
FlexSync: An aspect-oriented approach to Java synchronization∗

Charles Zhang
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
charlesz@cse.ust.hk

Abstract

Designers of concurrent programs are faced with many
choices of synchronization mechanisms, among which clear
functional trade-offs exist. Making synchronization cus-
tomizable is highly desirable as different deployment sce-
narios of the same program often place different prece-
dences on synchronization choices. Unfortunately, such
customizations cannot be accomplished in the conventional
non-modular implementation of synchronization. To en-
able customizability, we present FlexSync, an aspect ori-
ented synchronization library, to enable the modular rea-
soning of synchronization and to resolve the coupling be-
tween synchronization intentions and mechanisms in Java
systems. With FlexSync, programming synchronization is
largely declarative. Complex Java systems can simultane-
ously work with multiple synchronization mechanisms with-
out any code changes. The FlexSync load-time weaver
performs deployment time optimizations and ensures these
synchronization mechanisms interact with each other and
with the core system consistently. We evaluated FlexSync
on commercially used complex Java systems and observed
significant speedups as a result of the deployment-specific
customization.

1 Introduction

In Java programs, synchronization is commonly referred
to as the coordination of multiple threads in accessing
shared program states. As concurrency becomes a com-
mon programming practice in the multi-core era, the de-
signers of concurrent programs are faced with many choices
of synchronization mechanisms such as the use of locks,
atomic blocks [7, 8], and, more recently, software transac-
tional memory [10, 21]. For their distinctive operational dif-
ferences, clear functional trade-offs exist among these syn-
chronization mechanisms. This is problematic for building

∗Draft. In ICSE 2009, Vancouver, Canada

general-purpose and reusable Java systems as, in conven-
tional approaches, synchronization mechanisms are “hard-
wired” to the application logic through the use of library
APIs or specialized language constructs. At the same time,
choosing the most appropriate mechanism is increasingly a
decision made through reasoning about how reusable sys-
tems are being integrated in diversified composition con-
texts. Let us further elucidate this issue through a simple
example.

Our example looks at a general-purpose data structure,
Buffer, shared by multiple threads in a concurrent pro-
gram. Each thread makes accessor calls to store and to re-
trieve data from the buffer. We have a consistency rule such
that these accessor calls (get or set) can only proceed if
the state of the Buffer is valid (full or empty). In-
consistency can happen if, for example, thread A empties
the buffer after thread B verifies that the buffer has data and
before it retrieves the data. There are three popular syn-
chronization options: the use of the Java synchronized
keyword (lock), the block-level atomicity support (BA)
using two-phase-locking (2PL) as in [1], and the use of
software transactional memory library(stm) exemplified by
dstm2 [10] (Please refer to Section 2 for more introduction
on 2PL-based BA and dstm2). In Figure 11, we plot the
time each version takes to complete a fixed number of work
units as the number of concurrent threads increases. Each
work unit consists of a fixed number of set/get combina-
tions. For the lock version, we count successful operations
and perform a retry if any inconsistency is detected. The
BA and STM versions produce no inconsistencies. One can
easily observe that the lock-based approach has the fastest
response time, whereas the BA implementation is slightly
slower. The performance of the dstm2 version experiences
significant fluctuations. It can be as fast as the BA approach
or 5-6 times slower.

The measurements show that the choice of synchroniza-
tion mechanism for Buffer is really dependent on what

1All measurements are collected on a dual-core Linux workstation with
4GB of physical memory. The number of total threads ranges from 10 to
1000. Each point is taken as the shortest time of five runs.

1

Figure 1. A comparison of response time
among locks, BA and STM

matters the most to the domain of its application. For in-
stance, the use of locks is preferred if high performance is to
be pursued and inconsistencies can be tolerated. The STM
approaches are appealing to the ones requiring transactional
semantics on the shared states and not sensitive to the fluc-
tuations of the processing time. If atomicity is the only re-
quired property, applications would prefer the lock-based
atomicity support, which acquires more locks to achieve the
consistency of states and, as the result, sacrifices a certain
degree of concurrency. Therefore, the buffer code, if it were
to be used as a general-purpose building lock of other con-
current application, cannot be hardwired with any particu-
lar synchronization mechanism afore-listed. The practice
of client-side locking, such as the synchronizedMap
method of the Collection class, is effective in treating
this problem for types representing data structures. How-
ever, we only use buffer as a problem illustration. Our work
considers complex reusable Java programs, many are con-
current themselves.

Our buffer example poses a paradoxical design chal-
lenge: synchronization must be designed and implemented
before the program can be used; however, the best synchro-
nization mechanism is not known until we know about how
the program is used, i.e. its composition context. This de-
sign paradox is conventionally resolved if, first, the program
feature is modular, and, second, its interactions with the rest
of the program can be abstracted for the use of late binding
techniques. None of the premises holds in the conventional
treatments of synchronization, the same reason why it is
considered a classic crosscutting concern [12]. The major-
ity of the proposed solutions, including both library-based
and language-based approaches [10, 22, 8, 16], require
system-wide code-level commitment to particular synchro-
nization mechanisms. The induced inflexibility is detri-
mental to reusable Java systems. Our case studies of real
commercial middleware systems show that the performance

overhead caused by this structural rigidity can be as much
as 40%. This problem will exacerbate drastically because
the degree of reuse and integration will increase dramati-
cally [17].

