
comp 180 Lecture 30

HKUST 1 Computer Science

Outline of Lecture

• Designing Cache Memory

comp 180 Lecture 30

HKUST 2 Computer Science

Types of Cache Memory

➔ Direct mapped: Each block has only one place to

appear in the cache. The mapping is (block address
MOD number of blocks in cache).

✙ It is easy to locate blocks in the cache (only one possi-
bility)

- Certain blocks cannot be simultaneously present in

the cache (they can only have the same cache loca-
tion)

➔ Fully associative: A block can be placed anywhere in

the cache.

✙ No restriction on the placement of blocks. any combi-
nation of blocks can be simultaneously present on
the cache.

- Quite costly (hardware and time) to search for a block.

➔ Set associative: Each block has only a certain num-

ber of places to appear in the cache. The mapping is
(block address MOD number of sets in cache).

✙ A good compromise between direct mapped and fully
associative caches.

comp 180 Lecture 30

HKUST 3 Computer Science

Comparison

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1Blk.
no

M
e
m
o
ry

0 1 2 3 4 5 6 7Blk
no.

0 1 2 3 4 5 6 7Blk
no.

0 1 2 3 4 5 6 7Blk
no.

Fully associative
(blk. 12 can go
anywhere)

Direct mapped
(Blk 12 can go
only into Blk. 4
12 mod 8)

Set associative
(Blk 12 can go
anywhere in
set 0 (12 mod 4))

Set Set Set Set
0 1 2 3

comp 180 Lecture 30

HKUST 4 Computer Science

Finding a Block in Cache

• Each block in the cache has an address tag
that gives the block address.

• We further need an index to point to the appro-
priate location within the cache.

• We also need a valid bit to indicate whether the
item in the cache is valid or not.

• Example: Direct mapped cache:

➔ Cache index selects a location from cache

➔ The tag is compared to that in the cache location.

➔ Data is selected based on the tag result.

comp 180 Lecture 30

HKUST 5 Computer Science

Direct Mapped Cache

Index Valid Tag Data

0

1

2

. . .

1023

1023

1023

. . .

. . .

31 30 . . . 13 12 11 . . . 2 1 0
Bytes
offset

DataHit Tag

Index

20 10

20 32

=

Address

comp 180 Lecture 30

HKUST 6 Computer Science

Cache Size

Question:

How many total bits are required for a dir ect-mapped
cachewith 64KB of data, and oneword block, assum-
ing a 32-bit address?

Answer:

64KB means 16 K words = 214 words.

Since the block size is one word, we have 214 blocks.

Each block hasa 32 bit data plus a tag, which is 32 –
14 – 2 bits, plus a valid bit.

The total cache size is

214 * (32 + (32 – 14 – 2) + 1)

= 214 * 49

= 784 * 210

= 784 bits

comp 180 Lecture 30

HKUST 7 Computer Science

Direct Mapped Cache

Taking advantage of spatial locality:

Tag Data

Hit Tag

Index

20 32
=

3116 15 . . . 4 3 2 1 0

V

16 bits 128 bits

16 12 2

Bytes
offset

Block offset

4K
entries

32 32 32

32

Mux

Data

comp 180 Lecture 30

HKUST 8 Computer Science

Bock Replacement

• When a miss occurs, the cache controller must

select a block to be replaced with the desired

data (with direct mapped there is only one

choice).

➔ Random: To spread allocation uniformly, candidate

blocks are randomly selected.

➔ Least-recently used (LSU): The block replaced is the

one that has been unused for the longest time.

comp 180 Lecture 30

HKUST 9 Computer Science

The Write Strategy

• There are two basic options when writing to

the cac he:

➔ Write through (or store through): The inf ormation is

written to both the bloc k in the cache and to the

bloc k in the lo wer-level memor y.

➔ Write back (store back): The inf ormation is written

onl y to the bloc k in the cache. The modified cache

bloc k is written to main memor y onl y when it is

replaced.

comp 180 Lecture 30

HKUST 10 Computer Science

Further Reading

Chapter 7. David A. Patterson and John L.
Hennessy. Computer Organization & Design:
The Hardware / Software Interface. Morgan
Kaufman (page 540-555).

