comp 180

Lecture 10

/

QOutline of Lecture

e Procedure calls
e Saving and restoring register

o Summary of MIPS instructions

S

\

/

HEKUST 1

Computet Science

comp 180 Lecture 10

Procedure Calls

4 I

A procedure of a subroutine is like an “agent”
whic h needs certain information to perform a
certain job.

* In MIPS a calller calls a pr ocedure (callee).

« When the callee is executed, the following
steps are taken:

1. Place parameter s in a place where the callee
can access them;

2. Transf er contr ol to the callee .

3. Acquire the storage resour ces needed for the
callee.

4. Perform the task.

5. Place result value in a place where the caller
can accessi it.

6. Return the contr ol to the caller .

N /

HKUST 2 Computet Science

comp 180 Lecture 10

Procedure Calls

4 I

« The following register s are used during the
procedure call:

$a0 — $a3 (four ar gument register s)
$v0 — $v1 (tw o value register s)
$ra (return ad dress register)

« The Instruction that places the address of
callee Iin the PC and stores the return address
in $ra is

] al Cal | eeAddr ess

e The callee must have a call to return to the
return ad dress

jr $ra

e The nested calls must save the intermediate
value of $ra register in stac k.

- J

HKUST 3 Computet Science

comp 180 Lecture 10

Example

4 I

* Since the register s are used by various proce-
dures, their old values can be written by new
values, so the y must be sa ved.

* Look at the f ollo wing code:

int |eaf _exanple(int g, int h, int i, int j)
{
I nt f;
f=(gth) - (i+)
return f;
}
Suppose
$a0 <—g
$al <—h
$a2 <—i
$a3 <—|j

/

HKUST 4 Computet Science

comp 180 Lecture 10

/Then the MIPS code f or the instruction N

f = (g+h) - (i+)
would look like this

add $t0, $a0, $%al #register $t0 contains g+h
add $t1, $a2, $a3 #register $t1 contains i+

sub $s0, $t0, $t1 #register f = $t0 - $t1

to return the value of f, we copy it into a return
value register

add $v0, $s0, $zero # return f ($v0 = $s0 +0)

N /

HKUST 5 Computet Science

comp 180

Lecture 10

//’>

restored.

sub $sp, $sp,
sw $t 1, 8($sp)
sw $t0, 4($sp)

sw $s0, O($sp)

H gher Address

St ack
SP

12

Lower Address

N

Saving Regqister

e To do so, we use stac k.

#save regi ster $t1
#save register $t1

#save register $t1
H gher Address

* In this code, we use temporar y register s. Sup-
pose their old values must be saved and then

 Before executing the above code, we execute
the follo wing code

#adj ust stack for 3 itens

‘\\\

St ack St ack
SP_'
t1l
tO
SP 5 [s0]
Lower Address Lower Address

/

HEKUST

o Computet Science

comp 180 Lecture 10

/

After

Restoring Register

calculating the value of f, we must
restore the old v alues of temporar vy register s.

 For this purpose, we execute the following

code
| w $s0, O($sp) #restore register $t1l
lw $t 0, 4($sp) #restore register $t1l
lw $t 1, 8(Fsp) #restore register $t1

add $sp, $sp, 12 #adjust stack for 3 itens

Dont forget to ad d

jr $ra

junp back to the caller

\

/

HEKUST

7 Computet Science

comp 180 Lecture 10

Reqister Spilling

4 I

 The techniqgue of saving register is called reg-
Ister spilling .
» Register spilling can g enerate a lot of w ork.

 To avoid that, MIPS offers two classes of reg-
Ister s.

o $t0 — $t9: 10 temporar y register s that are not
preser ved by the callee .

o« $s0 — $s7: 8 register s that must be saved by
the callee .

e This con vention reduces register spilling.

* In the above example, $t0 and $t1 need not be
saved.

* This reduces unnecessar Yy work.

- J

HKUST 3 Computet Science

comp 180

Lecture 10

/

Constants

* 50% of the operands are constants.

e For such cases, we have learned that we can

For example:
A=A +5

B=B-5

use immediate instructions

addi $29, $29, 4

slti $8, $18, 10

andi $29, $29, 6

ori $29, $29, 4

However, the constant field is 16 bits wide

\

/

HEKUST 9

Computet Science

comp 180 Lecture 10

Larger Constants

4 I

e 32 bit constants are added using two instruc-
tion

e Suppose , we want to load this 32 bit constant
into register $s0

0000 0000 0011 11010000 1001 0000 0000

| nteger value = 61 Iinteger value = 2304

| ui $s0, 61

addi $s0, $s0, 2304

N /

HKUST 10 Computet Science

comp 180

Lecture 10

"~ Another W ay of Loading a

| ui

Long Constant

$s0, 0000 0000 0011 1101

0000 0000 0011 1101 OOOO OOOO 0OOOO 0000

ori,

contents of $tO

$t0, $t0O, 0000 0000 1001 0000

\

0000 0000 0011 1101 0OOOO 0OOOO OOOO 0000

ori operation

0000 0000 0000 0000 0000 0000 1001 0000

Y

0000 0000 0011 1101 0OOOO OOOO 1001 0000

N

/

HEKUST

11 Computet Science

comp 180 Lecture 10

- Handling a Single Byte

\

A single b yte can also be read or written.

| b, $t0, O($sp) #l oad byte from address

sb, $t0, 0O($sp) #store byte to address

 The Ib instruction reads one byte from mem-
ory and loads it into the rightmost 8 bits of a
register

 The sb instruction reads the rightmost 8 bots
of a reqgister and stores them into the memor .

N /

HKUST 12 Computet Science

comp 180 Lecture 10

" Summar y of Instructions

\

« Three major kinds of instructions
R type Instruction

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

| type Instruction

op rs rt 16 bit ad dress

6 bits 5 bits 5 bits 16 bits

J type instruction

op 26 bit ad dress

6 bits 26 hits

N /

HKUST 13 Computet Science

comp 180 Lecture 10

Branc hing

4 I

bne, $t4, $t5, Label

means that the next instruction at Label if $t4 is
not equal to $t5

beq, $t4, $t5, Label

op rs rt 16 bit ad dress

6 bits 5 bits 5 bits 16 bits

means that the next instruction at Label if $t4 is
equal to $t5

| Label
op 26 bit ad dress
6 bits 26 hits
Remember

The addresses In jump instructions are instruc-
tion ad dresses and not b yte ad dresses.

- J

HKUST 14 Computet Science

comp 180 Lecture 10

- Larger Jumps in Branc hes

‘\\\

« The addresses in beqg and beq are 16 bits.
« How to jump to lar ger address.

 Use relative addressing, that is, jump relative

to some register (suc h as PC)

H gher Address Hi gher Address

St ack St ack St ack
SP_’ SP—»
tl
t0
SP o =01
Lower Address Lower Address Lower Address

- J

HKUST 15 Computet Science