To tackle these challenges, we present FlexSync, in-
cluding both an aspect-oriented library and a load-time
weaver, to enable the modular reasoning of synchroniza-
tion and the code-level separation of its mechanisms from
reusable Java programs. This separation is possible based
on the observation that, conventionally, the marking of syn-
chronization intentions, declaring regions of the program
logic that require special synchronization attention, is an
implicit outcome of the direct use of specific synchroniza-
tion mechanisms, i.e., library APIs or language keywords.
If these intentions have explicit and well-defined code struc-
tures, they can be reasoned and manipulated by meta-
programming such as AOP [12] as to externalize reusable
feature interactions between synchronization and the core
system. The design of FlexSync library APIs emphasizes
on the ease of “picking out” the intentions where the in-
teraction logic, encapsulated in the library, can be auto-
matically applied. The FlexSync aspect weaver, an exten-
sion to the AspectJ aspect weaver, use static analysis, such
as control-flow analysis and escape analysis, to automati-
cally reason about the global composition and interaction
of synchronization mechanisms. With FlexSync, the syn-
chronization code is modular and lives separately from the
operational code. We show that, through FlexSync, sophis-
ticated Java systems can simultaneously work with multiple
synchronization mechanisms of very different genres. The
flexibility and the deployment time optimizations, made
possible by using FlexSync, can significantly improve the
performance for large complex systems.

We make the following contributions in this paper:
1. We first present the concept of the separation of in-

tention and mechanism in the context of synchronization
design. We empirically show that such separation can be
achieved for large-scale and complex Java systems.

2. We present the FlexSync aspect synchronization li-
brary, which encapsulates patterns of interactions between
Java code and the synchronization mechanisms and expose
these patterns through the process of “tagging”. We explain
how the tagging process can attach different synchroniza-
tion mechanisms onto the same code structure.

3. We present the FlexSync load-time synchronization
weaver which supports the global reasoning of synchroniza-
tion mechanisms in the scenarios of unanticipated compo-
sition of reusable systems.

4. We present a thorough evaluation of FlexSync-
based synchronization implementations, covering the pro-
gramming effort and its functional characteristics. We con-
tribute2 the source of the FlexSync library and the systems

2The FlexSync Project. URL:http://www.cse.ust.hk/

2

http://www.cse.ust.hk/~charlesz/flexsync

we experiment with for the interested readers to inspect and
to perform further evaluations.

The rest of the paper is organized as follows: Section 2
introduces atomicity and the dstm2 implementation of soft-
ware transactional memory; Section 3 presents the design
methodology embodied in FlexSync. Section 4 evaluates
FlexSync through standard benchmarks and case studies.

2 Background

Block-level atomicity
In the presence of multiple threads, the block-level atomic-
ity means a group of program executions, scoped lexically
within a block, is to be carried out serially without the
interference from the inter-leavings of threads. In Java
systems where objects are dynamically allocated, we use
a two-phase-lock mechanism to acquire the associated
locks of all dynamic objects in the control flow of the
atomic block. These locks are released after the atomic
block exists. Our implementation is based on the cflow
constructs of AspectJ. Please refer to our source release
for the details of the implementation.

Software transactional memory
Also referred to as the optimistic synchronization, software
transactional memory (STM) provides runtime infrastruc-
tures to keep track of the reads and writes to the shared pro-
gram states. It thrives on the optimistic assumptions that
real data races occur infrequently for many concurrent pro-
grams. In STM, a collision can happen when thread B per-
forms writes on the shared data after they are read by thread
A. Then, the shared states are to be rolled back and the op-
eration is re-executed. This can cause the large performance
fluctuations because the chance of collision is subjective to
the number of threads and the thread scheduling that can be
non-deterministic. The particular STM library used in this
research, dstm2, makes copies of the shared states to sup-
port rollbacks. This technique is reported to have the fastest
runtime performance [10]. STM offers programmers a sim-
pler concurrency control mechanism compared to the direct
use of locks. In our application of dstm2, we replaced the
automatic state copy capability in the original implemen-
tation with a callback method requiring the manual imple-
mentations. This is because many reads or writes in the sys-
tems that we have experimented with are not performed by
“setters” and “getters” as required by the original scheme.

∼charlesz/flexsync

3 FlexSync: the modular and the global rea-
soning of synchronization

Following the definitions in [13], the general design goal
of Flexsync is to first enable the modular reasoning of syn-
chronization through using the FlexSync-API to explicitly
express how synchronization mechanisms interact with the
operational logic. At the same time, we address the global
reasoning of the unanticipated program compositions using
the Flexsync loadtime weave. The rest of the section first
present how we achieve these design goals in detail.

3.1 The separation of intention and mech-
anism

Synchronization is typically coded as lexical scopes over
a group of programming statements, demarcated by either
language keywords, such as synchronized or atomic,
or by library calls, such as the lock/unlock pairs of
some Lock object. These lexical scopes represent the syn-
chronization intentions of the developers, identifying code
regions requiring special synchronization treatments. We
refer to language keywords or API calls used in the de-
marcations as the mechanisms, concerning the specific de-
cisions of what kind of treatments to apply. These two
concepts are usually undistinguished in conventional ap-
proaches. We advocate their explicit separations as a funda-
mental step towards the modular reasoning of synchroniza-
tion.

