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Abstract—Inspired by our past manual aspect mining experi-
ences, this paper describes a probabilistic random walk model
to approximate the process of discovering crosscutting concerns
in the absence of the domain knowledge about the investigated
application. The random walks are performed on the concept
graphs extracted from the program sources to calculate metrics
of “utilization” and “aggregation” for each of the program
elements. We rank all the program elements based on these
metrics and use a threshold to produce a set of candidates
that represent crosscutting concerns(CCs). We implemented the
algorithm as the Prism CC miner (PCM) and evaluated PCM on
Java applications ranging from a small-scale drawing application
to a medium-sized middleware application and to a large-scale
enterprise application server. Our quantification shows that PCM
is able to produce comparable results (95% accuracy for top 125
candidates) with respect to the manual mining effort. PCM is
also significantly more effective as compared to the conventional
approach.

I. INTRODUCTION

Aspect mining, or more precisely, the mining of crosscutting
concerns [1](CCs), refers to the activity of locating program
elements in source code that pertain to non-modularized
coding concerns. For large software systems consisting of
millions of lines of code, automatically revealing non-localized
concerns greatly benefits many software engineering tasks
such as program comprehension and maintenance [2], software
customization [3], [4], and the aspect-oriented design of new
applications. This need has given rise to active research on
aspect mining for close to a decade [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15].

A. Research context

The aspect mining approach presented in this paper belongs
to a category of mining techniques [7], [8], [13], [15] that
statically analyze the source code structure of the target
software system. These techniques are widely applicable as
they do not require additional information such as the revision
history [11], [14] or runtime information [9], [10], [14], which
are not always available or easily obtained.

Directly finding CCs with high precision using only the
program sources is challenging as it requires program analysis
tools to reason about application semantics such as “program-
mer intention” or “functional orthogonality”. Consequently, a
large majority of the existing static approaches [7], [8], [13]
approximate CCs using code-level techniques such as fan-in
analysis and clone detection. Phenomena such as cloning or
high degree of fan-in signify the characteristic of “concern
scattering”, i.e., the frequent and non-localized impact of
crosscutting concerns on the program sources.

B. Contributions

Our main observation is that the fan-in and the cloning-
based CC mining approaches essentially favor program ele-
ments that appear frequently, which can incur a large number
of false positives and erroneous conclusions. What conven-
tional methods ignore is that the modular structure of the
whole program can be viewed as a network of concern
relationships, which can be leveraged to improve the mining
efficiency. Let us illustrate this observation through an exam-
ple.

Our example1 is an adapted version of the “telecom”
example from the source distribution of the AspectJ com-
piler, where it serves as an illustration of aspect-oriented
programming. We re-implemented the features “Billing”
and “Timing” in plain Java, which were originally im-
plemented as aspects. We converted the original “print”
statements to calls to a Logger, which exclusively uses
the class StorableOutput to write persistent logs.
We added the persistence capabilities into classes Call,
Connection, and Customer by having them implement
the Storable interface. This represents the usage homogene-
ity in type definitions. Therefore, the CC candidates in our
example should be the following: Logger, Storable,
StorableOutput, Timer, and Billing.

Figure 1(A) presents the UML diagram of the tele-
com application. Figure 1(B) shows the relationship graph
of all the class types after superimposing the type
relations onto the call graph. A count of the fan-
in degrees for all the classes produces the follow-
ing ordered set with descending degrees: Customer(5),
Logger(4), Connection(4), Storable(3), Timer(1),
Billing(1), Call(1), Local(1), LongDistance(1), and
StorableOutput(1). Taking the top ranked elements,
i.e., Customer, Logger, Connection, Storable,
we have not only mistakenly included two classes, Customer
and Connection, representing the core functionality of
the application, we have also missed three other types:
StorableOutput, Timer, and Billing as they have
low fan-in degrees.

As illustrated by the example, the error made by the fan-
in based method, or by other frequency-based approaches
including the use of clones, is because they fail to observe
two important facts about the whole modular structure of the
program. First, the relation between any two modules is bi-
directional. There is also the fan-out relation in addition to

1This example is publicly available at http://www.cse.ust.hk/∼charlesz/pcm/
tele.zip



2

(A)

(B)

Fig. 1. A: UML class diagram. B: Concept graph

the fan-in relation. In our example, if we also consider the
fan-out relation of the type Customer, then its transitive
closure along the out-going edges includes every element of
the graph. This is a strong clue that the type Customer is
a key component of the program, i.e., a part of the primary
decomposition of the program, because its functionality de-
pends on most of the program features. Second, the module
relation is also transitive. If we inspect beyond the immediate
neighbors, we can conclude that StorabelOutput belongs
to the same CC as Logger does because the former is
exclusively used by the latter. Therefore, by reasoning over
the complete graph structure and taking into account both fan-
in and fan-out relations as well as their transitive nature, we
can avoid many false classifications made by counting fan-in
frequencies alone.

From these observations, we propose a novel CC mining al-
gorithm that more accurately locates crosscutting concerns by
making use of the whole modular structure of the program. We
model the manual process of CC investigation as probabilistic
random walks over the entire program sources, capturing both
the bi-directional and the transitive characteristics of module
relations. The walks are performed on the concept graph
extracted from the program sources. The nodes of the graph
represent program elements such as components, packages,
classes, methods, or arbitrary collections of program elements
subject to custom definitions. The directed edges represent
the coupling relations between program elements. The random
walks are carried out along both the forward and the reverse

directions of the concept graph edges. Consequently, we
obtain two metrics for each node, one representing its degree
of utilization, i.e., how much the implementation of other
elements is dependent on this node, and the other representing
its degree of aggregation, i.e., how much of its implementation
is dependent on other nodes. Our algorithm treats a high degree
of utilization of a program node as a positive indicator for it
being a CC concern. Simultaneously, we use the degree of
functional aggregation as a negative indicator for the intuitive
reason that a high degree of aggregation signifies a major
program functionality, a characteristic of the so-called “core”
functionality of the program. The output of our algorithm is a
set of ranked components based on the two metrics: utilization
and aggregation.

The actual values of utilization and aggregation are com-
puted by a specific random walk algorithm. Our previous
work [16] studied the use of the PageRank [17] algorithm. In
this paper, we have generalized our approach to transparently
work with both the PageRank algorithm and another well-
known algorithm, HITS [18]. This generalization requires
the adaptation of the non-probabilistic nature of the HITS
algorithm to the stochastic nature of our random walk model.
It also requires the redefinition of how our approach ranks
program elements based on the utilization and aggregation
values computed by either the PageRank or the HITS al-
gorithms. In our generalized model, the PageRank and the
HITS algorithms are interpreted as two alternative probabilistic
judgment processes for calculating utilization and aggregation
values. The analytical differences between these two random
walk algorithms are of a mathematical nature and beyond
the scope of our contribution. We empirically show that, in
many cases that we evaluated, the HITS-based probabilistic
judgement produces better results compared to our earlier
work, which is based on the PageRank algorithm. However,
PageRank-based judgement produced superior results in some
of the experiments. The choice of which algorithm to use can
be specified as a parameter to our random walk model, which
facilitates the final judgements by the users of PCM.

