Outline of Lecture

• Floating point numbers

HKUST

Floating Point

- We need a way to represent real numbers
- For example, we should be able to include:

 $3.14159256 = \pi$ (fraction) 2.71828 = e (fraction) 1.0×10^{-9} (very small) 3.15576×10^{25} (very large)

• Computer arithmetic that supports such numbers is called *floating point*, because it represents numbers in which the decimal point is not fixed, as it is for integers.

Representation:

• In general, floating point numbers are of the form:

$(-1)^{S} \times F \times 2^{E}$

- Increasing the number of bits in E means increasing the range of numbers that can be represented.
- Increasing the number of bits in F means increasing the accuracy of numbers.

Thus, we should make a compromise between these two values

- IEEE 754 floating point standard:
 - single precision: 8 bit exponent, 23 bit significand
 - double precision: 11 bit exponent, 52 bit significand

Normalized Form

- A number in scientific notation which has no leading 0's is called a <u>normalized</u> number.
- In binary, the form is given as follows:

 $1.xxxxx_2 \times 2^{yyyy}$

• Practicality dictates that floating-point numbers be compatible with the size of a word.

Representation in MIPS

- The MIPS, and almost any computer, floating point format, follows the *IEEE 754 floating point standard*. We need a standard so that programs can be easily ported across different computers.
- E has 8 bits and F has 23 bits. As a result, numbers as small as 2.0 × 10⁻³⁸ and numbers as large as 2.0 × 10³⁸ can be represented in a MIPS computer.

The MIPS floating point representation is shown below:

1 bit 8 bits

23 bits

• Any numbers ou*tside that range will create an <u>overflow</u> or <u>underflow</u>.

Representation in MIPS

- Most computers, including MIPS, also have a <u>dou-</u> <u>ble precision</u> floating-point arithmetic so that the range and the accuracy of numbers is increased.
- In this case, 64 bits (two MIPS words) are used to represent floating point numbers -

from 2.0×10^{-308} to 2.0×10^{-308} .

S = 1 bit E = 11 bits F = 52 bits

IEEE 754 floating-point standard

- In order to pack more bits into the significant, IEEE 754 makes the leading 1 bit of normalized binary numbers *implicit*.
- In this case the significant will be 24 bits long in single precision (implied 1 and 23-bit fraction), and 53 bits long in double precision (1 + 52).
- In this case, numbers are represented as follows:

 $(-1)^{S} \times (1 + significant) \times 2^{E}$

- The bits of the significant represent the fraction between 0 and 1 and E specifies the value in the exponent field.
- If the bits in the significant from left to right are s1, s2, ..., then the value is:

(-1)^S × (1 + (s1 × 2⁻¹) + (s2 × 2⁻²) + (s2 × 2⁻³) + ...) × 2^E

Example

Show the IEEE 754 representation of the number - 0.75 in single precision and double precision.

<u>Answer</u>

 $-0.75_{ten} = -0.11_{two}$

In scientific notation the value is $-0.11_{two} \times 2^0$ and in normalized scientific notation it is $-1.1_{two} \times 2^{-1}$.

The general representation for single precision is:

(-1)^S \times (1 + significant) \times 2^(exponent - 127)

Thus $-1.1_{two} \times 2^{-1}$ is represented as follows:

 $(-1)^{S} \times (1 + .1000\ 0000\ 0000\ 0000\ 0000\ 000_{two}) \times 2^{(126 - 127)}$

 $(-1)^{S} \times (1 + .1000\ 0000\ 0000\\ 0000\ 000_{two}) \times 2^{(1022 - 1023)}$

1 0111111110 000000000000 ... 000 = 64 bits

HKUST

Example

What decimal number is represented by this word? 1 10000001 01000000000 ... 0000 = 32 bits

Answer

The sign bit = 1, the exponent field contains 129, and the significant field contains $1 \ge 2^{-2} = 0.25$.

Using the equation:

 $(-1)^{S} \times (1 + \text{significant}) \times 2^{(\text{exponent} - 127)}$ $= (-1)^{1} \times (1 + 0.25) \times 2^{(129 - 127)}$ $= (-1)^{1} \times 1.25 \times 2^{2}$ $= -1.25 \times 4$ = -5.0

HKUST

Computer Science

Basic Floating point Addition

- Add 2.01 * 10^{20} to 3.11 * 10^{23}
 - Adjust exponent so that 2.01 * 10^{20} becomes 0.00201 * 10^{23}
 - -Then add 0.00201 to 3.11 to form 3.11201
 - Result is 3.11201 * 10²³
 - Normalization may be needed if number is in IEEE standard format. (Recall hidden 1.)
 - Also need special handling if result = ZERO or is too small/ too large to represent. (These are some floating point representation complexities to be discussed later)

Floating Point Addition

• Exactly what you do in primary school.

Floating Point Addition

HKUST

12

Computer Science

Floating Point Complexities

- Operations are somewhat more complicated (See test)
- In addition to overflow we can have underflow
- Accuracy can be a big problem
 - rounding errors
 - positive divided by zero yields "Not a Number" (NaN)
- Implementing the standard can be tricky
- Not using the standard can be worse
 - see text for description of 80 x 86 and pentium bug!
- The MIPS processor supports the IEEE single and double precision formats:
 - Addition

add.s and add.d

- Subtraction

sub.s and sub.d

Chapter Four Summary

- Computer arthimetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
 - two's compliment
 - IEEE 754 floating point
- Computer instructions determine meaning of the bit patterns
- Performance and accuracy are important so there are many complexities in real machine (i .e ., algorithms and implementations).