In our current design, the separation is achieved by as-
suming that synchronization regions are method-like: the
data flow in these regions can be re-expressed following the
input/output model of a function. This is certainly true for
methods prefixed with the synchronized keyword. For
the synchronization blocks inside method bodies, we per-
formed a study of whether these blocks can be automati-
cally transformed into methods using the Extract method
facility of the Eclipse JDT refactoring library. We use an
AST walker to retrieve a synchronization block and ask
the JDT API to return the refactoring status. We studied
four open source programs covering four types of servers
in which concurrency is extensively used: RPC middleware
(ORBacus3), JMS broker (OpenJMS4), web server (Jig-
saw5), and database server (Derby6). In our study of these
servers, we encountered three common causes of automatic
refactoring failures: early return (ER), where a return
statement is nested inside the block, multiple variable as-
signment (MV), where multiple local variables are written,
and branch selection (BR), where the block resides in a

3ORBacus: URL:http://www.iona.com/orbacus
4OpenJMS. URL:http://openjms.sourceforge.net
5Jigsaw. URL:http://www.w3.org/Jigsaw
6Derby URL:http://db.apache.org/derby/

3

http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.cse.ust.hk/~charlesz/flexsync
http://www.iona.com/orbacus
http://openjms.sourceforge.net
http://www.w3.org/Jigsaw
http://db.apache.org/derby/

branching block of either if or switch. Among these
failures, the ER case can be generically treated with by set-
ting a condition variable to true inside the refactored method
and checking this condition after the method returns. It re-
quires trivial source rewriting and, thus, can be automati-
cally treated.

In Table 1, we report the sizes of each program, the us-
age of synchronization, as well as the results of invoking
the Eclipse refactoring APIs. Our observation is that ER
accounts for the majority of the refactoring failures, and
over 97% of synchronization blocks in all of the four pro-
grams can be automatically re-expressed using functions.
The non-automatic blocks require manual inspections and
code restructuring. They are small in number and, from
our experience, only require more sophisticated refactoring
steps. Our study validates our design assumption that syn-
chronization intentions can be characterized by the method
boundaries.

Program Derby Jigsaw OpenJMS ORBacus
Size 915320 160740 112968 189852

Synchronization usages
Method 294 637 204 466
Block 604 149 400 262
Total 898 786 604 728

Method Extraction Failures
ER 90 11 30 29
MV 18 2 9 3
BR 8 0 6 2
Degree 87.1% 99.7% 92.5% 95.3%
Degree 97.1% 98.3% 97.5% 99.3%
with ER

Table 1. Summary of Server Synchronization
Usage

3.2 The FlexSync synchronization library

Synchronization perspectives

The design of the FlexSync APIs is based on our obser-
vation that different synchronization mechanisms can be
treated as different interpretations of the same set of call
graph elements. Suppose that Figure 2(A) represents the
call graph of a fictitious Java program. For the lock-based
approaches, including the atomicity support, we need to
identify class types encapsulating shared program states as
well as the method interfaces that could lead to data races.
This interpretation is illustrated in Figure 2(B). For STM,
the interpretation is totally different as, by its optimistic na-
ture, it is not concerned with the state sharing and data races.
Instead, we need to first identify the class types encapsulat-
ing transactional executions and, second, the methods that

cause reads or writes to the shared states. The correspond-
ing representation of the original call graph as depicted in
Figure 2(C).

Synchronization specification

These different interpretations of the calling relationships
are supported in FlexSync through a design process which
we characterize as a “tagging” process. There are two types
of conceptual tags: the role tag operates on the class level
for the declaration of the required synchronization facili-
ties; the action tag operates on method level for the pro-
visioning of these facilities. We use the callgraph to ex-
plain the tagging process. However, the use of FlexSync
does not require the knowledge of callgraphs. Role tags
and action tags require only local reasoning about a particu-
lar type. The tags for specific synchronization mechanisms
are as follows:

Lock The tag AutoLckTarget identifies class types
the methods of which are always synchronized, i.e., having
synchronized on the method definitions, if Java moni-
tor is to be used. The tag LckTarget identifies types that
are caller-synchronized. The methods cause data races are
tagged using Guarded. For the call graph given in Fig-
ure 2(A), class type D is tagged as an AutoLckTarget as
calls to its methods are unconditionally synchronized. E,
F and G, are LckTargets, as they are selectively synchro-
nized in the caller’s lexical context. The tagged version of
the call graph is presented in Figure 3(A).

Block atomicity BAOwner identifies the class types in
which the executions of one or more of its methods are
atomic. We identify these methods with the Atomic-
Execution tag. Classes having shared states, in this
case, are identified with the BATarget tag. We use the
AGM (atomic group member) tag on methods defined in
BATargets if, first, they cause reads or writes to shared
states, second, they are in the control flow of Atomic-
Executions. In our example (Figure 3(B)), class D has
an atomic method d1. The control flow of d1 includes calls
to methods e1, f2 and g1. The control flow information
is maintained behind the scenes by the FlexSync runtime.
Therefore, these methods are tagged with AGM and the cor-
responding class types E, F and G with AtomTarget.

STM execution Transactional identifies class
types the states of which require transactional support. The
accessor methods are identified with AccessorCall7.
TXExecution identifies methods to be executed transac-
tionally. In our example (Figure 3(C)), AccessorCall
identifies accessor methods c1, e1 and f2. We thus identify
types C,E, F as Transactional and the transactional
method d1 as TXExecution.

7The actual FlexSync APIs distinguish between read tags and write
tags. We use a general name, AccessorCall, for the conciseness of the
presentation.

