
� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

Outline of Lecture

1. Intr oduction to Instruction Set Ar chitecture

2. Operations of the Computer Har dware

3. Operands of the Computer Har dware

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

Instruction Set Ar chitecture

• In order to use the hardware of a computer , we

must speak its langua ge - It is the por tion of

the computer whic h is visib le to the program-

mer and the compiler writer .

• The words of a machine (computer) langua ge

are called instructions, and its vocab ular y is

called an instruction set.

• We will see the instruction set of a real com-

puter , both in the form written by the program-

mer and the f orm read b y the mac hine .

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

The MIPS

The real computer we are using is called MIPS and
comes from the MIPS computer company. MIPS, was
later sold to SGI, and all SGI machines are based on
the original MIPS architecture.

• We will also analyze why these computer archi-
tects came up with suc h an instruction set for
MIPS.

Operations of the Computer Hardware

• Every computer must be able to perf orm arith-
metic operations:

add a, b, c

It is a MIPS assembly language instructions that
Instructs a computer to add two variab les b and
c and put their sum into a.

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

Sample Pr ogram

To put the sum of 4 variab les b, c, d, and e into
variab le a, we need the follo wing sequence of
operations:

add a, b, c # The sum of b and c is
placed in a

add a, a, d # The sum of b, c and d is
now in a

add a, a, e # The sum of b, c, d and e
is now in a.

➜ The words to the right of each instruction are
comments.

➜ Each line of code can contain at most one
instruction.

➜ The number of operands in each instruction
is exactl y three .

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

Instruction Format

Why do we insist that we always use 3 operands
(why not allow 4, 5, etc. operands)?

The hardware for a variab le number of

operands (e.g., pentium) is more compli-

cated than the hardware for a fix ed num-

ber of operands.

Principle #1: Simplicity is better than comple x-

ity in har dware design.

Categor y Instruction Example Meaning Comments

Arithmetic add add a, b, c a = b + c Always 3
operands

subtract sub a, b, c a = b -c Always 3
operands

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

Example

Translate the follo wing C statement into a MIPS assemb ly
langua ge instructions (this is the job of the compiler):

f = (g + h) - (i + j);

Ans wer

add t0, g, h # temporary variable t0 contains

g+h

add t1, i, j # temporary variable t1 contains

i+j

sub f, t0, t1 # f gets t0-t1, or (g+h) - (i+j)

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

Operands of the Computer
Hardware

• Unlike programs in high-le vel langua ges, the

operands of assemb ly langua ge instructions

cannot be any variab les - they must be from a

limited n umber of locations called registers.

• Register s are fast temporar y memor y loca-

tions inside the processor - they are visib le to

the programmer that can be used to hold vari-

ables.

• The size of a register in a MIPS computer is 32

bits - groups of 32 bits are given the name

word in the MIPS ar chitecture .

• The MIPS computer has 32 registers, using the

notation $0, $1, ..., $31 to represent

them.

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

32 register s may not be enough to hold the

potential large number of variab les in big

programs.

However, a large number of register s com-

plicates the design of the processor and

increases its c loc k cycle.

A computer designer should strike a bal-

ance between providing a large number of

register s and a fast pr ocessor .

Principle #2: Having a small number of regis-

ters (e.g., 16-128) leads to a

faster design of the pr ocessor .

� � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

Example

Given the f ollo wing C statement:

f = (g + h) - (i + j);

Assume the compiler associates the variab les f, g, h, i,
and j to the register s $s0, $s1, $s2, $s3, and $s4,
respectivel y

What is the compiled MIPS assembly language code?

Ans wer

add $t0, $s1, $s2 # Register $t0 contains g+h

add $t1, $s3, $s4 # Register $t1 contains i+j

sub $s0, $t0, $t1 # f gets $t0-$t1, or (g+h) -

(i+j)

� � � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

• What if we have a program that manipulates a

large array of number s - they cannot all be

stored in the register s of the MIPS pr ocessor .

