Outline of Lecture

- Floating point numbers

Floating Point

- We need a way to represent real numbers
- For example, we should be able to include:

$$
\begin{gathered}
3.14159256=\pi \text { (fraction) } \\
2.71828=e \text { (fraction) } \\
1.0 \times 10^{-9} \text { (very small) } \\
3.15576 \times 10^{25} \text { (very large) }
\end{gathered}
$$

- Computer arithmetic that supports such numbers is called floating point, because it represents numbers in which the decimal point is not fixed, as it is for integers.

Representation:

- In general, floating point numbers are of the form:

$$
(-1)^{\mathrm{S}} \times \mathrm{F} \times 2^{\mathrm{E}}
$$

- Increasing the number of bits in E means increasing the range of numbers that can be represented.
- Increasing the number of bits in \mathbf{F} means increasing the accuracy of numbers.

Thus, we should make a compromise between these two values

- IEEE 754 floating point standard:
- single precision: 8 bit exponent, 23 bit significand
- double precision: 11 bit exponent, 52 bit significand

Normalized Form

- A number in scientific notation which has no leading 0's is called a normalized number.
- In binary, the form is given as follows:

$$
\text { 1. } x x x x x x_{2} \times 2^{y y y y}
$$

- Practicality dictates that floating-point numbers be compatible with the size of a word.

Representation in MIPS

- The MIPS, and almost any computer, floating point format, follows the IEEE 754 floating point standard. We need a standard so that programs can be easily ported across different computers.
- E has 8 bits and \mathbf{F} has 23 bits. As a result, numbers as small as $\mathbf{2 . 0} \times \mathbf{1 0}^{-\mathbf{3 8}}$ and numbers as large as $\mathbf{2 . 0} \times$ 10^{38} can be represented in a MIPS computer.

The MIPS floating point representation is shown below:

- Any numbers ou*tside that range will create an overflow or underflow.

Representation in MIPS

- Most computers, including MIPS, also have a double precision floating-point arithmetic so that the range and the accuracy of numbers is increased.
- In this case, 64 bits (two MIPS words) are used to represent floating point numbers from 2.0×10^{-308} to 2.0×10^{-308}.

$$
\begin{gathered}
S=1 \text { bit } \\
E=11 \text { bits } \\
F=52 \text { bits }
\end{gathered}
$$

IEEE 754 floating-point stan-

dard

- In order to pack more bits into the significant, IEEE 754 makes the leading 1 bit of normalized binary numbers implicit.
- In this case the significant will be 24 bits long in single precision (implied 1 and 23-bit fraction), and 53 bits long in double precision ($1+52$).
- In this case, numbers are represented as follows:

$$
(-1)^{S} \times(1+\text { significant }) \times 2^{E}
$$

- The bits of the significant represent the fraction between 0 and 1 and E specifies the value in the exponent field.
- If the bits in the significant from left to right are s1, $\mathbf{s 2}, \ldots$, then the value is:

$$
(-1)^{s} \times\left(1+\left(s 1 \times 2^{-1}\right)+\left(s 2 \times 2^{-2}\right)+\left(s 2 \times 2^{-3}\right)+\ldots\right) \times 2^{E}
$$

Example

Show the IEEE 754 representation of the number 0.75 in single precision and double precision.

Answer

$-0.75_{\text {ten }}=-0.11_{\text {two }}$
In scientific notation the value is $-0.11_{\mathrm{two}} \times 2^{0}$ and in normalized scientific notation it is $-1.1_{\text {two }} \times 2^{-1}$.

The general representation for single precision is:

$$
(-1)^{S} \times(1+\text { significant }) \times 2^{(\text {exponent }-127)}
$$

Thus $-1.1_{\text {two }} \times 2^{-1}$ is represented as follows:

$$
(-1)^{S} \times\left(1+.10000000000000000000000_{\mathrm{two}}\right) \times 2^{(126-127)}
$$

$10111111010000000000000000000000=32$ bits
The double precision representation is:

$$
(-1)^{S} \times\left(1+.100000000000 \ldots . .0000000_{\mathrm{two}}\right) \times 2^{(1022-1023)}
$$

$1011111111000000000000000 \ldots 000=64$ bits

Example

What decimal number is represented by this word?

$110000001010000000000 \ldots 0000=32$ bits

Answer

The sign bit $=1$, the exponent field contains 129 , and the significant field contains $1 \times 2^{-2}=0.25$.
Using the equation:

$$
\begin{gathered}
(-1)^{\mathbf{S}} \times(1+\text { significant }) \times 2^{(\text {exponent - 127) }} \\
=(-1)^{1} \times(1+0.25) \times 2^{(129-127)} \\
=(-1)^{1} \times 1.25 \times 2^{2} \\
=-1.25 \times 4 \\
=-5.0
\end{gathered}
$$

Basic Floating point Addition

- Add $2.01 * 10^{20}$ to $3.11 * 10^{23}$
- Adjust exponent so that $2.01 * 10^{20}$ becomes 0.00201 * 10^{23}
- -Then add 0.00201 to 3.11 to form 3.11201
- Result is 3.11201 * 10^{23}
- Normalization may be needed if number is in IEEE standard format. (Recall hidden 1.)
- Also need special handling if result $=$ ZERO or is too small/ too large to represent. (These are some floating point representation complexities to be discussed later)

Floating Point Addition

- Exactly what you do in primary school.

Floating Point Addition

Floating Point Complexities

- Operations are somewhat more complicated (See test)
- In addition to overflow we can have underflow
- Accuracy can be a big problem
- rounding errors
- positive divided by zero yields "Not a Number" (NaN)
- Implementing the standard can be tricky
- Not using the standard can be worse
- see text for description of 80×86 and pentium bug!
- The MIPS processor supports the IEEE single and double precision formats:
- Addition
add.s and add.d
- Subtraction
sub.s and sub.d

Chapter Four Summary

- Computer arthimetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
- two's compliment
- IEEE 754 floating point
- Computer instructions determine meaning of the bit patterns
- Performance and accuracy are important so there are many complexities in real machine (i .e ., algorithms and implementations).