4

Figure 2. Synchronization perspectives of the call graph

Figure 3. Call graph tagging with flex

Implementation of tags

In FlexSync, we use Java interfaces and the AspectJ
abstract pointcuts to support the concept of tagging.
The tagging process can be translated into the program-
matic mappings of these interfaces and pointcuts in as-
pect modules to the corresponding elements of Java pro-
grams. In the AspectJ nomenclature, the mapping of role
tags is accomplished declaratively through inter-type decla-
rations(ITD) and the actions tags through “concretizing” ab-
stract pointcuts. Both techniques are commonly used in
aspect library implementations [11, 9, 23]. In the following,
we present the reusable logic implemented in FlexSync for
each mechanism, paraphrased using the tag vocabulary:

Lock 1. The executions of the Guarded methods of the
AutoLckTargets are protected by the monitor of the cor-
responding AutoLckTarget instances. 2. The call sites
of the Guarded methods of the LckOwner are protected
by the monitor of the callee instances of LckOwner.

Atomicity: 1. If a AGM is within the control flow of the
AtomicExecution of the BAOwner, acquire the mon-
itor lock of its corresponding BATarget and register the
lock with the BAOwner. 2. When a AtomicExecution
completes, release the monitor locks of all BATargets

registered with the BAOwner.
STM: 1. As Transactional instances initialize, set

up their per-instance duplicates, as required by dstm2, to
allow state rollbacks. 2. At the call sites of “accessors”8,
signal the dstm2 runtime to verify if the on-going trans-
action can proceed or must be aborted. 3. Repeat the TX
execution of the TXOwner until the transaction suc-
cessfully commits.

We emphasize the fact that the interaction logic can be
well hidden behind our “tag” abstractions and implemented
through AspectJ. This is a salient property of modular rea-
soning as pointed out in [13]. We will not bore the readers
here with the implementation details and encourage the in-
terested readers to download9 a copy of the library for fur-
ther references.

We now come back to the Buffer example presented
in Section 1. The Buffer class contains four methods:
setData, getData, isFull, and isEmpty. These
methods are invoked by the doWork method of the class
BufferUser. Remind that, before invoking the acces-

8Quotation here to entail that, in practice, not all methods that read or
write the state of the object would lexically start with “set” or “get”.

9FlexSync. URL: http://www.cse.ust.hk/∼charlesz/
sync

5

http://www.cse.ust.hk/~charlesz/sync
http://www.cse.ust.hk/~charlesz/sync

sor methods, the method isFull or isEmpty is called to
check the state of the buffer. The state is validated again
inside the accessor methods. Figure 4 presents the As-
pectJ implementation of the three supported synchroniza-
tion mechanisms through the FlexSync APIs. The use
of the FlexSync tags are underlined with bold italic let-
ters. Despite its simplicity, we want to demonstrate the
high degree of declarativeness in the implementation of
synchronization enabled by FlexSync. As our evaluation
in Section 4 shows, this property still holds for complex
Java server systems. The implementation of the copyTo
method is, however, non-declarative and enforced by the
AspectJ compiler in the case of the STM support.

Limitations

To use FlexSync, refactoring is still needed to transform
blocks into methods. We are currently working on an au-
tomated solution to make the process transparent. The
wait/notify semantics are also to be treated case by
case, as they often intertwine with the application logic. We
provide a replacement of wait by releasing the object lock
in the case of BA and using an “abort→re-execution” se-
quence in the case of STM. The use of wait, however,
will break the atomicity guarantees of BA in general as its
Java semantic mandates the release of the monitor lock. In
addition, the FlexSync-adaption of the dstm2 library re-
quires FlexSync users to manually specify how program
states are duplicated. From our experience, this manual pro-
cess can be tedious. Our on-going work is trying to provide
simplification solutions. Finally, our lock implementation
does not handle the use of library-based locks such as the
ReentrantLock in the Java 5 library, that do not nec-
essarily conform to the same lock/unlock interface, hence,
require new library code to be created. However, the dom-
inating majority of lock uses in the Java programs that we
have studied do not use library locks.

3.3 Global reasoning of tags

The design of synchronization using FlexSync allows
a program to work with multiple synchronization mecha-
nisms through configuration. However, when we integrate
these programs to build complex systems, we must ensure
the consistent and optimized interactions of locally speci-
fied synchronization mechanisms from the global perspec-
tive. In FlexSync, the global reasoning is carried out at
the start-up time of Java programs by the FlexSync aspect
weaver. Before the first class is loaded for execution, the
weaver, as an extended AspectJ bytecode weaver, carries
out static analysis over the bytecode of the entire system to
check for inconsistencies and optimization opportunities. It
also carries out load-time weaving to specifically treat re-
flective loading, a common way of Java composition. We

Figure 4. Implementing synchronization with
FlexSync

now present these capabilities in detail.

Lock optimization

A synchronization mechanism is redundant if a type uses
lock-based tags is never shared among threads in a partic-
ular compositional scenario. Such scenarios are often dif-
ficult to anticipate from the perspectives of individual pro-
grams. The FlexSync load-time weaver first leverage the
techniques of escape analysis [19, 4] to detect, on the per-
composition basis, the sharing status for every type asso-
ciated with tags. Conventional escape analysis techniques
reason about object instances. Our approach is more con-
servative as we define that a type escapes if any of its in-
stances escape. Our implementation is based on the Indus

6

project10, which is an enhanced version of the equivalence-
class-based analysis [19, 18]. The escape analysis goes
through all classes seen on the Java class path, and the re-
sults are stored in a hash table maintained by the FlexSync
weaver to decided whether the weaving is necessary, if a
lock-based synchronization mechanism is to be used.

