
� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 08

Outline of Lecture

Suppor ting Pr ocedures in MIPS

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 08

Suppor ting Pr ocedures in
Computer Har dware

• Subroutines are necessar y in any program-

ming langua ge for better structuring of pro-

grams - thus we must have an instruction that

jumps to a procedure and then returns from

the pr ocedure .

• The MIPS assemb ly langua ge provides an

instruction that jumps to an address and

sim ultaneousl y saves the address of the fol-

lowing instruction in register $31 - it is the

jump-and-link (jal) instruction (e.g., jal

ProcedureAddress).

• The address stored in register $31 is called the

return address. The parameter s of the pro-

cedure are passed in register s $4 thr ough $7.

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 08

• Register $31, whic h points to the instruction

being executed in the program, is called pro-

gram counter (PC).

• Since procedures can call other procedures,

we need to save the values stored in the regis-

ters before jumping to a procedure . The ideal

way to save these register s is in a stack

(last-in-first-out). Instructions for

operating on the stac k are called push and

pop.

• The detailed steps for manipulating the stac k

and the PC when calling procedures are as fol-

lows:

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 08

Memor y

Top of stac k

Bottom of stac k

1. After A calls B
$31

B’s return ad dress
$29 (stac k pointer)

2. Just bef ore B calls C
$31

B’s return ad dress
$29 (stac k pointer)

Memor y

New top of stac k

Bottom of stac k

B’s return ad dr.

3. After B calls C
$31

C’s return ad dress
$29 (stac k pointer)

Memor y

B’s return ad dr. Top of stac k

Bottom of stac k

4. just bef ore B returns
$31

B’s return ad dress
$29 (stac k pointer)

New top of stac k

Bottom of stac k

Memor y

B’s return ad dr.

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 08

MIPS Addressing Modes

• The MIPS architecture provides two more ways

of accessing operands:

Constant / Immediate Operands

• Constants are used frequentl y in all kinds of

programs (50% - 70% of arithmetic operands

are constants). For example to add 4 to regis-

ter $sp:

lw $t0, AddrConstant4($zero) # $t0=con-

stant 4

add $sp, $sp, $t0 # $sp = $sp + $t0

• A better way is to avoid memor y access, and

off er new versions in whic h the operand can

be a constant - this is the I-type (immediate)

instruction f ormat.

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 08

Example

The add instruction that has one constant operand is

called add immediate or addi. To add 4 to register $29 we

just write

addi $sp, $sp, 4 # $sp = $sp + 4

What is the corresponding MIPS machine code?

Ans wer

The MIPS mac hine code is as f ollo ws:

8 29 29 4

op rs rt immediate

001000 11101 11101

op rs rt immediate

0000 0000 0000 0100

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 08

• We can also compare the values to a constant

using the instruction set less than imme-

diate (slti):

slti $t0, $s2, 10 # $t0 = 1 if $s2 <

10

Principle #4: Always make the common

case faster.

Since constants are frequentl y used, then

it is very beneficial to have an immediate

addressing mode .

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 08

Fur ther Reading

Chapter 3 and Appendix. David A. Patterson
and John L. Hennessy. Computer Organization &
Design: The Hardware / Software Interface.
Morgan Kaufman Publishers, 1998.

