g QOutline of Lecture

Suppor ting Pr ocedures in MIPS

g Suppor ting Pr ocedures in A

Computer Har dware

« Subroutines are necessary In any program-

ming language for better structuring of pro-
grams - thus we must have an instruction that
jumps to a procedure and then returns from
the pr ocedure .

« The MIPS assembly language provides an
Instruction that jumps to an address and
simultaneousl y saves the address of the fol-
lowing instruction in register $31 - it is the
junp-and-link (jal) instruction (e.g., | al
Pr ocedur eAddr ess).

 The address stored in register $31 is called the
return address. The parameter s of the pro-
cedure are passed in register s $4 through $7.

- J

/oRegister $31, whic h points to the instruction\
being executed in the program, is called pr o-
gram count er (PC).

e Since procedures can call other procedures,
we need to save the values stored in the regis-
ters before jumping to a procedure . The ideal
way to save these registers is in a stack
(last-in-first-out). Instructions for
operating on the stack are called push and

pop.

 The detailed steps for manipulating the stack
and the PC when calling procedures are as fol-
lows:

1. After A calls B
$31

B’s return ad dress

$29 (stack pointer)

Memory

2. Just bef ore B calls C
$31

B’s return ad dress
$29 (stack pointg)/

3. After B calls C
$31

C’s return ad dress

$29 (stack pointer)

4. just bef ore B returns

$31

B’s return ad dress

$29 (stack pointer)

-

Memory

B’s return ad dr.

Memory

B’s return ad dr.

Memory

B’s return ad dr.

Top of stac k

Bottom of stac k

New top of stac k

Bottom of stac k

Top of stac k

Bottom of stac k

New top of stac k

Bottom of stac k

~ MIPS Addressing Modes A

« The MIPS architecture provides two more ways
of accessing operands:

Constant / Immediate Operands

 Constants are used frequentl y in all kinds of
programs (50% - 70% of arithmetic operands
are constants). For example to add 4 to regis-
ter $sp:

|w $t0, AddrConstant4($zero) # $tO=con-
stant 4

add $sp, $sp, $t0 # $sp = $sp + $tO

e A better way Is to avoid memory access, and
offer new versions in whic h the operand can
be a constant - this is the I-type (I mmedi at e)
Instruction f ormat.

- J

/Example N

The add instruction that has one constant operand is
called add i nmedi at e or addi . To add 4 to register $29 we
just write

addi $sp, $sp, 4 # $sp = $sp + 4

What is the corresponding MIPS machine code?

Answer

The MIPS mac hine code is as f ollows:

op rs It immediate
8 29 29 4
op rs rt immediate

001000 | 11101 | 11101 | OOOO 0000 0000 0100

a4 We can also compare the values to a constant\

using the instruction set | ess than I nme-
diate (slti):

slti $t0, $s2, 10 # $t0 =1 if $s2 <
10

&

Principle #4. Always make the common
case faster.

Since constants are frequentl y used, then

it is very beneficial to have an immediate
addressing mode .

/Further Reading B

Chapter 3 and Appendix. David A. Patterson
and John L. Hennessy. Computer Organization &
Design: The Hardware / Software Interface.
Morgan Kaufman Publishers, 1998.

