¢ Outline of Lecture

1. Introduction to Instruction Set Ar chitecture
2. Operations of the Computer Har dware

3. Operands of the Computer Har dware

g Instruction Set Ar chitecture O

 In order to use the hardware of a computer , we
must speak its language - It is the portion of
the computer which is visib le to the program-
mer and the compiler writer

« The words of a machine (computer) language
are called instructions, and its vocabulary is

called an instruction set.

« We will see the instruction set of a real com-
puter, both in the form written by the program-
mer and the f orm read b y the mac hine.

4 The MIPS O

The real computer we are using is called MIPS and
comes from the M| PS computer company. MIPS, was
later sold to SGI, and all SGI machines are based on
the original MIPS ar chitecture.

 We will also analyze why these computer archi-
tects came up with such an instruction set for
MIPS.

Operations of the Computer Hardware

 Every computer must be able to perform arith-
metic operations:

add a, b, c

It is a MIPS assembly language instructions that
Instructs a computer to add two variables b and
c and put their sum into a.

- /

4 I

Sample Pr ogram

To put the sum of 4 variables b, c, d, and e into
variable a, we need the following sequence of
operations:

add a, b, c # The sum of b and c is
pl aced in a

add a, a, d # The sumof b, ¢ and d is
now I n a
add a, a, e # The sumof b, ¢, d and e

IS now I n a.

[1 The words to the right of each instruction are
comments.

[1 Each line of code can contain at most one
instruction.

[1 The number of operands in each instruction
Is exactly three .

- /

/

Instruction Format

\

Category Instruction Example “ Meaning “ Comments
Arithmetic add add a, b, ¢ |a=b+c Always 3
operands
subtract sub a, b, ¢ |a=b-c Always 3
operands

%

-

Why do we insist that we always use 3 operands
(why not allow 4, 5, etc. operands)?

The hardware for a variable number of
operands (e.g., pentium) Is more compli-
cated than the hardware for a fixed num-
ber of operands.

Principle #1: Simplicity is better than comple x-
ity in har dware design.

/

4 I

Example

Translate the following C statement into a MIPS assemb ly
langua ge instructions (this is the job of the = compiler):

F=(0g+h -0 +]);

Answer

add t0O, g, h # tenporary variable tO contains
g+h

add t1, i, | # tenporary variable t1 contains
| +]

sub f, t0, t1 # f gets t0-t1, or (g+h) - (i+)

-

g Operands of the Computer

\

operands of assembly language instructions
cannot be any variables - they must be from a
limited n umber of locations called

Register s are fast temporary memory loca-
tions inside the processor - they are visib le to
the programmer that can be used to hold vari-

ables.

bits - groups of 32 bits are given the name
word in the MIPS ar chitecture .

notation $0,
them.

Hardware

 Unlike programs in high-le vel languages, the

registers.

 The size of aregister in a MIPS computer is 32

« The MIPS computer has 32 registers, using the

$1, ..., $31 to represent

/

4 I

32 register s may not be enough to hold the
potential large number of variables in big
programs.

However, a large number of register s com-
plicates the design of the processor and
Increases its ¢ lock cycle.

A computer designer should strike a bal-
ance between providing a large number of
register s and a fast pr ocessor .

Principle #2:. Having a small number of regis-
ters (e.g., 16-128) leads to a
faster design of the pr ocessor .

- /

/

Example

Given the f ollo wing C statement:

f=(0g+h -0 +]);

Assume the compiler associates the variables f, g, h, i,
and j to the register s $s0, $sl1, $s2, $s3, and $s4,
respectivel y

What is the compiled MIPS assembly language code?

Answer

add $t0, $s1, $s2 # Register $t0 contains g+h
add $t1, $s3, $s4 # Register $t1 contains i+

sub $s0, $t0, $t1 # f gets $t0-$t1, or (g+h) -
(1))

/-What If we have a program that manipulates a\
large array of numbers - they cannot all be
stored in the register s of the MIPS pr ocessor .

* In this case, the elements of the array would be
stored inthe memory of the MIPS computer .

« The memory is a large storage space that can
store millions of data elements.

« When we need to perform an operation on cer-
tain elements of this array, we transfer these

elements from the memory to the register s -
MIPS cannot perform operations directly on
data elements stored in memory (certain com-
puter s can).

e These Instructions are called data transfer

Instructions.

- /

g What is an Ad dress O

 To access a word in memory, the data transf er

Instruction must supply its address (Mem-
ory[2] = 1000 in the e xample belo w).

Memory
Processor

Address Data

0 100
1 10
5 1000
3 1

e The data transf er instruction that moves data
from memor y to a register is called | oad.

- J

/-The MIPS assemb ly langua ge notation for this\
data transf er instruction Is | w whic h stands
for | oad wor d.

e The format of | wis suc h that:

1) It should contain the start address of the

array,

2) It should contain a register that contains
the index of the element of the array to be
loaded

(e.g., | w $27, Abegin($12)).

Address of array element = Abegi n + content of

register $12.

* Register $12, in the above example, is called
| ndex register.

- /

/Example N

Assume that A is an array of 100 elements and that the

compiler has associated the variables g, h with register s
$s1, and $s2. Let us assume also that the starting address,
also called base ad dress, is in $s3.

Translate this C statements into MIPS assembly code:
g =h+ A8
Ans wer

lw $t0, 8($s3) # Tenporary reg $t0 gets A[8]
add $s1, $s2, $tO # g =h+ Ai]

\

We have shown how to address wor ds (32
bits) in MIPS. However, most computer s -
Including MIPS - addresses
bytes (8 bits) as well.

Individual

As aresult, real memory addresses are as

follo ws:

Processor

Address
0

4

8

12

Memory

Data

100

10

1000

a The MIPS assembly language instruction\
which 1s complimentar y to | oad Is called
st ore.

e The st ore instruction transfers data from a
register to a memor Yy location.

« The MIPS assemb ly langua ge notation for this
data transf er instruction Is sw whic h stands
for st or e wor d.

e The format of swis suc h that (similarto | w):

1) It should contain the start address of the

array,

2) It should contain a register that contains
the index of the element of the array to be
stored

- /

/Example N

Assume the variable h is associated with the register $s2.
and the base ad dress of the arra y A is in $s3.

What is the MIPS assembly language code for the C state-
ment below:

A[12] = h + A[8]

Answer

lw $t0, 32(%$s3) # Tenporary reg $t0 gets Al 8]

add $t0, $s2, $t0 # Tenporary reg $t0 gets
h+A[8]

sw $t0, 48(%$s3) # Stores h+A[8] back into Al 12]

/Summary of MIPS Assemb Iy\
langua ge

Theinstructions seen so far:

Name || Example Comments
32 $s0, $sl1, .. |Faststorage locations for data.
registers |[$t0, $t1,.. [|InMIPS, data must be stored in
registers to perform arithmetic.
230 mem- | Menory[O], Access only by data transfer
ory words |Menory[4], instructions in MIPS. MIPS use

..., Menory |byte addresses, so sequential
[429967292] |words differ by 4.

/

\

Category Intsi;rrl:c Example “ Meaning “ Comments
Arithmetic | add add $s1 = $s2 + 3 operands;
$s1, $s3 data in regis-
$s2, ters
$s3
subtract | sub $s1 = $s2 - 3 operands;
$s1, $s3 data in regis-
$s2, ters
$s3
Data load | w $1, $s1l = Menory |Datafrom
fransfer | word 100($2) |[$s2+100] memory to
register
store sw $1, Menory Data from reg-
word 100($2) |[[$s2+100] = ister to mem-
$s1 ory

