address MOD number of sets in cache).
 - A good compromise between direct mapped and fully associative caches.

Finding a Block in Cache

- Each block in the cache has an address *tag* that gives the block address.
- We further need an *index* to point to the appropriate location within the cache.
- We also need a *valid* bit to indicate whether the item in the cache is valid or not.
- *Example*: Direct mapped cache:
 - → Cache index selects a location from cache
 - ➔ The tag is compared to that in the cache location.
 - ➔ Data is selected based on the tag result.

HKUST

Computer Science

Cache Size

Question:

How many total bits are required for a direct-mapped cache with 64KB of data, and one word block, assuming a 32-bit address?

Answer:

64KB means 16 K words = 2^{14} words. Since the block size is one word, we have 2^{14} blocks. Each block has a 32 bit data plus a tag, which is 32 - 14 - 2 bits, plus a valid bit.

The total cache size is $2^{14} * (32 + (32 - 14 - 2) + 1)$ $= 2^{14} * 49$ $= 784 * 2^{10}$ = 784 bits

Direct Mapped Cache

Taking advantage of spatial locality:

Bock Replacement

- When a miss occurs, the cache controller must select a block to be replaced with the desired data (with direct mapped there is only one choice).
 - Random: To spread allocation uniformly, candidate blocks are randomly selected.
 - Least-recently used (LSU): The block replaced is the one that has been unused for the longest time.

The Write Strategy

- There are two basic options when writing to the cache:
 - Write through (or store through): The information is written to both the block in the cache and to the block in the lower-level memory.
 - → Write back (store back): The information is written only to the block in the cache. The modified cache block is written to main memory only when it is replaced.

Further Reading

<u>Chapter 7.</u> David A. Patterson and John L. Hennessy. Computer Organization & Design: The Hardware / Software Interface. Morgan Kaufman (page 540-555).

HKUST