We claim no significant extensions to the Indus escape
analysis algorithm other than the treatment of reflective
class loading. The reflective class loading is referred to
as instantiating a class by its lexical name through the
Class.forName Java API combined with a type cast. In
this case, we simply look up all subtypes of the type used
in the type cast and store the results in the mapping table of
the weaver. The weaver will have the concrete information
after the actual subtype is loaded.

Consistency checking

Two synchronization mechanisms can cause inconsistency
if, for instance, a type tagged with BATarget is not in the
control flow of any atomic blocks, which causes incorrect
holding of locks, or, a TXTarget is also tagged separately
with LckTarget, which violates the lock-free assumption
of STM. To prohibit erroneous usage of tags, FlexSync
uses consistency rules presented in Table 2 as set predi-
cates11. These rules enforces the following usages of tags:
1. each synchronized type must declare a default synchro-
nization mechanism (from rule 1); 2. tags TXTarget and
BATarget must not used without the matching “owner”
tags (from rule 2); 3. owners or targets tags cannot be
repeatedly used on the same type (from rule 3 and 4); 4. the
order in the following tag pairs, (TXOwner, TXTarget)
and (BAOwner, BATarget), must be maintained along
the program control flow with no other “owner” tags used
in between (from rule 5 and 6); 5. lock-based mechanisms
cannot be in the control flow of STM-based ones (rule 7).

To perform consistency checking, we build a simple
control-flow graph consisting of only the tagged types from
the analysis information collected by the escape analysis of
the Indus framework. Since the graph is generally small (in
the order of hundreds), a simple depth-first graph traversal
can accomplish the checking of the rules very quickly.

4 Evaluation

The assessment of FlexSync consists of two studies,
one related to the programming effort of using FlexSync

10Indus project. URL:http://indus.projects.cis.ksu.
edu/

11Note that the control flow definition(cflow) is the conservative
control flow computed statically from the bytecode where all possible
branches of the call flow are explored

in modularizing synchronization, and the other to the func-
tional characteristics of FlexSync. The target systems of
study is specjbb200512, a popular benchmark for transac-
tional enterprise Java applications, OpenJMS13, an open
source implementation of the JMS 1.1 specification, and
ORBacus14, an open source commercial implementation
of the CORBA 2.4 specification. To experiment with soft-
ware compositions, we switched the RPC engine of Open-
JMS from Java RMI to ORBacus. This is a fully functional
replacement as verified by the Sonic JMS benchmark15.

4.1 Programming with FlexSync

In this evaluation, we want to first find out if FlexSync
is capable of supporting synchronization in commercially
used complex systems. We also want to study the pro-
gramming characteristics of implementing synchronization
in FlexSync APIs. We first remove the monitor-based syn-
chronization from the original implementations. We then
perform necessary refactorings to enclose synchronization
blocks within method definitions. We use FlexSync to
support the locking, block-level atomicity, and the dstm2-
based STM. We cannot use STM on ORBacus because
ORBacus involves network I/O operations which cannot
have rollback semantics. This is a typical limitation of STM
in general. The OpenJMS server poses the same limita-
tions, however, since we use ORBacus as its remote pro-
cedure call (RPC) engine, the non-RPC part of the Open-
JMS can have STM-compatible behaviors. This is part of
our composition case study which will be presented shortly.

The total size of the FlexSync library is less than 60KB
of Java bytecode. The sizes of specjbb2005, ORBa-
cus and OpenJMS are listed tn Table 1. In Table 3, we
quantify four aspects of the FlexSync-based implementa-
tion for each of the studied system: number of modules
where synchronization is implemented in the original ap-
plication (orig), the number of modules for the FlexSync-
based implementation (flex), the total size, in lines of code
(LOC), of declarative(dec) and non-declarative(ND) portion
in the FlexSync user code, and the non-declarative portion
of STM implementation(ND′). We define the declarative
degree, α, as the ratio between the declarative code and the
total size of synchronization implementation. α′ is com-
puted without the STM code. Here we treat the STM as
a special case because its non-declarative code almost ex-
clusively involves the state duplications, i.e., copying class
variables. We are working on automating this process.

12Specjbb. URL: http://www.spec.org/jbb2005/
13OpenJMS URL: http://openjms.sourceforge.net
14http://www.iona.com/orbacus
15Sonic JMS Benchmark. URL:http://www.sonicsoftware.

com/products/sonicmq/performance benchmarking/
index.ssp

7

http://indus.projects.cis.ksu.edu/
http://indus.projects.cis.ksu.edu/
http://www.spec.org/jbb2005/
http://openjms.sourceforge.net
http://www.sonicsoftware.com/products/sonicmq/performance_benchmarking/index.ssp
http://www.sonicsoftware.com/products/sonicmq/performance_benchmarking/index.ssp
http://www.sonicsoftware.com/products/sonicmq/performance_benchmarking/index.ssp

Definitions Consistency rules
1. τ : the type variable. T : the set of all types. 1. pref(τ) := ∅
2. tag(τ): the set of tags on τ 2. cflow(τ) ∩ owners := ∅, pref(τ) ∈ {TXTarget, BATarget}
3. pref(τ) : tag indicated by design as the preferred tag of τ 3. |tag(τ)| >= 2, tag(τ) ⊆ owners
4. cflow(τ): the set of tags in control flows above τ 4. |tag(τ)| >= 2, tag(τ) ⊆ targets
5. cover(τi) := {tag(τk)|τk 6= τi, cflow(τk) ∪ tag(τk) 5. cover(τ) := {BAOwner}, pref(τ) ∩ {BATarget} = ∅
≡ cflow(τi)} 6. cover(τ) := {TXOwner}, pref(τ) ∩ {TXTarget} = ∅

