
comp 180 Lecture 24

HKUST 1 Computer Science

Outline of Lecture

• Building Datapath for Various Operations

comp 180 Lecture 24

HKUST 2 Computer Science

The Data Path for R-type
Instructions

• The Data path for R-type instructions is as fol-

lows:

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers ALU

I
n
s
t
r
u
c
t
i
o
n

Zero

ALU
result

comp 180 Lecture 24

HKUST 3 Computer Science

Load and Store Instructions

Theseare instructions (I-type instructions): they com-
pute a memory addressby adding a baseregister to a
16-bit signed offset field.

➔ We need the same register file and same ALU

as in R-type instructions.

➔ We need a data memory unit to get the data

(load) and store the data (store).

➔ We also need to sign-extend the 16-bit offset

into a 32-bit offset to be input into our 32-bit

ALU.

op rs rt

6 bits 5 bits 5 bits 16 bits

address

comp 180 Lecture 24

HKUST 4 Computer Science

• The data path for the load and store opera-

tions is as follows:

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers ALU

I
n
s
t
r
u
c
t
i
o
n

Zero

sign

extend

Read
address

Write
address

Write
data

Read
data

Data
memory

16

32

comp 180 Lecture 24

HKUST 5 Computer Science

Branching Instructions

• The beq instruction: it has 3 operands, 2 registers

that are compared for equality, and a 16-bit offset

used to compute the branch target address relative

to the branch instruction address.

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

ALU

I
n
s
t
r
u
c
t
i
o
n

Zero

Adder

Sign
extend

shift
left 2

Sum

Branch
target

To branch
control

PC + 4 from
instruction
datapath

16 32

comp 180 Lecture 24

HKUST 6 Computer Science

Simple Implementation of a
Single Datapath

• We will design a very simple implementation of our

MIPS datapath - it executes a partial subset of the

MIPS instructions: lw, sw, beq, add, sub,

and, or, and slt.

• We already built the datapath for each of these

instructions separately. Now, we need to combine

them into a single datapath. Thus, we need to

devise ways of sharing some of the resources

(e.g., ALU) between the different instructions.

 We should avoid duplicating resources.

comp 180 Lecture 24

HKUST 7 Computer Science

• We can easily combine the datapath for the R-type

instructions (e.g., add, sub) with the datapath

for the I-type instructions (e.g., lw, sw) (by using

multiplexers to allow sharing of resources).

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers ALU

I
n
s
t
r
u
c
t
i
o
n

Zero

sign

extend

Read
address

Write
address

Write

data

Read
data

Data
memory

16 32

M
U
X

M
U
X

comp 180 Lecture 24

HKUST 8 Computer Science

• The instruction fetch part of the datapath can also

be easily added.

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers ALU

Zero

sign

extend

Read
address

Write
address

Write

data

Read
data

Data
memory

16 32

M
U
X

M
U
X

Instruction

Read
address

Instruction

Add

PC

4

memory

comp 180 Lecture 24

HKUST 9 Computer Science

• Next, we add the datapath for branches - so that

we get a complete single datapath.

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers ALU

Zero

sign

extend

Read
address

Write
address

Write

data

Read
data

Data
memory

16 32

M
U
X

M
U
X

Instruction

Read
address

Instruction

Add

PC

4

memory

Add

M
U
X

Shift
left 2

comp 180 Lecture 24

HKUST 10 Computer Science

ALU Control

• Now that we finished the design of this partial sin-

gle MIPS datapath, we need to add the control

unit that controls the whole operation of the data-

path.

• From the previous chapter - when we designed the

ALU - these are the control signals that we came

up with:

ALU Control lines Function

0 00 AND
0 01 OR
0 10 ADD
1 10 SUB
1 11 SLT

comp 180 Lecture 24

HKUST 11 Computer Science

• By using the function field (6 bits for MIPS), the

table above can be expanded to cover a wider

range of instructions.

Instruction
opcode

ALUOp
Instruction
operation

Function
code

Desired
ALU

action

ALU
control

unit

LW 00 load word XXXXXX add 010

SW 00 store word XXXXXX add 010

Branch
equal

01 branch
equal

XXXXXX subtract 110

R-type 10 add 100000 add 010

R-type 10 subtract 100010 subtract 110

R-type 10 AND 100100 and 000

R-type 10 OR 100101 or 001

R-type 10 SLT 101010 slt 111

comp 180 Lecture 24

HKUST 12 Computer Science

Further Reading

Chapter 5: David A. Patterson and John L.
Hennessy. Computer Organization & Design:
The Hardware / Software Interface. Morgan
Kaufman Publishers, 1998. (348-355).

