
Externalizing Java Server Concurrency with
CAL?

Charles Zhang1 and Hans-Arno Jacobsen2

1 Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

charlesz@cse.ust.hk
2 Department of Electrical and Computer Engineering

and Department of Computer Science
University of Toronto

jacobsen@eecg.toronto.edu

Abstract. One of the most important decisions about the architecture
of a server program is its concurrency mechanisms. However, a good
concurrency model for general-purpose server programs is increasingly
difficult to conceive as the runtime conditions are hard to predict. In
this work, we advocate that the concurrency code is to be decoupled
from server programs. To enable such separation, we propose and eval-
uate CAL, — the Concurrency Aspect Library. CAL provides uniform
concurrency programming abstractions and mediates the intrinsic dif-
ferences among concurrency models. Through CAL, a server program is
not tied to any particular concurrency model and framework. CAL can
be configured without modifications to use concurrency frameworks of
fundamentally different natures. The concurrency code based on CAL is
simpler and looks closer to the design. Leveraging the customizability of
CAL, we show that a commercial middleware server, refactored to use
CAL, outperforms its original version by as much as 10 times.

1 Introduction

A common definition of concurrency is the perceived simultaneous executions of
multiple sets of program instructions within the same address space. Concur-
rency mechanisms, particularly in relation to I/O, are vital to the functional-
ity of today’s general-purpose server programs, such as databases, web servers,
application servers, and middleware systems. Since the trend of multi-core ar-
chitectures no longer focuses on the clock speed, server programs increasingly
rely on concurrency for performance improvements. The current research on the
design of concurrency models is characterized by the pattern-based concurrency
designs [2, 18, 20, 21]. They primarily focus on achieving high, scalable and fair
server throughput, assuming specific runtime conditions such as hardware con-
currency capabilities and characteristics of incoming requests. As the nature
of today’s network-based applications continues to diversify, such concurrency
? In ECOOP 2008, Paphos, Cyprus



models will become increasingly hard, if not completely impossible, to design
due to the difficulties in predicting the runtime conditions for general purpose
server programs. Let us first exemplify this problem through a simple design
exercise.

The goal of our design exercise is to allow a simple server program, presented
in Figure 1(A), to provide a generic upload service to simultaneously connected
clients. Despite its simplicity, the server performs some of the typical operations
of Java server programs: binding to a server-side socket and waiting for incoming
connections (Line 9), decoding the application frame from the incoming socket
(Line 4), and processing thee received frame such as storing it in a database
(Line 5). This server, as shown, can only serve one client for the duration of
request processing.

Fig. 1. (A) Upload server (B) Thread-per-connection

First solution. Our first attempt is to implement the “thread-per-connection”
concurrency model (Figure 1(B)), common in tutorials, textbooks, and indus-
trial practices. We evaluate our improved design through quantifying the server
throughput measured as number of processed requests per unit time3. In Fig-
ure 3, we plot the number of frames received by the server within a fixed duration
against the number of concurrent clients. We measure two types of client/server
connections: long, i.e., the clients keep their connections alive for the entire du-
ration (upload(L)); and short, i.e., the clients repeatedly connect to the server,
send a piece of data, and disconnect (upload(S)). Figure 3(A) shows that our
solution works well as the server throughput only degrades around 20% to 30%
for both types of connections even for a high number of clients. We now intro-
duce an evolutionary change to the example server by adding a new service:
factorizing big integers, as illustrated in Figure 2(A). The measurements for this
new service are plotted in Figure 3(A) with labels factor(L) and factor(S).
We immediately observe that, when the number of concurrent clients gets large
(> 1000), the throughput of the constant connections (factor(L)) degrades as

3 We also measure the fairness of the services. However, for motivation purposes here
we omit the relevant discussions. We come back to the fairness issue in Section 4.



much as 90%, and the periodic connections also suffers from significant through-
put oscillations. Seasoned concurrency programmers can quickly point out that
the use of Java threads in our factor server does not scale to the large num-
ber of concurrent clients due to contention of the CPU resources between the
thread-level context switches and the factorization work itself.

Fig. 2. (A) Evolved server (B) Reactor-based event multiplexing

Modified solution. The availability of asynchronous I/O in the Java plat-
form allows concurrency to be supported using the event multiplexing model,
hence, avoiding the thread-level context switches. Figure 2(B) illustrates a mod-
ified implementation of the server using the Reactor [18] design pattern, in which
each incoming connection is registered with a key (Line 5). The key is used by
the reactor (Line 16) to invoke the corresponding handler when data from the
network is ready to be processed. The stream-based sockets are also replaced
by the channel-based counterparts. Figure 3(B) plots the measurements for the
reactor-based server regarding both the factorization and the upload services.
The factorization service scales very well for both connection types. However,
the upload service suffers from around 63% degradation when admitting 5000
clients. This is because, when the dispatch table used by the reactor becomes
large, frequent I/O event triggering and dispatching become costly for both OS
and the VM when a large amount of network data arrive.

