
� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 09

Outline of Lecture

• MIPS addressing modes.

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 09

MIPS Addressing Modes

• The MIPS architecture provides two more ways

of accessing operands:

Constant / Immediate Operands

• Constants are used frequentl y in all kinds of

programs (50% - 70% of arithmetic operands

are constants). For example to add 4 to regis-

ter $29:

lw $t0, AddrConstant4($0) # $t0=constant 4

add $sp, $sp, $t0 # $sp = $sp + $t0

• A better way is to avoid memor y access, and

off er new versions in whic h the operand can

be a constant - this is the I-type (immediate)

instruction f ormat.

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 09

Example

The add instruction that has one constant operand is

called add immediate or addi. To add 4 to register $29 we

just write

addi $sp, $sp, 4 # $sp = $sp + 4

What is the corresponding MIPS machine code?

Ans wer

The MIPS mac hine code is as f ollo ws:

8 29 29 4

op rs rt immediate

001000 11101 11101

op rs rt immediate

0000 0000 0000 0100

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 09

• We can also compare the values to a constant

using the instruction set less than imme-

diate (slti):

slti $t0, $s2, 10 # $t0=1 if $s2 < 10

Principle #4: Always make the common

case faster.

Since constants are frequentl y used, then

it is very beneficial to have an immediate

addressing mode .

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 09

• The size of the constant in a MIPS immediate

addressing mode is 16 bits - whic h covers

most cases.

• In case we want to load the upper 16 bits of a

register with a constant, we use the instruc-

tion load upper immediate (lui) for this

purpose .

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 09

Example

What is the MIPS code to load this 32-bit con-

stant into register $s0?

$s0 = 0000 0000 0011 1101 0000 1001 0000 0000

lui $s0, 61

61 = 0000 0000 0011 1101

Now the v alue of $s0 is:

$s0 = 0000 0000 0011 1101 0000 0000 0000 0000

The next step is to ad d lo wer 16 bits

addi $s0, $s0, 2304

2304 = 0000 1001 0000 0000

$s0 = 0000 0000 0011 1101 0000 1001 0000 0000

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 09

Addressing in Branc hes and
Jumps

• The simplest addressing mode for MIPS is for

the jump instructions. The instruction format

for this ad dressing is called the J-type.

e.g., j 10000 # goto memory location 10000

• On the other hand, the branc h instruction must

specify 2 operands in addition to the branc h

address:

bne $s0, $s1, Exit # goto Exit if $s0 ≠ $s1

op address

2 10000

6 bits 26 bits

5 8 21 Exit

6 bits 5 bits 5 bits 16 bits

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 09

• If the address of the program had to fit in 16-

bits, it means that the program cannot be big-

ger than 216 memor y locations (whic h is

restrictive).

• To solve this problem, we always specify a reg-

ister to be ad ded to the branc h address:

PC = register + branc h address

Then, the program would be allo wed to be as

large as 232 memor y locations. The register to

be added is the program counter (PC).

• This type of addressing is called PC-relative

addressing. MIPS uses PC-relative for all con-

ditional branc hes (like most pr ocessor s).

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 09

Summar y

• The MIPS suppor ts the follo wing addressing

modes :

➜ Register addressing: The operand is a reg-
ister (e .g., add $s1, $s2, $s3).

➜ Base or displacement addressing: The
operand is at the memor y location whose
address is the sum of a register and an
address in the instruction (e.g., lw $s1,

100($s2)).

➜ Immediate addressing: The operand is a
constant within the instruction itself (e.g., addi
$s1, $s2, 100).

➜ PC-relative addressing: The address is
the sum of the PC and a constant in the
instruction (e .g., bne $s1, $s2, 100).

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 09

op rs rt rd funct

op rs rt

register

1. Register ad dressing

2. Base ad dressing

address

register

+

Memor y

op rs rt

3. Immediate ad dressing

immediate

op rs rt

4. PC-relative ad dressing

address

PC

+

Memor y

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 09

Fur ther Reading

Chapter 3 and Appendix. David A. Patterson
and John L. Hennessy. Computer Organization &
Design: The Hardware / Software Interface.
Morgan Kaufman Publishers, 1998.