We have implemented our approach as the Prism CC
Miner (PCM), an Eclipse plug-in that seamlessly provides the
CC mining capability to Java programmers via the Eclipse
IDE. Although PCM operates fully autonomous, we have
also developed and implemented a declarative language, called
Prism Query Language (PQL), to allow for the customiza-
tion of the mining process by injecting knowledge about the
target application into it. Such customizations can improve
the quality of the mining results significantly. To quantify the
quality of PCM, we first compare the mining results of PCM
to our earlier manual mining efforts [19], [6]. Our experiments
show that, on a medium-sized middleware application, PCM
is capable of producing effective results (i.e., a 95% precision
for the Top-125 elements and a 73% recall over the entire
oracle data set), as opposed to months of manual mining
effort. Compared to the related approaches, PCM is at least
2 X more effective in finding crosscutting concerns, using our
middleware data set and the jhotdraw data set. In each of
these evaluations, we empirically analyzed the performance
differences of the effects of the PageRank and HITS methods
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in our approach. We also conducted a case study, in which
we confirmed by consulting with AspectJ developers the
discovery of new crosscutting concerns via PCM.

We make the following contributions in this paper:
1. We first describe the concept graph and the random

walk model for computing utilization and aggregation values
of elements in the concept graphs. This model emulates and
precisely quantifies a manual mining process.

2. We present the detailed design of the PCM CC mining
algorithm, including the construction of the concept graph,
the natural and differentiated ranking methods, and the idea
of domain knowledge injection.

3. We provide a thorough evaluation of the properties
of PCM. The evaluation includes the quantification through
comparing to our previous manual mining results as well as
the qualitative assessments by consulting with domain experts.
We also provide a comparative study to a related mining
approach based on fan-in analysis [7]. In addition, we discuss
the differences between the results of our tool and the manual
judgement as well as the limitations of the proposed algorithm.

The rest of the paper is organized as follows: Section 2
describes our algorithm in detail; Section 3 presents the im-
plementation of the algorithm; the evaluation of the algorithm
is described in Section 4, including both quantitative and
qualitative measures; Section 5 introduces the current aspect
mining approaches and sets our work apart from related
approaches.

II. THE PRISM CC MINING ALGORITHM

The goal of CC mining is to find program features that have
non-localized footprints in the source code. However, being
non-localized is only a necessary but not sufficient condition
for the high precision classification. For instance, through
a simple tally in the source code of the database engine,
Derby, we found that the class type Table is among the most
frequently used data structures. It is obvious that Table is a
centerpiece of the database engine architecture and frequently
used due to necessity. Our first insight is that, as a form of
duality, this non-localized presence systematically increases
not only the usage frequency of CC features but also the degree
of the functional aggregation of the core components that use
these CC features. Consequently, if we consider not only how
widely a feature is utilized but also how much it depends on
other program features, we acquire an additional perspective
of a different dimension that helps us to improving the quality
of mining results. Our second insight is that the effect of
aggregation and utilization is transitive along the directions
of the module relation network as illustrated by the example
in Section I. Due to the transitivity, the assessment of these
effects need to be conducted accumulatively considering the
whole modular structure of the program.

Our algorithm exploits this phenomenon and uses the ac-
cumulated usage frequency, which is more accurate than the
“fan-in” metric, as a positive indicator of the likelihood for a
feature to be classified as CC. More importantly, our algorithm
also uses the degree of the accumulated functional aggregation
as a negative indicator. Intuitively speaking, of two features

that have similar “fan-in” degrees, the one having higher
“fan-out” complexity is less likely to be a CC feature as
compared to the other. The primary task of our algorithm
is to assign numeric values to these two measures and to
calculate the likelihood of representing CCs for each of the
source elements in the program under investigation. In the rest
of the section, we first outline a random walk model used
for the calculation of utilization and aggregation, followed
by an analytical description. We then present the CC mining
algorithm in detail. The implementation of this algorithm is
presented in detail in Section III.

A. CC mining as random walks

Assuming no domain knowledge with respect to the pro-
gram semantics, a programmer investigates crosscutting con-
cerns in a probabilistic manner, which we model as a random
walk process. The target of the investigation is the program
source comprised of a set of modules. And the investigator
examines the pairwise relationships between two modules. If
a module A uses the module B as part of its implementation,
we say module A “aggregates” the function of module B and
module B is “utilized” by module A. As explained earlier,
these “aggregation” and “utilization” properties are transitive
in nature. We also state a fairness precondition that, before this
process starts, every program module has an equal chance of
representing either a core or a CC feature. In Figure 2, we
illustrate the aggregation and utilization relationships among
seven modules, of which the arrow represents the “use”
relationship such as method calls.

The random walk is carried out when the programmer
randomly pick, with equal chances, a module to start her
investigation. To follow the duality intuition, the investigator
updates two counters for every investigated module, one for
utilization and the other for aggregation. For the currently
investigated module, m, the investigator first needs to decide
what the next module is to inspect. The investigator can follow
the aggregation direction, pick any module, m′, that uses m,
and updates the aggregation counter of m′. Or she can follow
the utilization direction, pick any module m′ used by m,
and updates the utilization counter of m′. This decision of
which direction to follow gives rise to two kinds of judgement
philosophy for the determination of crosscutting concerns,
which we explain as follows.

a) Reinforcement: The reinforcement judgement repre-
sents a mutual reinforcing belief that, if the current module
is more likely to be a CC element, i.e., having its utilization
counter incremented, the module that use this module is also
more likely to be a core element, i.e., having its aggregation
counter incremented. And vice versa. Therefore, the reinforce-
ment random walk updates the utilization and the aggregation
counts back and forth with a single random walk. That is,
for each module mb, we first increment the aggregation count
of all modules that use mb. We then hop backwards to one
of these modules, e.g., ma. At ma, we update the utilization
counters along the utilization direction for every module that
ma uses, and hop forward to one of these modules. We then
repeat the same cycle.
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b) Propagation: The propagation judgement represents
the transitive belief that, if the current module is more
likely to be a CC element, i.e., having its utilization counter
incremented, the module that the current module uses is
also likely to be a CC element, i.e., having its utilization
counter incremented. The propagation random walk updates
the utilization and the aggregation counts through two different
walks. In the utilization walk, we first randomly pick a module
ma and increments its utilization count. We then simply follow
the utilization direction and randomly pick the next module
to repeat the same procedure. In the aggregation walk, we
perform the identical procedure except that we only follow
the aggregation direction and update the aggregation counter.

Following either the reinforcement or the propagation judge-
ment, the two counters record the likelihood for the investi-
gator to visit the corresponding modules when inspecting the
utilization and the aggregation properties after a large number
of random steps. More frequent visits to a particular module
signify its prominence compared to other peer modules in the
program in terms of the investigated property. In our manual
CC mining experience, the frequent inspection of a module
strengthens the programmer’s belief that the module is indeed
significant.

In our algorithm, the random walks are performed over the
concept graph extracted from the program source. And the
random walk algorithms underpinning the reinforcement and
the propagation judgements are adapted from two well known
random walk models: PageRank [17] and HITS [18]. In the
next sections, we formally describe the concept graph and the
computation model of the random walks.

