
� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

Outline of Lecture

1. Representing Instructions in the Computer

2. Instructions f or Making Decisions

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

Representing Instructions in
the Computer

• Number s are kept in the computer hardware as

a series of high and low electr onic signals -

just tw o choices.

• Naturall y, they are considered base 2 number s.

They are called binar y number s.

• Like humans - we are familiar with base 10

number s (10 fing ers). These number s are

called decimal number s.

• As a result, a binar y number or digit is thus the

fundamental unit of computing.

• All inf ormation (data and programs) is com-

posed of binar y digits or bits .

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

• Instructions (e.g., lw, add) are stored in the

computer as a series of high and low elec-

tronic signals - thus they can be represented

as binar y number s.

• Each piece of inf ormation of an instruction is

represented b y a binar y number .

• The MIPS instruction add $t0, $s1, $s2 is

represented as f ollo ws:

0 17 18 8 0 32

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

• Each of these segments of an instruction is

called a field .

➜ The fir st and last fields (containing 0 and 32) in
combination tell the MIPS computer to perf orm
addition.

➜ The second field (containing 17) gives the num-
ber of the register that is the fir st sour ce oper-
and of the ad dition operation ($17).

➜ The thir d field (containing 18) gives the number
of the register that is the second sour ce oper-
and of the ad dition operation ($18).

➜ The four th field (containing 8) gives the number
of the register that is to receive the sum ($8) -
destination register .

➜ The fifth field (containing 0) is not used in this
instruction - it will be used in other instruc-
tions.

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

• Inside the computer the instruction add $t0,

$s1, $s2, is represented using binar y num-

bers as f ollo ws:

• This layout of the instruction is called instruc-

tion f ormat .

• Each MIPS instruction is 32 bits - the same

size as a data w ord.

000000 10001 10010 01000 00000 100000

0 17 18 8 0 32

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

There are three ways of encoding an

instruction in a computer (e.g., having an

instruction f ormat)

∴ If code size is most impor tant, use variab le
length instructions.

∴ If perf ormance is most impor tant, use fix ed
length instructions.

Variab le

Fixed

Hybrid

......

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

MIPS design always favors simplicity -

thus they use fix ed size formats for

instructions.

To be simple , you have to be regular (no

special cases or very few of them) - The

format of instructions in MIPS is regular .

This will have many effects on the proces-

sor design (how comple x - fast - powerful,

etc.) as will be seen during this cour se.

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

R-Type Instructions

• The general format layout of MIPS computer

instructions is given as follo ws - called R-

type :

• The meaning of each field of MIPS instructions

is:

➜ op: operation f or the instruction.

➜ rs: the fir st register sour ce operand.

➜ rt: the second register sour ce operand.

➜ rd: the register destination operand; it gets the
results of the operation.

➜ shamt: shift amount (will be e xplained later).

➜ funct: function; this field selects the variant of
the operation in the op field.

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

� � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

• If we ha ve a lw or sw instruction

lw $t0, 32($3),

then we need to specify the address (in this

case 32) within the instruction f ormat.

• If we use one of the sour ce operand fields from

the previous instruction format (rs or rt), then

the instruction would be limited to just 25 = 32

memor y locations - whic h is too small .

• There is a trade-off between keeping the size

of the instructions fix ed and having a single

instruction f ormat.

Principle #3: Good design requires compr o-

mises.

MIPS keeps the length of instructions the same, but

instructions could ha ve diff erent f ormats.

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

I-Type Instructions

• The second type of instruction format for a

MIPS computer is for data transf er instruc-

tions (e.g., lw and sw), and is as follo ws -

called I-type :

Example:

lw $t0, 32($s3)

19 is placed in rs field

8 is placed in the rt field (unlike the previous format,

rt is the destination register in this case)

32 is placed in the address field.

op rs rt

6 bits 5 bits 5 bits 16 bits

address

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

• The two diff erent types of instructions are dis-

tinguished fr om eac h other b y the op field.

Instruction Format op rs rt rd shamt funct address

add R 0 reg reg reg 0 32 n.a.

sub R 0 reg reg reg 0 34 n.a.

lw I 35 reg reg n.a. n.a. n.a. address

sw I 43 reg reg n.a. n.a. n.a. address

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

Example

Let us take an example all the way from what the program-

mer writes to what the machine executes. Assuming that

$t1 has the base address of the array A and $s2 corre-

sponds to h, the C assignment statement

A[300] = h + A[300];

is compiled into:

lw $t0, 1200($t1) # Temporary reg $t0 gets A[300]

add $t0, $s2, $t0 # Temporary reg $t0 gets h+A[300]

sw $t0, 1200($t1) # Stores h+A[300] back into A[i]

What is the MIPS machine langua ge code for these 3

instructions?

Ans wer

Assume that the star ting location or address for array A is

1200 in base 10 or (0000 0100 1011 0000 base 2).

Then the mac hine langua ge for the 3 instructions are:

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

The binar y equiv alent of the abo ve tab le is:

op rs rt (rd) (shamt)
address
/funct

35 9 8 1200

0 18 8 8 0 32

43 9 8 1200

op rs rt (rd) (shamt)
address
/funct

100011 01001 01000 0000 0100 1011 0000

000000 10010 01000 01000 00000 100000

101011 01001 01000 0000 0100 1011 0000

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

Today’s computer s are built on two key princi-

ples:

1. Instructions are represented as n umber s; and

2. Programs can be stored in memor y to be read or
written just like n umber s.

The Big Picture

Processor

Memor y

Accounting pr og.
(machine code)

Editor Pr og.
(Machine code)

C compiler
(Machine code)

Payroll data

Book te xt

C code f or editor
program

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

The various layers a high-le vel langua ge

program has to go thr ough to get exe-

cuted.

C program

Compiler

Assemb ly langua ge program

Assemb ler

Machine langua ge program

Loader

Memor y

� � � � � � ��� � 	
 � �
 � � � �
 � �

comp 180 Lecture 06

Fur ther Reading

Chapter 3 and Appendix A. David A. Patterson
and John L. Hennessy. Computer Organization &
Design: The Hardware / Software Interface .
Morgan Kaufman Publishers, 1998.

