
� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Outline of Lecture

• Procedure calls

• Saving and restoring register s

• Summar y of MIPS instructions

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Procedure Calls

• A procedure of a subr outine is like an “a gent”
whic h needs cer tain inf ormation to perf orm a
cer tain job.

• In MIPS a calller calls a pr ocedure (callee).

• When the callee is executed, the follo wing
steps are taken:

1. Place parameter s in a place where the callee
can access them;

2. Transf er contr ol to the callee .

3. Acquire the stora ge resour ces needed for the
callee .

4. Perform the task.

5. Place result value in a place where the caller
can access it.

6. Return the contr ol to the caller .

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Procedure Calls

• The follo wing register s are used during the
procedure call:

$a0 — $a3 (four ar gument register s)

$v0 — $v1 (tw o value register s)

$ra (return ad dress register)

• The instruction that places the address of
callee in the PC and stores the return address
in $ra is

jal CalleeAddress

• ·The callee must have a call to return to the
return ad dress

jr $ra

• ·The nested calls must save the intermediate
value of $ra register in stac k.

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Example

• SInce the register s are used by various proce-
dures, their old values can be written by new
values, so the y must be sa ved.

• Look at the f ollo wing code:

int leaf_example(int g, int h, int i, int j)

{

int f;

f = (g+h) - (i+j)

return f;

}

Suppose
$a0 <— g
$a1 <— h
$a2 <— i
$a3 <— j

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Then the MIPS code f or the instruction

f = (g+h) - (i+j)

would look like this

add $t0, $a0, $a1 #register $t0 contains g+h

add $t1, $a2, $a3 #register $t1 contains i+j

sub $s0, $t0, $t1 #register f = $t0 - $t1

to return the value of f, we cop y it into a return
value register

add $v0, $s0, $zero # return f ($v0 = $s0 +0)

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Saving Register

• In this code , we use temporar y register s. Sup-
pose their old values must be saved and then
restored.

• To do so, we use stac k.

• Before executing the above code , we execute
the f ollo wing code

sub $sp, $sp, 12 #adjust stack for 3 items

sw $t1, 8($sp) #save register $t1

sw $t0, 4($sp) #save register $t1

sw $s0, 0($sp) #save register $t1

SP
Stack

Higher Address

Lower Address

SP

Stack

Higher Address

Lower Address

t1

t0
s0

SP
Stack

Lower Address

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Restoring Register

• After calculating the value of f, we must
restore the old v alues of temporar y register s.

• For this purpose , we execute the follo wing
code

lw $s0, 0($sp) #restore register $t1

lw $t0, 4($sp) #restore register $t1

lw $t1, 8($sp) #restore register $t1

add $sp, $sp, 12 #adjust stack for 3 items

Dont f orget to ad d

jr $ra # jump back to the caller

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Register Spilling

• The technique of saving register is called reg-
ister spilling .

• Register spilling can g enerate a lot of w ork.

• To avoid that, MIPS off ers two classes of reg-
ister s.

• $t0 — $t9: 10 temporar y register s that are not
preser ved b y the callee .

• $s0 — $s7: 8 register s that must be saved by
the callee .

• This con vention reduces register spilling.

• In the above example , $t0 and $t1 need not be
saved.

• This reduces unnecessar y work.

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Constants

• 50% of the operands are constants.

• For example:

A = A +5

B = B - 5

• For suc h cases, we have learned that we can
use immediate instructions

addi $29, $29, 4

slti $8, $18, 10

andi $29, $29, 6

ori $29, $29, 4

However, the constant field is 16 bits wide

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Larger Constants

• 32 bit constants are added using two instruc-
tion

• Suppose , we want to load this 32 bit constant
into register $s0

lui $s0, 61

addi $s0, $s0, 2304

0000 0000 0011 1101 0000 1001 0000 0000

integer value = 61 integer value = 2304

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Another W ay of Loading a
Long Constant

lui $s0, 0000 0000 0011 1101

ori, $t0, $t0, 0000 0000 1001 0000

0000 0000 0011 1101 0000 0000 0000 0000

contents of $t0

0000 0000 0011 1101 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 1001 0000

ori operation

0000 0000 0011 1101 0000 0000 1001 0000

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Handling a Single Byte

• A single b yte can also be read or written.

lb, $t0, 0($sp) #load byte from address

sb, $t0, 0($sp) #store byte to address

• The lb instruction reads one byte from mem-
ory and loads it into the rightmost 8 bits of a
register

• The sb instruction reads the rightmost 8 bots
of a register and stores them into the memor y.

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Summar y of Instructions

• Three major kinds of instructions

op 26 bit ad dress

6 bits 26 bits

op rs rt 16 bit ad dress

6 bits 5 bits 5 bits 16 bits

J type instruction

I type Instruction

op rs rt

6 bits 5 bits 5 bits 5 bits

R type Instruction

rd

5 bits 6 bits

functshamt

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Branc hing

bne, $t4, $t5, Label

means that the next instruction at Label if $t4 is
not equal to $t5

beq, $t4, $t5, Label

means that the next instruction at Label if $t4 is
equal to $t5

j Label

Remember

The addresses in jump instructions are instruc-
tion ad dresses and not b yte ad dresses.

op rs rt 16 bit ad dress

6 bits 5 bits 5 bits 16 bits

op 26 bit ad dress

6 bits 26 bits

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 10

Larger Jumps in Branc hes

• The addresses in beq and beq are 16 bits.

• How to jump to lar ger address.

• Use relative addressing, that is, jump relative
to some register (suc h as PC)

SP
Stack

Higher Address

Lower Address

SP

Stack

Higher Address

Lower Address

t1

t0
s0

SP
Stack

Lower Address