Fig. 2. Relations of modules

B. Concept graph

Our algorithm first uses the concept graph to represent
the compositional relationships between modules as defined
by the developers. Since we are tracking composition and
decomposition relationships, our graph is based on the context
insensitive call graph and does not require flow or context
sensitive information. We define the concept graph as G =<
V,E >, where V is a set of vertices, {c1, c2, · · · , cn}, each
of which is mapped to a collection of one or more modules

such as packages, classes, methods, or a user-defined group
of elements. Each directed edge, epq ∈ E, denotes that the
element set p syntactically “knows about” the element set q
in the following ways:

1) Type extension: A module in p is a subtype of a
modular unit in q as defined by the type system. For
Java, a subtype means either a subclass or an interface
implementation.

2) Method call: A module in p calls a method, the signature
of which is declared in q. This is to account for
practice of interface-based programming. For instance,
when using the Observer design pattern, a class Foo of
the Observer type implements the update interface
to receive notifications. Despite the fact that the class
Subject calls the update method of Foo, we con-
sider that the call effectively signifies the relationship
between the Subject and the Observer. We can
detect this relationship by tracking the class where the
invoked method is originally declared.

3) Method implementation: An implementation in the sub-
type of a class type in p calls a module declared in
q. Again, taking the Observer design pattern as an
example, the method addObserver, which registers
observers with subjects, is represented by an edge on the
concept graph between the Observer module and the
interface Subject but not its subtypes that implement
the method addObserver.

4) Reference: A module in p has q as a field or method
parameter, or it accesses the static members of q.

Note that, in our definition, we use an abstract term module
to show that our algorithm is generally applicable to a variety
of module definitions. In addition, the concept graph for a
particular application is precise as we only use the syntactic
information of the source, which must be fully resolved and
type-checked for a program to be compiled.

C. Modeling random walks

Given the concept graph, G, the core objective of our
algorithm is to compute the two counters that are associated
with each node. These counters represent the fractions of the
total number of steps taken by the random walks that visit that
node and, hence, can be substituted by two random variables
with probabilities Pu (utilization) and Pa (aggregation). The
afore described random walk is a Markov process where
probability of visiting the destination node only depends on
the probabilities of visiting the source nodes in the previous
step and the transition probabilities. We follow the setup of
the PageRank algorithm and express this definition formally
in Equation 1.

P (vj) =

n∑
i 6=j

P (i to j)P (vi) (1)
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Fig. 3. A simple concept graph of five modules. Arrows represent the
direction of coupling between modules.

where P (i to j) is defined as:

P (i to j) =


λ ∗ 1/Outdegree(vi) + (1− λ) ∗ 1/|V |

(Outdegree(vi) 6= 0)

1/|V | (Outdegree(vi) = 0)
(2)

What Equation 2 defines is the rule for picking the next node
to continue the random walk: with λ probability, all outgoing
nodes have equal probability to be picked and, with 1 − λ
probability, the walk is equally likely to pick any node in the
entire graph to continue. For the leaves of the graph, the walk
randomly picks any node to continue. To compute all nodes in
the graph, we use the matrix form of Equation 2 in Equation 3,
where ~P (v) is the probability vector of all vertices and M the
transition matrix with each entry mij = P (i to j). Note that
M is a left stochastic matrix.

~P ′(v) =M × ~P (v) (3)

We now present the computation model for both the rein-
forcement and the propagation judgement random processes.
We accompany our discussion with a simple concept graph in
Figure 3 to illustrate the characteristics of these two judgement
processes and the computation details.

a. Propagation judgement process: The propagation judge-
ment process performs two random walks, one strictly fol-
lowing the utilization direction and the other the aggregation
direction. The random walk is performed by repeatedly calcu-
lating ~Pa and ~Pu through Equation 3, except that we use MT

instead of M in the calculation of ~Pa. It is also a well known
fact in linear algebra that the values in ~Pa and ~Pu become
stationary as there exists the eigenvalue 1 for both the left and
the right eigenvectors of M .

In Figure 4, we illustrate the computation process of the
propagation judgement for a toy concept graph in Figure 3.
Figure 4 (I) shows that the utilization score of node D, PD,
is computed using the utilization scores of all the incoming
nodes A,B, and C. And the node E is computed using the
score of node D only. To calculate the aggregation score,
we invert the utilization graph and recalculate the transition
probilities of edges. Figure 4(II) shows that the aggregation
score of node D is obtained using the score of node E only,
and the score of node B is calculated from node D only.
The dashed arrows signify the probability values, representing
the visiting frequencies, “propagate” along the directed edges.
Note that the transition probabilities, PAB 6= PBA, since the
they are calculated separately on two different graphs.

b. Reinforcement judgment process: The reinforcement pro-
cess takes a step forward in the utilization direction, followed

Fig. 4. Propagation judgement. Dashed arrows represent the direction of
evaluation.

by a step backward in the aggregation direction. The forward
step is equivalent to the matrix multiplication that yields the
updated utilization probability vector ~Pu. The backward step
computes the aggregation vector ~Pa using MT , the transpose
of M . These two steps are expressed by Equation 4. The ran-
dom walk is carried out by repeating these two multiplications
for a large number of times. The fact that the values in both
~Pu and ~Pa become stationary by the repeated multiplications
is a standard result of linear algebra, as pointed out by the
well known HITS [18] algorithm.

~Pu =M × ~Pa

~Pa =MT × ~Pu
(4)

Figure 5 illustrates that the process of the reinforcement
judgement simultaneously computes both the utilization score
of node D, UD, and the aggregation score of node B, AGB ,
in one round of random walk. In the forward step, UD

is computed as the sum of the aggregation scores of the
incoming nodes multiplied by the transition probabilities. In
the backward step, UD is then used to compute the aggregation
score of node B, AGB . The reinforcement effect comes into
play as a larger utilization score for D, UD, leads to a
larger aggregation score for B, AGB , as these two nodes are
mutually dependent on each other.

Our algorithmic design makes a few significant extensions
to the original PageRank and HITS algorithms. Compared to
the PageRank algorithm, the “ranks”, or scores, are mathe-
matically computed in the same way. However, two scores,
instead of a single score, are computed for each node on both
the concept graph and its inverted version. Compared to the
HITS setup, the “hubs” and “authority” scores are calculated
using a stochastic matrix. This, however, does not affect the
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Fig. 5. Reinforcement judgement. Dashed arrows represent the direction
of evaluation. U and AG stand for utilization and aggregation probabilities
respectively.

convergence property of the vectors since ~P ′a := M × ~Pu :=
M×MT× ~Pa and M×MT is always symmetric non-negative.
Please refer to [18] for more details.