We now run the same server program on a dual-core CPU machine as quan-
tified in Figure 4. For the number of connections lower than 2000, the event-
dispatch model is once again significantly costly to use even for the CPU-bound
requests that have low I/O dispatch overheads, due to the performance boost to
the multi-threaded concurrency model by the multi-core CPU. Our modified so-
lution, in spite of significant design and code-level alterations, is still not general
enough for both types of connections.

Based on this example, we argue that, if designing a general concurrency
model for our simplistic example server is not straightforward, it would be even
more difficult to do so for servers of much more sophisticated semantics. The dif-
ficulty lies in the fact that concurrency designs are dependent upon the runtime



Fig. 3. (A) Thread-per-connection (B) Reactor-based event multiplexing. Data
is collected on JRockit JVM version R27.3.1-jre1.6.0 01. Programs are hosted
on two Intel Single CPU Xeon 2.5GHz machines with 512KB cache and 2GB
physical memory connected by a 100MB switched network. Both machines run
Fedora 2 with the 2.6.10 kernel. Uploads are in 80KB chunks. The integer fac-
tored is 22794993954179237141472. Each data point is measured three times for
a duration of 60 seconds. The median value is chosen for the plot.

conditions of the server programs such as the load characteristics and the hard-
ware capabilities. More specifically, these deployment and runtime conditions
are subject to the following design uncertainties:

I: Unforeseeable platform capabilities. The computing resources of the hard-
ware are not known until deployment time. Java programs are separated further
from both the hardware and the operating system due to the virtual machine
model. However, concurrency mechanisms are sensitive to hardware profiles such
as the number of processors, the size of the physical memory, and execution
privileges regarding the number of allowed open files or active OS-level threads.

Fig. 4. Event-based factorization server
on dual-core CPU

II: Diversified load characteristics.
General-purpose server programs ex-
ert little control over how they are
actually used, hence, they are often
subject to diversified and yet special-
ized load characteristics. Browsing re-
quests seen by Web servers are usu-
ally I/O-bound and short in duration,
while providing services like YouTube
needs to support longer I/O-bound re-
quests of both outbound (viewing) and
inbound (uploading) traffic. Client-
server interactions in services such
as online interactive games are typ-
ically CPU-bound and long in dura-
tion, while services for computing driv-



ing routes usually serve shorter CPU-
bound requests.

III: Unanticipated evolution. Our server example demonstrates a case of unan-
ticipated evolution of the server semantics. The recent push towards multi-core
architectures, for example, makes it attractive for many legacy server archi-
tecture to parallelize their operations. Another kind of unanticipated evolution
concerns with concurrency frameworks and libraries. The I/O and concurrency
facilities of the Java platform is a very good example. Java servers on early
JVMs only had synchronous I/O and the “thread” primitive at their disposal.
More powerful concurrency and event-driven I/O support later came from third
party libraries such as the util.concurrent library4, the aio4j library5, and the
NBIO package6. The latest Java platforms introduce both more sophisticated
concurrency primitives and the support for the asynchronous I/O. During this
period of fast evolution, leveraging platform advances would require repeated
and ”deep” modifications to the server code even if the server semantics do not
change.

IV: Different correctness requirements. It is important and often very diffi-
cult to maintain the safety and liveness [15] properties in complex concurrent
systems. Most concurrency primitives, as those in JDK, rely on the experience
of the programmers to guard against concurrency hazards such as race condi-
tions, deadlocks, or livelocks. For some domains, the transient faults produced
by concurrency bugs can be tolerated through sophisticated schemes such as
replication [3]. But it is often important for the concurrency implementation to
be provably correct. Verifiable concurrency models such as CSP [9] or the Actor
model [1] have been proposed for decades. However, as far as Java programs are
concerned, these models use very different abstractions and operating semantics,
which are constitute barriers to popular adoption.

Conventional wisdom tells us that the effective way to treat the afore-mentioned
uncertainties, or unanticipated changes in general, is through modularity and
proven software decomposition principles such as information hiding [17] or de-
sign by contract [16]. However, due to the strong coupling of concurrency mech-
anism and application semantic, concurrency implementation and synchroniza-
tion primitives are usually tightly integrated and entangled with the application
code. For example, locks can appear as class variables of any class that need
to be re-entrant. Inheritance is usually the only choice for a class type to use
the primitives of concurrency libraries. The conventional concurrency code is
typically invasive and not aligned with respect to the modular boundaries of
the server logic. For this reason, concurrency is often referred to as a type of
crosscutting concerns [13, 4, 14, 22] which is best treated by the aspect-oriented
programming (AOP) [13] paradigm.

