comp 180 Lecture 24

/

Qutline of Lecture

e Building Datapath for Various Operations

\

/

HKUST

1 Computer Science

comp 180 Lecture24
The Data Path for R-type
Instructions
 The Data path for R-type instructions is as fol-
lows:
| —» Read
n register 1 Read
S] Read daet%.]. 7
t register 2 ero
r .
o Registers >ALU ALU
t — Write ___result
i register Read L
0 data 2
n Write
|_' data
HKUST 2 Computer Science

comp 180 Lecture 24

. | oad and Store Instructions

\

Theseare instructions (I-type instructions): they com-
pute a memory addressby adding a baseregisterto a
16-bit signed offset field.

op rs rt address

6 bits 5 bits 5 bits 16 bits

[J We need the same register file and same ALU
as in R-type instructions.

[J We need a data memory unit to get the data
(I oad) and store the data (st or e).

[J We also need to sign-extend the 16-bit offset
Into a 32-bit offset to be input into our 32-bit
ALU.

N /

HKUST 3 Computer Science

comp 180

L ecture 24

/-The data path for the | oad and store opera-\
tions is as follows:

/

I
N = Read
N register 1
t Read
—
L _| | Read data 1 Zero Read
c register 2 addr ess
it Registers >ALU Wite
o b Write addr ess
n register Read Data Read
| data 2 nMenory dat a
| Write
data
- Wite
32 dat a
16
()
HKUST 4 Computer Science

comp 180

L ecture 24

. Branching Instructions

\

« The beqg instruction: it has 3 operands, 2 registers
that are compared for equality, and a 16-bit offset
used to compute the branch target address relative
to the branch instruction address.

PC + 4 from
instruction
datapath s
Adder Branch
target
| ——» Read
register 1
n gis Read To b n
S data 1 o branc
S Read a
'ﬁ — > register 2 control
g Registers
t Write
i register Read
0 data 2
n Write
data
_ 32
Sign
\ extend \\
HKUST 5 Computer Science

comp 180 Lecture24

/Simple Implementation of a

Single Datapath

« We will design a very simple implementation of our
MIPS datapath - it executes a partial subset of the
MIPS instructions: | w, sw, beq, add, sub,
and, or, and slt.

 We already built the datapath for each of these
Instructions separately. Now, we need to combine
them into a single datapath. Thus, we need to
devise ways of sharing some of the resources

(e.g., ALU) between the different instructions.

C We should avoid duplicating resources.

N /

HKUST 6 Computer Science

comp 180

L ecture 24

SO0 Cc—S—wnws—

Instructions (e.g., add,

s We can easily combine the datapath for the R-type\
sub) with the datapath
for the I-type instructions (e.g., | w, sw) (by using
multiplexers to allow sharing of resources).

Read

register 1 Read

Read data 1

register 2

Registers

Write

register Read
data 2

Write

data

Read
addr ess

Wite Read
address (ata

Dat a
menory

Wite

L dat a

/

HKUST

Computer Science

comp 180

L ecture 24

s The instruction fetch part of the datapath can also\

be easily added.

/

4 —p
" PC L[Read
address
Instruction
Instruction
memory
- Read Zero
register 1 Read
—>
| Read data 1 Read
register 2 addr ess
Registers >ALU Wite
Read
> \Write address (ata
register Read
data 2 ?;trrg‘ ry
Write
p data
Wite
pt dat a
0
HKUST 8 Computer Science

comp 180

L ecture 24

/-Next, we add the datapath for branches - so that\

we get a complete single datapath.

4 —p

—» Read

address
Instruction

Instruction
memory

Read
register 1

Read
register 2

Read
data 1

Registers

Write

register Read

data 2
Write
data

> —
=

Zero

16

>ALU

Read
addr ess

Wite

R
addr ess ead

dat a

Dat a
menory

Wite

B

32

L dat a

/

HKUST

Computer Science

comp 180

L ecture 24

. ALU Control

path.

 Now that we finished the design of this partial sin-
gle MIPS datapath, we need to add the control
unit that controls the whole operation of the data-

* From the previous chapter - when we designed the
ALU - these are the control signals that we came

\

/

up with:
ALU Control lines Function
0 00 AND
0 01 OR
0 10 ADD
1 10 SUB
111 SLT
HKUST 10 Computer Science

comp 180 Lecture24

/-By using the function field (6 bits for MIPS), the\
table above can be expanded to cover a wider

range of instructions.

Desired ALU

Instruction ALUOp Instrucpon Function ALU control
opcode operation code : :
action unit
LW 00 load word | XXXXXX add 010
SW 00 store word | XXXXXX add 010
Branch 01 branch XXXXXX | subtract 110
equal equal
R-type 10 add 100000 add 010
R-type 10 subtract 100010 | subtract 110
R-type 10 AND 100100 and 000
R-type 10 OR 100101 or 001
R-type 10 SLT 101010 st 111

N /

HKUST 11 Computer Science

comp 180 Lecture24

Further Reading

~ ™

Chapter 5: David A. Patterson and John L.
Hennessy. Computer Organization & Design:
The Hardware / Software Interface. Morgan
Kaufman Publishers, 1998. (348-355).

N /

HKUST 12 Computer Science