D. Adaptations to source code

In designing the computation model, we observe some
important differences in traversing program sources compared
to traversing hyperlinks in web documents, on which the
PageRank and the HITS algorithms are conceived. First, the
number of elements in a concept graph of program sources is
significantly smaller compared to that of web pages. Second,
relations between program elements are usually well defined,
compared to the uncontrolled structure of the links in web
pages. In reaction to these differences, we have made a few
modifications to the canonical setup of the transition matrix
M . These modifications are based on our observations and
practices.
Small damping factor
The damping factor, λ, in Equation 2, represents the restarting
probability, i.e., the probability of the random walker choosing,
with equal chances, any other disconnected nodes instead of
following a relation link. λ has a significant impact on the
ranking results of the underlying graph. For instance, it has
been shown [20] that λ is a useful tool for detecting link-
spams in ranking web pages. For program sources, we choose
λ = 0.05, a smaller value than the one commonly used, to
reflect the reasoning that it is unlikely for a code reviewer
to jump from one module to a random one that it has no
relation with in the type space. In our algorithm, λ accounts for
non-syntactic dependencies between program elements that the
miner likely to follow, such as inter-process communications,
reflective invocations, or other accidental dependencies that
are difficult for the type-based analysis to detect.
Biased transitions
Both the HITS and the PageRank models were initially
incepted for analyzing hyperlinks of web pages. In the graph
constructions of the original algorithms, there are no weights
associated with the edges and each node has equal chance
of transitioning to a connected node regardless of the num-
ber of actual links between them. This idempotent setup is
necessary for resisting malicious manipulations of ranking
computations in uncontrolled settings such as web pages. As
a CC investigator reads the source code, more references to
a particular program element will likely bring that element

Fig. 6. Biased transition

to her attention, hence, increase its chance of being examined.
For instance, when examining the drawFrame method of the
type TextFigure in the Jhotdraw application in Figure 6,
an unbiased probability assignment states that the investigator
is equally likely to visit 7 other class types2 due to either
method calls or field accesses. Realistically, the investigator
would be more biased towards visiting the type Graphics
compared to other types as the most number of calls (three)
are made to it.

To better model the manual process, we use the biased
transition where we associate each edge eij with a weight
ωij

3. Currently, we define the weight ωij as the number of
method invocations made by module i to module j. The biased
transition probability is then defined as:

P(i to j) =

{
ωij/

∑n
k 6=i(ωik) if eij ∈ E

1/|V | if eij /∈ E
(5)

E. Ranking and classification

Both the propagation and the reinforcement judgement pro-
cesses produce two vectors, ~Pu and ~Pa, each of which assigns
a numerical value for every module in the concept graph. To
produce the final ranking, we recalculate the utilization vector
as ~Pu

′
= ~Pu/ ~Pa. Consequently, the utilization value of a

ranked element is boosted if its aggregation value is small. For
instance, for two elements, e1 and e2, with equal utilization
probabilities, i.e., P e1

u = P e2
u , we have P e1

u > P e2
u if element

e1 has a smaller aggregation probability, i.e., P e1
a < P e2

a .
We output the final ranking according to the corresponding
numeric value of each element in the recalculated vector.
And we refer to this ranking as the differentiated ranking.
To quantify the ranking effect of using both the utilization
and the aggregation values, we also output the ranks using the
numerical values of the original utilization vector, referred to
as the natural ranking.

F. Example

Now we come back to the motivating example in Section I
and illustrate how our algorithm behaves differently compared
to the frequency-based fan-in method. Remind that the concept
graph of the example is presented in Figure 1. Table I lists
the actual values of Pu and Pa, computed by PCM using the
propagation judgement, the confidence ratio (l), and the fan-in

2Five types are underlined and two others are the type of fFont and the
return type of getText

3Similar techniques of weight assignments are also used in analyzing web
links [21]



7

values of the class types. We used the natural ranking method
and the biased probability calculation.

From Table I, it is clear that, judging by the usage frequency
(fan-in), the top CC candidates are Customer, Logger, Con-
nection and Storable. As previously discussed, the candidates
Customer and Connection belong to the essential functionality
of the telephone application and cannot be classified as cross-
cutting concerns. In addition, the candidates StorableOutput,
which carries out the actual logging functionality, and the
classes Billing and Timer, the two crosscutting concerns in the
original distribution, are not reported due to their low usage
frequencies. In contrast, our random walk algorithm makes
a few different decisions, which we believe are much more
reasonable. First, it gives StorableOutput the highest utilization
value because it is part of the logging functionality. In using
frequencies, it is ranked the last. Second, the aggregation
probabilities place an important role in deciding that, despite
having high fan-in values, Customer and Connection also
aggregate significant program functionality, in coherence with
the design of this application. As the result, by using the ratio
between utilization (Pu) and aggregation (Pa), PCM reports
the top CC candidates as StorableOutput, Loggger, Timer,
Storable and Billing, which include all of the crosscutting
concerns in this application.

III. THE PRISM CONCERN MINER

We have implemented the PCM algorithm as an Eclipse4

plug-in to enable the ease of use and the seamless integration
with the Java development environment. It is publicly avail-
able5, and its high level architectural components are depicted
in Figure 7.

Given the program source, usually through the Eclipse
project information, PCM first indexes the source using the
native Java compiler in the Eclipse JDT6. The generated index
file is kept in memory to support efficient mining operations.
The users of our tool can specify customized mining settings of
the mining task, such as the scope (whole project or selected
components) of the analysis, or the granularity (method or
class) of the module considered. The miner then works with
the PQL engine to build the concept graph and to conduct
random walks.

The primary purpose of IDE integration is to demonstrate
and to evaluate an unique feature of our algorithm, which
is to allow the users of PCM to influence its computation
process in order to inject a certain degree of their domain
knowledge of the application. This domain knowledge injec-
tion is accomplished by a query language, PQL, that we have
designed for this research. In the following section, we first
briefly introduce PQL and the details of the domain knowledge
injection supported by PCM.

A. Prism query language

The Prism Query Language (PQL) is a simple declarative
query language we have developed for conveniently describing

4Eclipse. http://www.eclipse.org
5The Prism Eclipse plug-in. http://www.cse.ust.hk/∼charlesz/prism
6Eclipse Java Development Toolkit. URL:http://www.eclipse.org/jdt

Fig. 7. High-level architecture of PCM

Query Specification
Retrieve component names match component:"∧.*$";
Compute a call map for callrootmap(match type:"*.*"
component “X” within component:"X");
Retrieve types of which pick type:"*.*" outof
the methods are invoked totype(match call:"*.*.*(..)"
by type “Y” within type:"Y");
Retrieve subtypes of type “Z” match type:"Z+".

TABLE II
PQL EXAMPLES

facts about Java systems. Our convenience claim comes from
the fact that PQL adopts the AspectJ type patterns with
a small addition of scope operators. The underlying pattern
matching is also supported by the matching mechanism of the
AspectJ compiler. With simple set operators such as “union”
or “intersect”, users of PCM can quickly describe a set of
Java elements that match a certain criterion of type definition
patterns and usage patterns. In Table II we give a few examples
of the typical PQL statements used in the mining algorithm. A
set of APIs in PQL allows the embedding of these statements
within Java programs for the dynamic definition of queries.
PQL uses memory-based indices to process queries against
large code bases with good response time. Detailed informa-
tion and the executable of PQL are publicly available7.

B. Expert knowledge injection

In PCM, Expert knowledge injection is the capability of
customizing how concepts are mapped to the elements in the
program source, as a way of injecting the expert knowledge.