7.targets := {BATarget, TXTarget, LockTarget, 7. cflow(τ) ∩ {TXOwner, TXTarget} 6= ∅, tag(τ) ∩ {LckTarget,
AutoLockTarget} BATarget, AutoLckTarget} 6= ∅
8.owners := {BAOwner, TXOwner}

Table 2. Consistency checking rules

The FlexSync-based approach fully exhibits the bene-
fit of the aspect oriented approach as, the synchronization
implementations is not only the much modular (9 mod-
ules in FlexSync vs. 37 modules in the original imple-
mentations), the task of programming is also simpler for
two reasons: 1. the coding effort is largely declarative in
nature, meaning interactions patterns are widely used; 2.
the “owner/target” relationship, which is latent and spread-
out in conventional implementations, is explicit and local
in FlexSync-based approaches, allowing easier reasoning
and modification. The declarative degree of ORBacus is
low due to the treatments of wait/notify semantics, a
limitation we discussed previously.

App Orig flex dec ND ND′ α α′

specjbb 9 3 130 178 168 42% 93%
ORBacus 5 2 50 69 36 42% 60%
OpenJMS 23 3 313 159 109 66% 86%
Total 37 8 493 406 312 55% 84%

Table 3. Static assessment of FlexSync imple-
mentations

4.2 Functional characteristics of FlexSync

Performance of FlexSync

For assessing the performance of FlexSync, we use the
specjbb2005 benchmark as an example of stand-alone
Java application. For supporting transactional behaviors
in specjbb, we label the group of class types represent-
ing business transactions as TXOwner or BAOwner. We
label all types declaring synchronized methods with
TXTarget or BATarget, respectively. In Figure 5, we
plot the benchmark scores16, bops (business operations per
second), against the number of threads.

16All experiments are conducted on a 4-core Intel CPU running 2.6
Linux kernels using the JRockit R27 64-bit JVM. Each data point is an
average of 3 identical runs.

Our first observation from Figure 5 is that, for the lock
version, the FlexSync approach does not incur significant
runtime overhead (about 5%). This is generally true in all
our experiments as will be shown shortly. The general per-
formance profile of specjbb2005 is the same as our mo-
tivating buffer example that the lock-based approach gives
the best performance (highest score), followed by BA, then
by STM. The difference is that the BA score is at about
30% of that of the lock-based, and the STM version is about
20%-25% of the BA version. The reason for this dramatic
slowdown is that each specjbb2005 test involves a large
amount of data for which the accesses need to be synchro-
nized. As verified by our runtime profiling, in the BA ver-
sion, over 20% of the CPU time is spent on lock contention
which seriously limit the concurrency of the system. For the
STM version, over 50% of the time is spent on backing up
the data by the dstm2 runtime. The memory requirement
for executing STM on specjbb ranges from 1 to 40 times
larger as compared to the original version.

This experiment supports our motivation that each syn-
chronization mechanism has its unique strengths and weak-
nesses. Clear trade-offs exist among properties such as cor-
rectness, safety, and performance. The FlexSync approach
gives customization options to the users of Java programs
and let them decide which properties should take the prece-
dence in their application domain.

Case studies of compositions

In this study, we use OpenJMS as an example of com-
plex program composed from reusable systems and capable
of supporting multiple architectural configurations. Open-
JMS uses the remote procedure call (RPC) as its trans-
port level mechanism, which is supported by ORBacus,
a general purpose RPC middleware. To support the trans-
actional and atomic operations, we mark types contains
synchronized methods as TXTarget or BATarget,
and we make the starting point of RPC invocations in OR-
Bacus and of the message dispatching in OpenJMS as
where the transactional or the atomic executions start.

8

Figure 5. specjbb2005 FlexSync performance

In the first case study, we first gain a general perspective
of the combinatorial complexity by quantifying all possi-
ble choices of synchronization mechanisms in the case of
OpenJMS/ORBacus system. To obtain these points, we
measure the response time for the JMS server in receiving a
fixed number of messages into a set of message queues. We
define degree of sharing as the average number of clients
sharing each message queue. We achieve this by generating
the client/queue association before each test and hardwiring
the client/queue relationships during the run. We tested 7
possible configurations, reported in Figure 6. We make the
following observations: 1. the lock version of FlexSync
approach does not incur overhead as compared to the orig-
inal version; 2. multiple synchronization mechanisms can
coexist in providing JMS services; 3. the responses in-
volving STM, although oscillating significantly, are faster
than the lock-versions, which is contradictory to our previ-
ous studies; 4. the versions involving BA have the worst
performance compared to other versions. The surprising re-
sults about STM is due to the fact that, as each transactional
operation results from a round of client-server communica-
tion, the state duplication in OpenJMS is far less frequent
compared to that of specjbb2005 and our buffer example.
In the case of BA, the use of 2PL significantly limits the
concurrent degree of the system, which proves that the de-
gree of liveness is vital to the performance of server-type
systems

Our second case study illustrates the scenarios of unan-
ticipated compositions and how FlexSync-based synchro-
nization understands these cases and achieves performance
gains. The canonical concurrency policy used by the Open-
JMS/ORBacus system is that each connected client is as-
signed a dedicated thread on the server side. Data structures
storing the RPC targets and the message queues are shared
among these threads.

