Outline of Lecture

- Floating Point Addition
- Floating Point Multiplication

IEEE 754 floating-point stan-

dard

- In order to pack more bits into the significant, IEEE 754 makes the leading 1 bit of normalized binary numbers implicit.
- In this case the significant will be 24 bits long in single precision (implied 1 and 23-bit fraction), and 53 bits long in double precision ($1+52$).
- In this case, numbers are represented as follows:

$$
(-1)^{S} \times(1+\text { significant }) \times 2^{E}
$$

- The bits of the significant represent the fraction between 0 and 1 and E specifies the value in the exponent field.
- If the bits in the significant from left to right are s1, $\mathbf{s 2}, \ldots$, then the value is:

$$
(-1)^{s} \times\left(1+\left(s 1 \times 2^{-1}\right)+\left(s 2 \times 2^{-2}\right)+\left(s 2 \times 2^{-3}\right)+\ldots\right) \times 2^{E}
$$

Example

Show the IEEE 754 representation of the number 0.75 in single precision and double precision.

Answer

$-0.75_{\text {ten }}=-0.11_{\text {two }}$
In scientific notation the value is $-0.11_{\text {two }} \times 2^{0}$ and in normalized scientific notation it is $-1.1_{\text {two }} \times 2^{-1}$.

The general representation for single precision is:

$$
(-1)^{S} \times(1+\text { significant }) \times 2^{(\text {exponent }-127)}
$$

Thus $-1.1_{\text {two }} \times 2^{-1}$ is represented as follows:

$$
(-1)^{S} \times\left(1+.10000000000000000000000_{\mathrm{two}}\right) \times 2^{(126-127)}
$$

$10111111010000000000000000000000=32$ bits
The double precision representation is:

$$
(-1)^{S} \times\left(1+.100000000000 \ldots . .0000000_{\mathrm{two}}\right) \times 2^{(1022-1023)}
$$

$1011111111000000000000000 \ldots 000=64$ bits

Example

What decimal number is represented by this word?
$110000001010000000000 \ldots 0000=32$ bits
Answer
The sign bit $=1$, the exponent field contains 129 , and the significant field contains $1 \times 2^{-2}=0.25$.
Using the equation:

$$
\begin{gathered}
(-1)^{\mathbf{S}} \times(1+\text { significant }) \times 2^{(\text {exponent - 127) }} \\
=(-1)^{1} \times(1+0.25) \times 2^{(129-127)} \\
=(-1)^{1} \times 1.25 \times 2^{2} \\
=-1.25 \times 4 \\
=-5.0
\end{gathered}
$$

- Add $2.01 * 10^{20}$ to $3.11 * 10^{23}$
- Adjust exponent so that $2.01 * 10^{20}$ becomes 0.00201 * 10^{23}
- Then add 0.00201 to 3.11 to form 3.11201
- Result is 3.11201 * 10^{23}
- Normalization may be needed if number is in IEEE standard format. (Recall hidden 1.)
- Also need special handling if result = ZERO or is too small/ too large to represent. (These are some floating point representation complexities to be discussed later)

Floating Point Addition

- When we add numbers, for example $9.999 \times 10^{1}+$ 1.610×10^{-1}, in scientific notation, we typically follow the steps below:
\rightarrow We must align the decimal point of the number with the smaller exponent - we make 1.610×10^{-1} into $0.016 \times$ 10^{1}
\rightarrow Then, we add the significants of the two numbers together (e.g., $9.999 \times 10^{1}+0.016 \times 10^{1}=10.015 \times$ 10^{1}).
\rightarrow We normalize the result of the addition -10.015×10^{1} becomes 1.0015×10^{2}.
\rightarrow The significant can only be represented using a fixed number of digits - thus, we must round the result so that it can fit into those digits (e.g., 1.002×10^{2}) if we have only 4 digits to represent the significant

Floating Point Addition

Start

1. Compare the exponents of the 2 numbers. Shift the smaller number to the right until its exponent would match the larger exponent

2. Add the significants

Floating Point Hardware

Example

Add 0.5 to -0.4375 using the IEEE 754 floating point.