PCM supports the following ways of knowledge injections:
1. Exclusion – For large applications, a human miner

is often only interested in investigating parts of the code
space. For instance, software packages such as the graphic
editor, JHotdraw, often include a large number of sample
applications which, albeit not useful in understanding the
internals of the JHotdraw framework itself, can skew the
mining results significantly, as confirmed by our observations
(Section IV-I). The option ignore, taking a PQL query
as its value, excludes non-interested program elements for
a particular run of PCM. For example, the query match

7Prism Query Language. http:\\www.cse.ust.hk\∼charlesz\pql
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Concept Aggr.(Pa) Util(Pu) l(Pu/Pa) Freq Rankpcm Rankfeq
StorableOutput 0.005000001 0.245422857 49.08455961 1 1 10

Logger 0.006295456 0.125054376 19.86422839 4 2 2
Timer 0.006993562 0.075360962 10.77576199 1 3 10

Storable 0.006727274 0.058618246 8.713521042 3 4 3
Billing 0.041578541 0.058253402 1.40104487 1 5 10

Connection 0.080870607 0.09904377 1.224719001 4 6 2
Local 0.04300714 0.034931602 0.812227974 1 7 10

LongDistance 0.04300714 0.034931602 0.812227974 1 7 10
Customer 0.377310965 0.143019241 0.379048726 5 9 1

Call 0.389209312 0.125363941 0.322099029 1 10 10

TABLE I
EXAMPLE

type:"org..samples.*" filters out all sample code
shipped with JHotdraw version 6.

2. Specialization – Opposite to exclusion, the select
option can be used to narrow the scope of processed ele-
ments. This is analogous to search engines combining ranks
with a certain type of context such as keywords or local-
ity. For instance, the PCM user can produce rankings only
for subtypes of Figure by using the PQL query: match
type:"*..Figure+".

3. Customization – The default concern types understood by
PCM are module types defined in the Java language such as
method, class, or package. However, concerns do not always
have to align with the boundaries of modules. Instead, they
can be mapped to patterns in the type space. For example,
the concept of figure element covers all subtypes of the type
Figure. In the JHotdraw 6 distribution, these types span
four different Java packages. Concerns can be mapped to
composition patterns. For example, the concept of networking
layer can be defined as all types having fields of type Socket.
Concerns can also be mapped to interaction patterns such as
defining the concept of Event generator to be types invoking
the fireEvent method. PCM is capable of provisioning
these three kinds of user-defined concepts by taking key-value
pairs which associate an unique concept name with a pattern
defined in a PQL query. This name, representing the user-
defined set, is used by PCM in the ranking evaluations on
behalf of the actual data types contained in the set. Let us
use a simple example to illustrate how customization could
improve the mining results in the case of JHotdraw.

Our initial user study of knowledge injection shows that the
process of concept customization typically undergoes a series
of iterative refinements: the user usually starts with the general
ranking to get an overview of the CC candidates; she then
defines a search query with respect to the interested program
elements to browse the code-level footprints of the crosscutting
phenomenon; based on the code-level exposure, she might
choose to refine the search query to more accurately represent
the investigation target; she then uses the refined query to
produce a set of new rankings. We believe that these iterative
steps are best integrated with the development environment,
and we have created the Prism Eclipse plug-in to allow Java
developers to perform mining directly on their project sources.

IV. EVALUATION

To quantify the effectiveness of our algorithm and to prop-
erly compare to the related mining approaches, we conduct a
large array of experiments which aim to answer the following
questions.

1. What is the quality of the results compared to the
manual effort? Due to the semantic nature of CCs, we
believe that the judgement of domain experts, given sufficient
time, should always be superior to an algorithmic one in
determining if a feature is a crosscutting concern. Therefore,
comparing how closely algorithmic results is to the expert
judgement is an effective way to assess its quality. We quantify
the performance of the CC algorithms by comparing to the
our earlier [6], [19] extensive manual CC investigation on a
middleware application, conducted prior to this research for a
different and independent research purpose. Our conclusion is
that PCM can generate comparable results compared to our
months of manual classification effort.

2. What is the performance of PCM compared to the
related approach? To compare to the state of the art, we
choose the FINT [7] tool as the representative technique.
To enable a fair comparison, we carefully constructed an
unbiased oracle. We collect a set of features in the JHotdraw
application, which are reported as CCs in the literature. Using
this oracle data set, we observe the PCM is significantly more
effective, from 40% to as much as 3X, in both recall and
precision compared to FINT.

3. What is the difference between the reinforcement and
the propagation judgement? We evaluate both the propagation
and the reinforcement judgements and also experimentally
discuss their differences. Our general conclusion is that the
reinforcement judgement produces better results as compared
to the propagation judgement in general. In the JHotdraw
benchmark, the propagation judgement performs better for top
ranked results.

4. How effective is PCM in analyzing new applications?.
To test the effectiveness of PCM on unknown applications, we
worked with domain experts of a third-party application and
ask the developers to verify the correctness of the findings
of our algorithm. We found that PCM was able to locate
latent features which were confirmed as previously unknown
crosscutting concerns.

5. Can PCM efficiently work with large software systems?
We quantify the scalability of PCM algorithm in processing
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software systems ranging from a few thousand lines of code
to over 2 million lines. We observe that the runtime of PCM
scales well with respect to the size of the mining target.

We now discuss our experiments in details.

A. Experiment methodology

Similar to conventional information retrieval approaches,
our basic quantification method is to benchmark the per-
formance of the mining algorithms against objectively con-
structed oracle data sets. However, to the best of our knowl-
edge, there does not exist a well verified and recognized
benchmark for measuring the quality of CC algorithms. Our
oracle data sets are constructed at least unbiased with respect
to all the mining algorithms that we evaluate. We use two data
sets in our evaluation. Our first data set, orbacus, is the result
of our independent research effort prior to the inception of the
mining algorithm. Our second set, jhotdraw, is constructed
using the non-discriminative syntactic matching on program
elements. We evaluate the quality of the algorithms by com-
monly used information retrieval metrics such as precision,
recall, and F1 measure for the Top-K returned results judged
by our oracle data sets. This is a standard evaluation method
for ranking-based statistical algorithms like ours [22]. In our
evaluation, we compare both natural and the differentiated
ranking methods to quantify the effect of using both the bi-
directional and the transitive properties, the two main insights
used in our algorithm. The incremental interval of K is picked
at 25, a value we feel can properly and succinctly reflect the
properties of the compared algorithms.

B. Experiment 1: compare to manual effort

Our first experiment is to compare the PCM results to
quantify the precision and the recall with respect to our
manual classification of CC concerns in the source of the
ORBacus middleware. We emphasize the following facts
about this experiment. First, the oracle data set, i.e., our
manual classification that we compare to, is not deliberately
constructed for this study. Instead, the date set is the result
of a two-year independent study [23], [6], [19] of CCs
in middleware systems prior to the inception of the PCM
algorithm. Therefore, the classification is not biased towards
the PCM algorithm. Second, due to the semantic nature of
crosscutting concerns, we believe that the manual classification
based on domain knowledge is always superior to algorithmic
conclusions. Our study is to reflect how close the automated
mining is to our manual effort. By this reason, we will not
compute the F measure in this experiment. We now present
the oracle data set and the evaluation details.

1) Oracle data set: ORBacus is IONA’s CORBA8 product.
The entire ORBacus distribution consists of around 1800 Java
class types. Our manual classification produces a CC set con-
sisting of 557 class types. Our previous research results [23],
[6], [19] indicate that these classes not only crosscut the core
structure of the application and, as a noteworthy characteristic,

8Common Object Request Broker Architecture. URL: http://www.omg.org/
corba

the remaining classes, after them being refactored out, actually
comprise a runnable version of the original application with
the minimal core features [19]. We note that this data set
reflects our research experience as CC experts and might not
be representative of other large applications. Nevertheless, it is
the largest and thoroughly validated “aspectized” application
available to us.