Scenario one: Queue dedication If the physical capac-
ity allows, the server side can dedicate a separate messag-

Figure 6. Combinatorial synchronization

ing stack for each OpenJMS client simply by publishing
each queue with a unique RPC address. This set-up alone
can improve the processing throughput from 7% to 25% by
our measurements. This is unanticipated scenario that can
be achieved purely through deployment configurations. In
such configurations, since there are no shared states, we can
simply instruct the FlexSync weaver not to weave any syn-
chronization mechanisms to achieve further speed-ups.

Scenario two: Event-driven RPC The RPC engine can
make use of the reactor-based [20] event-driven concur-
rency models for its capability of handling problems such
as C10k17. Since such models typically make no use of
threads, the RPC engine serially dispatches requests, ren-
dering the thread-safety property of the upper layer mes-
saging mechanism in OpenJMS redundant. Again, this is
a per-deployment scenario hard to be anticipated by the de-
sign of OpenJMS. This scenario can be created by using
the CAL-based ORBacus implementation from our earlier
research [23]. The FlexSync sync weaver scans through
the bytecode image of the entire system and is able to de-
tect that all shared states of the messaging layer does not
escape from the executing thread of the reactor. Therefore,
no synchronization mechanisms are applied as the result.

In Figure 7, we compare the following configurations:
the canonical concurrency model (shared original), origi-
nal OpenJMS configured to run dedicated queues (dedi-
cated original), original OpenJMS using reactor (shared
reactor), dedicated queue using reactor (dedicated reac-
tor), and the afore-mentioned two optimized versions us-
ing FlexSync (dedicated flex and dedicated reactor flex).
Our measurements first justify the validity of the case
study where queue dedications and the use the reactor
can produce speedups from approximately 7% to 25% at
500 clients. In queue dedication scenarios, the FlexSync-

17The C10K problem. http://www.kegel.com/c10k.html

9

http://www.kegel.com/c10k.html

optimized version produces 23% speedups compared to the
original version. For the use of the single-threaded reac-
tor, the FlexSyncversion produces 25% speedups. The
largest speedup, considering all configurations, is around
40%. These measurements prove the functional advantage
of FlexSync-based synchronization implementations.

Figure 7. Performance optimization

5 Related Work

As a very active research area, research projects in
the context of lock, atomicity and software transactional
memory are beyond enumeration. We focus on presenting
research addressing the programming aspect of synchro-
nization challenges. We first covers the aspect oriented
approaches to synchronization. We then present the
research work on the synthetic approaches for conventional
programming languages. We conclude with the discussion
on various new language proposals.

AOP implementations
Lopes and Lieberherr [15] presented one of the earliest
AOP treatments of synchronization using adaptive pro-
gramming [14]. In their approach, the structure of a pro-
gram and its behavior, including the lock-based synchro-
nization, are expressed in separate modules. Code gener-
ation is required to produce the final executable system.
As a pioneering work, they focused on illustrating a ben-
efit of AOP-based synchronization implementation as com-
pared to the conventional approach. Our work is built on
these insights and going one step further in considering how
different synchronization mechanisms can coexist, be cus-
tomized, and interact with the core program consistently in
complex Java systems.

SyncGen [5] focuses on generating synchronization
implementation from high-level specifications. These

specifications (aspects) are invariant formulae, which are
translated into byte-code instructions that are inserted into
(weaving) the demarcation points of the synchronized
region. Compared to our approach, aside from the lock-
only approach, SyncGen introduce a new programming
paradigm of specifying synchronization in high-level logic
formulae. Our approach relies on FlexSync APIs to
re-express the synchronization intention, therefore, does
not fundamentally deviate from how the synchronization
design is reasoned conventionally.

Lock synthesis
Emmi et al [6] presented an automatic technique that takes
a program annotated with atomic sections and produces
a lock assignment for global variables that provides
atomicity and deadlock free guarantees. Their work
provides evidence that synchronization can be reasoned
independently if we can know the programmers’ intentions,
in their case, through annotations. Research such as [4, 2]
eliminates unnecessary lock placements through static
analysis techniques. Our work directly leverages these
results in performing selective aspect weaving.

Language approach
There have been a proliferation of new language proposals,
such as [16, 8, 22, 3] and many others, that provide new
language design and the semantic guarantees to help pro-
grammers in writing safe, correct, and performant synchro-
nization code. Rewriting complex applications with new
languages is not always straightforward. The majority of
the language proposals, being focusing on specific synchro-
nization mechanisms, also inherit their limitations. We be-
lieve that the capability of customization is still a desired
property for systems written in these new languages.

6 Conclusion

In the multi-core era, concurrency plays critical roles in
improving software efficiency. The synchronization mech-
anisms of reusable Java systems are challenging to build
because each of these mechanisms has unique strengths
and weaknesses which are sensitive to specific usage re-
quirements. In conventional approaches, synchronization
is reasoned locally within the designed application and in a
non-modular way. As a result, applications pay significant
performance costs due to the mismatch between the non-
flexibility of the systems and the diversity of deployment
scenarios.

We have presented FlexSync, an aspect oriented syn-
chronization library, to alleviate this problem by physi-
cally decoupling the synchronization implementation from
the operational logic of Java systems. This is based on
our observation that the design intention of synchroniza-

10

tion and the specific choice of synchronization mechanisms
can be explicitly separated and, in practice, most of the
intentions can be represented by function-like structures.
The FlexSync API fosters the modular reasoning of syn-
chronization by essentially enabling programmers to give
different interpretations of the same program structure ac-
cording to the different synchronization semantics. The
FlexSync library encapsulates reusable logic about how
synchronization mechanisms and the operational logic in-
teract. The FlexSync loadtime weaver performs the global
reasoning of synchronization by applying the system-wide
deployment-time analysis to achieve consistency and opti-
mization.