• In this case , the elements of the array would be

stored in the memory of the MIPS computer .

• The memor y is a large stora ge space that can

store millions of data elements.

• When we need to perf orm an operation on cer-

tain elements of this array, we transfer these

elements from the memor y to the register s -

MIPS cannot perf orm operations directl y on

data elements stored in memor y (cer tain com-

puter s can).

• These instructions are called data transfer

instructions.

� � � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

What is an Ad dress

• To access a word in memor y, the data transf er

instruction must suppl y its address (Mem-

ory[2] = 1000 in the e xample belo w).

• The data transf er instruction that moves data

from memor y to a register is called load.

Processor
Memor y

Address Data

0

1

2

3

100

10

1000

1

.

.

.

.

.

.

� � � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

• The MIPS assemb ly langua ge notation for this

data transf er instruction is lw whic h stands

for load word.

• The format of lw is suc h that:

1) It should contain the start address of the

array,

2) It should contain a register that contains

the index of the element of the array to be

loaded

 (e.g., lw $27, Abegin($12)).

Address of array element = Abegin + content of

register $12.

• Register $12, in the above example , is called

index register.

� � � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

Example

Assume that A is an array of 100 elements and that the

compiler has associated the variab les g, h with register s

$s1, and $s2. Let us assume also that the star ting address,

also called base ad dress, is in $s3.

Translate this C statements into MIPS assembly code:

g = h + A[8]

Ans wer

lw $t0, 8($s3) # Temporary reg $t0 gets A[8]

add $s1, $s2, $t0 # g = h + A[i]

� � � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

We have sho wn how to address words (32

bits) in MIPS. However, most computer s -

inc luding MIPS - addresses individual

bytes (8 bits) as well.

As a result, real memor y addresses are as

follo ws:

Processor
Memor y

Address Data

0

4

8

12

100

10

1000

1

.

.

.

.

.

.

� � � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

• The MIPS assemb ly langua ge instruction

whic h is complimentar y to load is called

store.

• The store instruction transf ers data from a

register to a memor y location.

• The MIPS assemb ly langua ge notation for this

data transf er instruction is sw whic h stands

for store word.

• The format of sw is suc h that (similar to lw):

1) It should contain the start address of the

array,

2) It should contain a register that contains

the index of the element of the array to be

stored

� � � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

Example

Assume the variab le h is associated with the register $s2.

and the base ad dress of the arra y A is in $s3.

What is the MIPS assembly language code for the C state-

ment below:

A[12] = h + A[8]

Ans wer

lw $t0, 32($s3) # Temporary reg $t0 gets A[8]

add $t0, $s2, $t0 # Temporary reg $t0 gets

h+A[8]

sw $t0, 48($s3) # Stores h+A[8] back into A[12]

� � � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

Summar y of MIPS Assemb ly
langua ge

The instructions seen so far:

Name Example Comments

32
registers

$s0, $s1, ..
$t0, $t1,..

Fast storage locations for data.
In MIPS, data must be stored in
registers to perform arithmetic.

230 mem-
ory words

Memory[0],
Memory[4],
..., Memory
[429967292]

Access only by data transfer
instructions in MIPS. MIPS use
byte addresses, so sequential
words differ by 4.

� � � � � � ��� � 	
 � � � � � � � �

comp 180 Lecture 05

Categor y
Instruc

tion
Example Meaning Comments

Arithmetic add add
$s1,
$s2,
$s3

$s1 = $s2 +
$s3

3 operands;
data in regis-
ters

subtract sub
$s1,
$s2,
$s3

$s1 = $s2 -
$s3

3 operands;
data in regis-
ters

Data
transfer

load
word

lw $1,
100($2)

$s1 = Memory
[$s2+100]

Data from
memory to
register

store
word

sw $1,
100($2)

Memory
[$s2+100] =
$s1

Data from reg-
ister to mem-
ory