To focus on class types that represent the design effort
of programmers, we exclude, from the reference CC set,
the support code, i.e., the auto-generated code included in
the ORBacus source distribution, which is not part of the
functional implementations of ORBacus itself. These types
include “stubs”, “helpers”, and “holders”. We also include
the interface types into the CC set. It is common to define
the object behavior as interfaces for conforming classes to
implement. Such kind of interfaces, post-fixed by the string
“Operations” in ORBacus, can be treated as a form of
crosscutting concerns [24].

2) Evaluation and observation: In Figure 8, we report the
precision of the top k results recommended by PCM as
compared to our manual data set. We vary k in steps of 25 from
25 to 525, an upper bound close to the size of the oracle data
set. We evaluated both the propagation and the reinforcement
judgements, with and without the use of differentiation. We
make the following observations of the results.

1. On average for all the K values, the precision improve-
ment of PCM ranges from 20% (RI) to 56% (RI:d) and
the recall from 22% (RI) to 53% (RI:d). The best precision
is obtained by the differentiated reinforcement judgement at
around 95% for the top 125 results. The quality of the Top-
K results starts to consistently deteriorate as k increases. This
method also achieves the best recall at around 75% for top 515
results at the precision of 81%. We believe this performance
is comparable to the our manual classification effort. The
best recall is also achieved by the differentiated reinforcement
judgement at around 72% with 80% accuracy.

2. The differentiation method generally improves the rank-
ing quality of the both judgements. The reinforcement judge-
ment is more sensitive to the differentiation method as it
boosts the precision of the top-K ranks by 30% to 61%. The
improvement on the propagation method is more significant
as the window size gets large.

3. As we increase the size of the ranking window, the
number of correctly recalled elements also increases for
both judgements. The precision of the propagation judgement
shows very limited variations. However, the changes in the
case of reinforcement exhibit “hill”-shapes. This shows that
the reinforcement method clusters CC candidates and, how-
ever, assigns them low absolute utilization values. After being
boosted by the differentiation, this clustered is shifted upwards
to the range of between 200 and 400 to top 200.

3) Hypothesis testing: From the statistic point of view,
one can be curious of how likely the precision computed by
PCM is by chance, i.e., equivalent to the random sampling
of the data set. To clarify this hypothesis, we pick k = 125
where the number of correctly identified CC candidates, n,
by PCM are 77 (RI), 119 (RI:d), 92(PR) and 96(PR:d).
To calculate the probability of retrieving these elements by
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chance, we calculate the total number of equivalent samples,
each consisting of n elements sampled from our oracle data set
and k − n elements from the rest of the data. We then divide
it by the total number of samples of size k from the entire
populations. Following the formula,

(
557
n

)
×
(
1815−557
125−n

)
/
(
1815
125

)
,

it is easy to verify that obtaining the results by random
sampling is very unlikely by chance.

C. Experiment 2: compare to the fan-in approach
In this section, we conduct a comparison study between

PCM and FINT [7], a representative frequency based CC
mining tool. We use two data sets to quantify the performance
differences between FINT and PCM: the ORBacus data set
and the JHotdraw9 data set, consisting of 400 method defi-
nitions out of around 3700 methods in total. The ORBacus
data set is the same as in the previous experiment. To generate
the JHotdraw data set, we first selected the following features
reported as CC by FINT: observer, undo, persistence, visitor,
and command. We then issue PQL queries to extract all the
method definitions pertaining to these five features10. Since

9We used version 6 of JHotdraw from http://www.jhotdraw.org
10The details of the PQL queries can be found on the PCM web site:

http://www.cse.ust.hk/∼charlesz/pcm

Fig. 9. Comparison of FINT and PCM (ORB)

PQL queries are only declarative descriptions of program
features, our oracle data set is independent of any specific
mining algorithms.

In Figure 9, we compare the F1 measure of the Top-K
results between FINT and all options of PCM, using the
ORB dataset described earlier. Evaluation based on a single
value such as the F1 measure allows us succinctly compare
the results of FINT with all of the options of PCM. The
version of the FINT tool available to us does not support
ranking at the class level. We therefore faithfully implemented
the algorithm based on the FINT publication by ranking all
classes according to their degrees of fan-ins. Our observation
is that, when K < 100, the reinforcement judgement without
differentiation performs at par with that of the FINT approach.
Meanwhile, all other three options perform better ranging from
28% (PR) to 57% (RI:d). On average, PCM is about 21% (RI),
34% (PR), 38% (PR:d), and 56% more effective than FINT.

In Figure 10, we plot the F1 measure of Top-400 returned
elements for both FINT and PCM on the JHotdraw dataset.
The FINT result is obtained directly from the FINT eclipse
plug-in released by its authors [7]. We can run PCM at the
method granularity and produce global rankings for the two
judgement options. Our results show that, for most of the K
values, PCM is least two times as effective as compared to
FINT. The maximum number of correct elements retrieved by
PCM is 120, 3 times as many as that of FINT. On average,
PCM is 236% (RI:d) and 233% (PR:d) more effective than
FINT as shown by our results. In Table III, we present a micro
perspective and show the results of the first 25 methods return
by both FINT and PCM. For the first 20 methods, FINT did
not return any matching results with respect to the oracle data
set. Meanwhile, PCM performs much better, e.g., returning 9
correct methods in the top 10 returned results by the use of
the propagation judgement.

D. Experiment 3: the domain knowledge injection study

To study the effect of the domain knowledge injection, we
performed a case study on how it influences the ranking quality
on the source code of JHotdraw. In Table IV, we compare the
top-15 ranked elements computed using plain Java types (2nd
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K 5 10 15 20 25
FINT 0 0 0 0 1
PCM (RI) 1 7 10 12 13
PCM(PR) 2 9 11 12 15

TABLE III
RECALLED ELEMENTS ON JHOTDRAW

Fig. 10. Comparison of FINT and PCM (JHotdraw)

column) to using concept customizations (3rd column). We
observe that the types representing the features “persistence”
and “undo” are repeatedly reported in the plain ranks. For
PCM users wishing to treat “persistence” or “undo” uniformly,
this could introduce inconvenience or “noise” when inspecting
the top-ranked elements.

To produce more compact rankings, we define two
customized concepts persistence and undo as PQL query
statements as follows:

persistence --> match type:"*..Stora*"
undo --> match type:"org..Undoable" or
type:"org..UndoManager";

The features persistence and undo are evaluated
directly by PCM and ranked as highly crosscutting concepts
(placed 3rd and 6th in the 3rd column). In addition, the
customized computation gives much more diversified results
for the top-ranked elements as it brings more distinct elements
under the attention of the PCM user.