Answer

Change the two numbers in normalized scientific notation.
$0.5_{\text {ten }}=1.000_{\mathrm{two}} \times 2^{-1}$
$-0.4375_{\text {ten }}=-1.110_{\text {two }} \times 2^{-2}$
Step1: The significant of the smaller number is shifted right until its exponent matches the larger number:

$$
-1.110_{\mathrm{two}} \times 2^{-2}=-0.111_{\mathrm{two}} \times 2^{-1}
$$

Step 2: Add the significants

$$
1.000_{\mathrm{two}} \times 2^{-1}+\left(-0.111_{\mathrm{two}} \times 2^{-1}\right)=0.001 \times 2^{-1}
$$

Step 3: Normalize the sum, and check the overflow and underflow

$$
0.001_{\mathrm{two}} \times 2^{-1}=1.000_{\mathrm{two}} \times 2^{-4}
$$

$127 \geq-4 \geq-126$, thus there is no overflow or underflow.
Step 4: Round the sum (assume we have 4 bits of precision)

$$
1.000_{\mathrm{two}} \times 2^{-4}
$$

The sum fits in 4 bits, so there is no need for rounding.

$$
1.000_{\mathrm{two}} \times 2^{-4}=0.0001_{\mathrm{two}}=0.0625_{\mathrm{ten}}
$$

Using the IEEE 754 format, $1.000_{\text {two }} \times 2^{-4}$ would be represented as:

001111011000000 0000

Sign	Exponent Significant

Sign Exponent Significant

Floating-Point Multiplication

Given two decimal numbers in scientific notation, we try to multiply them (e.g., $\mathbf{1 . 1 1 0}_{\text {ten }} \times 10^{10} \times \mathbf{9 . 2 0 0}_{\text {ten }} \times$ 10^{-5}):

Step 1: We find the exponent of the product by adding the exponents of the products together

New exponent $=10+(-5)=5$
Step 2: We perform the multiplication of the significants
New significant: $1.110 \times 9.200=10.21200$
The product is: 10.212×10^{5}
Step 3: We normalize the product.

$$
10.212 \times 10^{5}=1.0212 \times 10^{6}
$$

Step 4: We round the product (assume the significant is only 4 digits)

New products is: 1.021×10^{6}
Step 5: We find the sign of the product - it is positive unless the
signs of the two numbers are different.
$+1.021 \times 10^{6}$

Start

1. Add the biased exponents of the 2 numbers, subtracting the bias from the sum to get the new biased exponent

∇

Example

Multiply 0.5 and -0.4375 using floating point representation

Answer

$0.5=1.000_{\mathrm{two}} \times 2^{-1}$
$-0.4375=-1.110_{\mathrm{two}} \times 2^{-2}$

Step 1: Add the exponents
New exponent $=-1+(-2)=-3$
Step 2: Multiply the significants
New significant $=1.000_{\mathrm{two}} \times 1.110_{\mathrm{two}}=1.110000_{\mathrm{two}}$
New product $=1.110_{\mathrm{two}} \times 2^{-3}$ (significant represented by 4 bits)

Step 3: Normalize the product and Check for overflow or underflow

The product is normalized
$127 \geq-3 \geq-126$, thus there is no overflow or underflow
Step 4: Round the product

$$
\text { Product }=1.110_{\mathrm{two}} \times 2^{-3}
$$

Step 5: The sign of the product is (-)

$$
\text { Product }=-1.110_{\mathrm{two}} \times 2^{-3}=-0.21875_{\mathrm{ten}}
$$

Using the IEEE floating point representation, the result is:
10111110011000 0^{0000} two

Floating Point Complexities

- Operations are somewhat more complicated (See test)
- In addition to overflow we can have underflow
- Accuracy can be a big problem
- rounding errors
- positive divided by zero yields "Not a Number" (NaN)
- Implementing the standard can be tricky
- Not using the standard can be worse
- see text for description of 80×86 and pentium bug!
- The MIPS processor supports the IEEE single and double precision formats:
- Addition
add.s and add.d
- Subtraction
sub.s and sub.d