We evaluated FlexSync with commercially used com-
plex Java concurrent systems, and FlexSync is capable of
supporting the functionalities of these systems. We quantify
both the programming effort and the functional characteris-
tics of FlexSync-based implementations. We found that
programming synchronization in FlexSync is commonly
declarative and specification-like. The FlexSync approach
in general does not incur significant runtime overhead. In
addition, systems using FlexSync also has the capability
of making customization choices regarding domain-specific
or deployment-specific requirements. We showed that, the
FlexSyncapproach does not significant incur runtime over-
head and can produce speed ups as much as 40% in various
deployment-time configurations.

As future work, we aim to make programming with
FlexSync a lot easier by focus on the automation of in-
tention refactoring and state duplication. We also plan to
study the synergistic effects among customizable concur-
rency models [23] and synchronization mechanisms. Our
long term research goal is to significantly increase the cus-
tomization capability of complex systems.

References

[1] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R.
Murphy, Bratin Saha, and Tatiana Shpeisman. Compiler and run-
time support for efficient software transactional memory. In PLDI,
pages 26–37, New York, NY, USA, 2006. ACM.

[2] Jonathan Aldrich, Craig Chambers, Emin Gun Sirer, and Susan Eg-
gers. Static analyses for eliminating unnecessary synchronization
from java programs. In SAS, page pages, 1999.

[3] David F. Bacon, Robert E. Strom, and Ashis Tarafdar. Guava: a
dialect of java without data races. In OOPSLA, pages 382–400, New
York, NY, USA, 2000. ACM.

[4] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C.
Sreedhar, and Samuel P. Midkiff. Stack allocation and synchroniza-
tion optimizations for java using escape analysis. ACM TOPLAS,
25(6):876–910, 2003.

[5] Xianghua Deng, Matthew B. Dwyer, John Hatcliff, and Masaaki
Mizuno. Invariant-based specification, synthesis, and verification of
synchronization in concurrent programs. In ICSE, pages 442–452.
ACM Press, 2002.

[6] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majum-
dar. Lock allocation. In POPL, pages 291–296, New York, NY, USA,
2007. ACM.

[7] Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. In POPL, pages 256–
267, New York, NY, USA, 2004. ACM.

[8] Cormac Flanagan and Shaz Qadeer. A type and effect system for
atomicity. In PLDI, pages 338–349, New York, NY, USA, 2003.
ACM.

[9] Jan Hannemann and Gregor Kiczales. Design Pattern Implementa-
tion in Java and AspectJ. In ACM OOPSLA, pages 161–173. ACM
Press, 2002.

[10] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible
framework for implementing software transactional memory. In
OOPSLA, pages 253–262, New York, NY, USA, 2006. ACM.

[11] Elizabeth A. Kendall. Role model designs and implementations with
aspect-oriented programming. In ACM OOPSLA, pages 353–369.
ACM Press, 1999.

[12] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Akşit and Satoshi Matsuoka, edi-
tors, ECOOP, volume 1241, pages 220–242, Berlin, Heidelberg, and
New York, 1997. Springer-Verlag.

[13] Gregor Kiczales and Mira Mezini. Aspect-oriented programming
and modular reasoning. In ICSE, pages 49–58, New York, NY, USA,
2005. ACM.

[14] Karl Lieberherr, Doug Orleans, and Johan Ovlinger. Aspect ori-
ented programming with adaptive methods. In Communications of
the ACM, volume 10. ACM, 2001.

[15] Cristina Videira Lopes and Karl J. Lieberherr. Abstracting process-
to-function relations in concurrency object-oriented applications. In
ECOOP, pages 81–99, London, UK, 1994. Springer-Verlag.

[16] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Au-
tolocker: synchronization inference for atomic sections. In POPL,
pages 346–358, New York, NY, USA, 2006. ACM.

[17] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,
T. Longstaff, R. Kazman, M. Klein, D. Schmidt, K. Sullivan, and
K. Wallnau. Ultra-Large-Scale Systems: The Software Challenge of
the Future. Software Engineering Institute, 2006.

[18] Venkatesh Prasad Ranganath and John Hatcliff. Pruning interference
and ready dependences for slicing concurrent java programs. In CC,
pages 39–56. Springer, 2004.

[19] Erik Ruf. Effective synchronization removal for java. In PLDI, pages
208–218, New York, NY, USA, 2000. ACM.

[20] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture Patterns for
Concurrent and Networked Objects, volume 2 of Software Design
Patterns. John Wiley & Sons, Ltd, 1 edition, 1999.

[21] Nir Shavit and Dan Touitou. Software transactional memory. In
PODC, pages 204–213, New York, NY, USA, 1995. ACM.

[22] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchro-
nization constraints with data in an object-oriented language. In
POPL, pages 334–345, New York, NY, USA, 2006. ACM.

[23] Charles Zhang and Hans-Arno Jacobsen. Externalizing Java Server
Concurrency with CAL. In ECOOP, pages 362–386. Lecture Notes
in Computer Science 5142. Springer, 2008.

11

	Introduction
	Background
	FlexSync: the modular and the global reasoning of synchronization
	The separation of intention and mechanism
	The FlexSync synchronization library
	Global reasoning of tags

	Evaluation
	Programming with FlexSync
	Functional characteristics of FlexSync

	Related Work
	Conclusion