E. Experiement 4: the AspectJ compiler case study

In this experiment, we conduct a case study of the CC
mining in the source code of the AspectJ [25] compiler
where we work with the developers to assess the usefulness
of PCM. The version of the AspectJ compiler that we studied
is 5.0, consisting of approximately 1000 classes, excluding
code written in Java 5 and the entire AspectJ Eclipse plug-in
(AJDT). The propagation judgement is used and the mining
result is publicly available11. To assess the quality of the

11AspectJ mining results. URL:http://www.cse.ust.hk/∼charlesz/pcm/aj.txt

Rank Plain Customized
1 Figure CollectionsFactory
2 DrawingView JHotDraw-

RuntimeException
3 Storable persistence
4 TextHolder Figure
5 FigureEnumeration DrawingView
6 Undoable undo
7 UndoManager FigureEnumeration
8 DrawingEditor DrawingEditor
9 Handle Handle
10 JHotDraw- Locator

RuntimeException
11 StorableInput Tool
12 StorableOutput Command
13 Tool ConnectionFigure
14 CollectionsFactory HandleEnumeration
15 Command Drawing

TABLE IV
EFFECTS OF USING CUSTOMIZED CONCEPT DEFINITIONS

mining results, we consulted with the AspectJ developers. Our
first attempt processes every inter-class relation. The AspectJ
developer reported that a large number of top-ranked elements
were identified as noise. These elements are well-localized in
two packages: bcel and weaver, which occupy 30% of the
total number of class types of the mined AspectJ sources. In
a second attempt, to look for “compiler-wide” crosscutting
candidates, we only record the classes if the relations between
two classes are defined in different packages12. We confirmed
with the domain expert that the quality of the ranks has
improved and a few unexpected but correct CC candidates
were also identified. We list some examples of the resulting
CC candidates specific to the AspectJ compiler discovered by
PCM:

Structural model: The structural model maintains the infor-
mation about the structure of both aspects and classes as well
as the relations between aspects and advised classes. The sup-
port for the structural model are implemented in the AspectJ
compiler in various places such as building component, UI
support, and JavaDoc functionality.

Backwards compatibility of the weaver: AspectJ aims to
support backwards compatibility so that a newer version of
AspectJ can load aspects compiled with an older version. To
enable this, the version information is stored as standard Java
class file attributes. The support of these attributes is scattered
across the weaving component

Compile and weaving context: The compile-and-weave con-
text “is responsible for tracking progress through the various
phases of compilation and weaving”. It is used to create a
”stack trace” that “gives information about what the compiler
was doing at the time”13 when unanticipated events occur
during the compilation and the weaving process.

12This can be set as an option in our plug-in.
13See comments of the class CompilationAndWeavingContext of

the AspectJ 5.0 source. URL: http://www.eclipse.org/aspectj
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F. Large scale CC mining

In this experiment, our mining target is the IBM Web-
sphere Application Server 5.0 source code. The whole of
the Websphere Application Server 5.0 code base consists of
around 15K classes, 3 millions lines of code, and more than
125 independently built components. Not all of the sources
are compiled for a particular build instance. In our instance,
PQL has indexed over 8000 classes comprising approximately
2.1 million lines of code. The version built with PQL indices
passes the relevant build verification tests.

Correct classifications The crosscutting functionalities in
the Websphere Application Server reported by Colyer
and Clement from their manual investigations include the
Websphere diagnostics and serviceability components, the
Websphere performance monitoring infrastructure, and the
WebSphere EJB container component. These components are
also captured by our algorithm (ranked 2nd, 3rd, 12th, and
15th). The Websphere security public interface component
(ranked 9th) and transaction service public interface com-
ponent (ranked 21th) contain interfaces for accessing the
security and the transaction support, hence, represent typical
crosscutting concerns for enterprise systems.

Misclassification’s: As expected, our top-20 ranking pro-
duces false positives for pivotal building blocks of the sys-
tem. For instance, the Websphere user interface component
implements the base functionalities of the browser-based
administration console for Websphere. This is misclassified
as it is an essential component for more specific console
applications. Same misclassification happens to the Websphere
component framework which provides runtime support for
about 26 other components. The WebSphere shared utility
component, comprising many utility functions, is also a mis-
classification. Utilities are often general and yet fundamental
computations of the application logic. They are often essential
to the functionality of the application and cannot always be
classified as crosscutting concerns.

Surprises: Caching and logging are typically referred to
as aspects. One would expect to find them in an application
server. In the Websphere Application Server, the WebSphere
caching component is responsible for improving the response
time of Servlets by caching their results. However, this
component is strongly classified as a non-crosscutting com-
ponent (receiving the lowest ranking in the CC ranks and
10th in the non-CC ranks). Upon examination of the source
code, this caching functionality is indeed well modularized
as an interceptor to intercept “calls to cacheable objects, for
example, through a servlet’s service() method or a com-
mand’s execute() method” [26]. The Websphere commons
logging component, which can easily be mistaken as a classic
crosscutting concern, is also reported as non-crosscutting by
our algorithm. This component is not responsible for the actual
logging functionality in the Websphere Application Server.
It is an adaptation of the Apache logging interface with the
native Websphere Application Server logging functionality
in the Websphere servicability component.
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G. Choices of PCM parameters

There are two major parameters of PCM: the method
of ranking (natural or differentiated) and the type of the
judgement (propagation or reinforcement). We now briefly
discuss the observed impact of these parameters based on the
experiments on the ORB and the JHotdraw datasets.

Judgement type For both the ORB and JHotdraw data
sets, the Top-K performance of the reinforcement judgement
is generally superior to that of the propagation judgement.
To obtain additional insights on the differences of these two
random walk models, in Figure 11 we plot the logarithmic
values of computed utilization and aggregation probabilities
for both judgements on the ORB data set . It can be observed
that the range of changes in the case of the propagation judge-
ment is much smaller compared to that of the reinforcement,
as most of the propagation values are clustered towards the
upper right quadrant of the graph. It shows that the probability
pairs computed by the reinforcement method exhibit larger
differences. And this polarization supports the phenomenon
that applying the differentiation method causes a significant
boost to the rankings in the ORB data set.

Ranking method The differentiated ranking method has
various degrees of improvements on the ranking quality of
PCM on the ORB data set. For top-100 elements, it improves
the quality of the reinforcement judgement by 30% and of
propagation by 3%. Since its application to the reinforcement
judgement produces the best results on our data sets, it is the
default ranking method of PCM.

H. Runtime characteristics

To quantify the efficiency of PCM we have chosen 7
Java applications of various types and sizes: graphical editing
(i.e., JHotdraw), databases ( Prevayler14, hSQL15, Derby16),
middleware implementations (ORBacus, Websphere Appli-

14Prevayler. URL: http://www.prevayler.org
15HSQL Database Engine. URL: http://www.hsqldb.org/
16Apache Derby. URL:http://db.apache.org/derby/
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No. of Types Duration(sec) LOC
Prevayler 38 0.15 2,396

Padres 203 1.04 17,124
HSQL 310 1.77 48,300

JHotdraw6 398 1.59 15,541
Derby 1,261 15.9 153,000
AJ1.5 1,353 11.67 89,634

ORBacus 1,815 24.1 64,704
WAS 8,800 1,085 2,000,000

TABLE V
MINING PERFORMANCE

cation Server, and PADRES17) and the AspectJ compiler
version 518.

We measure the size of the application, both in terms of
number of class types and lines of code (LOC), as well as
the time for PCM to generate the mining results. The PQL
indexer incurs negligible runtime overhead for the normal
compilation process. All experiments are performed on an
IBM ThinkCentre workstation running the Linux 2.6 kernel on
a Pentium 4 CPU at 3.2G Hz with 1.5G of physical memory.
The maximum heap memory used by PCM is set at 512M for
all experiments except for the WebSphere application server,
where it is set to be 1.5G. Table V shows that for most
mid-sized applications, PCM is able to produce the results
in less than 30 seconds. Scaling up to large scale applications
such as the Websphere Application Server, PCM requires
18 minutes to complete on our workstation (a conventional
desktop PC19.)

I. Lessons learned

From our experiments and observations, we summarize
some typical mis-classifications to serve as guidelines for
interpreting PCM-computed results. We attribute most of these
mis-classifications to the accidental crosscutting phenomenon.
That is, core concerns syntactically crosscut the code base for
the following reasons:

Fundamental building blocks: Certain types are widely
referenced, serving as fundamental building blocks of the
system. These types themselves are simplistic in terms of
collaborating with other types. Examples of such types include
Figure in JHotdraw and Buffer in ORBacus. These
types often appear in the top ranks due to the low aggregation
values. It is not difficult to filter out these false positives with
the domain knowledge of the application at hand.

Support code: The presence of significant pieces of support
code, including both added functionalities and samples of
demonstrations, can cause key components of the system to
syntactically scatter. Examples of such types include sample
applications included in the JHotdraw distribution and the
skeleton code in ORBacus. Additional treatment is needed
to exclude these program elements from skewing the ranking

17http://padres.msrg.toronto.edu/
18http://www.eclipse.org/aspectj
19On the same workstation, the build process for a Java application

comprised of about 10,000 classes and 2.4 million lines of code takes about
1 hour.

results. Our experience is that this is easy to do since these
types of program elements usually follow a certain naming
convention. The expert knowledge injection capability of PCM
can be leveraged to achieve this.

Utilities: It is common practice to group general com-
putation logic into so-called ”utility” types such as in the
org.jhotdraw.util package of JHotdraw. Utility types
are difficult to even classify manually because their function-
alities, such as bit flipping or searching, are often fairly inde-
pendent of the application itself. These types typically receive
high CC rankings and can be easily identified by the miner.
This phenomenon is also identified by other researchers [7].

In addition to mis-classifications, the ranking results can
be skewed due to local crosscutting in large packages as in
the case of our AspectJ experiment. Qualifying the package
level crosscutting in our algorithm can effectively reduce local
noise. However, the useful information might be lost and lower
qualification levels are still necessary if the natural modular
boundaries are not fine-grained, i.e., in applications containing
super packages or so-called “God” classes.

V. RELATED WORK

Research in the area of aspect mining and CC discovery
can be roughly classified into three categories: static analysis,
runtime analysis, combined analysis, and multi-modal analy-
sis. The first two categories are based on the program itself,
and the last category relies on other artifacts related to the
program inspected. Due to the absence of benchmarks, it is
difficult to offer a quantitative comparison of the quality of all
approaches. Our comparison is thus from the methodological
perspective.

Early approaches for CC discovery aim at facilitating the
description and the specification of CC to aid the human aspect
miner in her concern-discovery-by-query task over large code
bases. AMT [27] and AMTex [28] enable the specification
of crosscutting concerns using both type and lexical patterns.
JQuery [29], CME20, and PQL provide language-based ap-
proaches to improve the expressiveness of this specification.
FEAT [30] is based on recording the code browsing and code
manipulation process to track and map concerns. All these
approaches are more manual and query-based in nature, they
do not fully automate the actual discovery of crosscutting
concerns. The strive for more automation in CC discovery
is the main objective driving the algorithm developed in this
paper.

Early automations of CC discovery are based on analyzing
program element frequencies and exploiting the syntactic
homogeneity of crosscutting concerns. Marin, Deursen, and
Moonen [7] carried out a fan-in analysis on various systems to
account for the “popularity” of crosscutting types. Bruntink et
al. [8] presented the detecting of scattered code clones for lo-
cating crosscutting concerns. Our earlier work has introduced
the notion of “degree of scattering” [6] to produce ranks of
frequently used types and methods in Java systems. Compared
to this class of approaches, our random walk based algorithm

20Concern Manipulation Environment. URL: http://www.research.ibm.com/
cme/cme
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presented in this paper is able to reflect the “network effect”
of program elements. Our simultaneous use of “utilization”
and “aggregation” values provides additional rationals for
classifying mining targets. In addition, compared to earlier
approaches, we also address the discovery of heterogeneous
crosscutting concerns.

Numerous approaches have been dedicated to the runtime
analysis of programs. Tonella et al. [10] demonstrated the
effectiveness of using formal concept analysis over execution
traces of a program. Breu et al. [31] also exploits execution
traces in the DynAMiT framework to discover crosscutting
concerns. Execution traces are effective in overcoming the
semantic barrier often encountered in syntactic analysis. Com-
pared to these approaches, our approach is syntax-based op-
erating directly on the program sources.

Researchers have also shown that, by combining several
sepecialized techniques [32], [15], the mining quality is better
than using each of them individually. We classify PCM as a
specialized technique that can also be added to the repertoire
of these combinational approaches.

Muli-model analysis means incorporating artifacts other
than the syntactic information of the program source for the
purpose of locating crosscutting concerns. Baldi et al [12]
uses the DLA probabilistic model to associate CC with latent
topics by treating variable and class names as words. Shepherd
et al. [33] leverage natural language processing capabilities
together with the keywords and comments of the source for
clues about crosscutting concerns. Breu et al [11] and Adam et
al [14] make use of CVS histories in tracking crosscutting up-
dates. Aspect mining in requirements [34], [35], [36] has also
been shown to be an effective approach. These approaches in
general complement the source-code based mining techniques
like ours.

Inoue et al. [37] presented an application of the PageRank
algorithm for ranking components in Java program sources.
The ranks, interpreted as weights, are equivalent to our popu-
larity ranks used to identify “fundamental and standard” [37]
types. Aside from solving a different problem, – the problem
of CC discovery,– our algorithm has many significant technical
differences. For example, we adjust the PageRank algorithm to
reduce the randomness of analyzing program sources having
controlled structures. In addition to popularity ranks, we
simultaneously use significance ranks to reflect the properties
of components in another dimension.

VI. CONCLUSION

We have proposed the use of random walks to approximate
the process of how a human miner of crosscutting concerns
distinguishes between core elements and crosscutting concerns
without knowing about the application semantics. The goal
of these random walks is to calculate probabilistic values
that characterize the degree of utilization and aggregation for
each CC candidate under investigation. We implemented our
algorithm as the Prism CC Miner (PCM) Eclipse plug-in
and made it publicly available for evaluation. Leveraging the
flexibility and the efficiency of the Prism Query Language,
users of PCM can also influence the behavior of the algorithm

by customizing how nodes of the relation graph are mapped
to the elements in the program sources. We have evaluated
PCM extensively on various oracle data sets as well as through
individual case studies with domain experts. Our quantifica-
tions show that PCM can achieve comparable performance
compared to the manual classification effort. It is capable
of identifying hundreds of crosscutting concerns with 95%
accuracy. As compared to a representative frequency based
mining approach, the performance of PCM is also significantly
superior.
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