4 The util.concurrent package. URL: http://gee.cs.oswego.edu/dl/classes/

EDU/oswego/cs/dl/util/concurrent/intro.html
5 IBM NIO package. URL: http://www.alphaworks.ibm.com/tech/aio4j
6 NBIO Package. URL: http://www.eecs.harvard.edu/∼mdw/proj/seda/



We are not the first to examine the suitability of AOP to the support of
concurrency. Earlier studies [4, 14] drew opposite conclusions regarding the pos-
sibilities of both the syntactic and the semantic separation of concurrency design
from the application logic. We take the mid-ground. We believe that we should
only abolish both the design-time and the code-level coupling between server
code and specific concurrency models. However, the server code should stay
amenable to the common characteristics of different concurrency models. We
term this property “concurrency awareness”. Its purpose is to make the coding
structures of concurrent parts of the server logic explicit for allowing external
manipulations. We formulate “concurrency awareness” as a set of programming
invariants, encoding commonly observed design practices. In combination with
these invariants, we create high-level abstractions for programmers to work with
the differences of concurrency models through a uniform API and the associ-
ated Concurrency Aspect Library, CAL. CAL functions as a mediator between
the “concurrency-aware” server logic and the diversified abstractions of concur-
rency libraries. We show that the use of CAL not only simplifies the coding effort
but also makes concurrency implementations more explicit in terms of design.
Due to the effective mediation capabilities of CAL, we can compose the same
server code with a variety of different concurrency models purely by changing
the compilation configurations. CAL not only incurs no observable performance
overhead, but also significantly improves the performance of a commercial mid-
dleware implementation by as much as ten times through changing concurrency
models according to the runtime conditions.
The contributions of our work are as follows:

1. We present the concept of “concurrency awareness” as the foundation of
decoupling concurrency models from the server logic. We describe a set of
programming invariants as the guiding principles for creating “concurrency
awareness” in server programs.

2. We describe the design of CAL, the Concurrency Aspect Library, which allows
programmers to work with concurrent frameworks of very different genders
through a uniform API. CAL also effectively decouples these frameworks
from the server logic at the code level. We make CAL publicly available
at: http://www.cse.ust.hk/∼charlesz/concurrency for inspections and
experiments.

3. We present the quantification of our approach in terms of both the cod-
ing effort and performance measurements. We show that programming con-
currency with CAL, especially against different concurrency models, can be
simplified and be structurally explicit. CAL can support a complex commer-
cial middleware system with no runtime penalty and, through adaptations,
dramatically improve its performance.

The rest of the paper is organized as follows: Section 3 describes the “concurrency-
aware” architecture principles and the implementation of CAL and Section 4
presents the evaluation of our approaches.



2 Related work

In this section, we present the related research on enabling the architecture-
level customization of concurrency mechanisms. Please refer to [20] for a good
summary of the different types of concurrency mechanisms themselves. We first
present research in the code-level separation of concurrency mechanisms us-
ing AOP-like approaches, i.e., those based on aspect-oriented programming and
other meta-programming approaches such as the use of annotations. We then
present approaches for enabling the flexible compositions of concurrency mod-
els in server applications, not limited to Java applications. We last discuss the
difference of our work compared to the AOP treatment of design patterns in
general.

Java concurrency externalization. The work closest related to our ap-
proach is the assessment of concurrency and failure in distributed systems con-
ducted by Kienzle and Guerraoui [14]. They have focused on investigating the
semantic separation of concurrency and failure through the use of AspectJ in
the context of transaction processing. The conclusion was that a separation is
not possible. We agree that the server logic cannot be made entirely semanti-
cally oblivious to concurrency semantics. However, we demonstrate that, through
making the server code concurrency-aware, it can be made semantically and syn-
tactically oblivious to lower-level details of specific concurrency models. We delay
the study of our approach in treating transaction-based concurrency to future
work. Douence et al [6] introduced a generative approach to synthesize and to
coordinate concurrency mechanisms defined in aspect modules. Their approach
is complementary to our effort in verifying the correctness of concurrency model
compositions.

D [4] is a language system for separating the distribution code from Java
programs. D consists of a simplified Java language, the Cool language for com-
posing the synchronization of threads, and the Ridl language for composing the
communication between threads. The D aspect weaver is responsible for merg-
ing three language systems to produce the transformed Java sources. The main
objective of D is to provide one of the first evaluations of the benefit of using
AOP-like languages to compose distribution.

JAC [8] uses annotation-based hints in Java programs and the accompanied
Java pre-compiler to separate the concurrency code from the operational logic
of the server. The pre-compiler modifies the Java source by inserting both syn-
chronization and concurrency code based on the annotations. We think that
annotation-based approaches, despite sharing many similarities to the aspect-
oriented approach, do not achieve the source-level detachment of concurrency
models compared to our approach. The server implementation is hardwired to
JAC-based concurrency support. With respect to our work, it is not clear how
different concurrency models and the composition of these models can be sup-
ported by JAC annotations. The evaluation of the JAC approach on complex
distributed systems is not reported.

Java concurrency can be entirely externalized for Java programs hosted by
application servers. For example, Java server programs written as Enterprise



Java Beans (EJB) can be free of concurrency and synchronization concerns and,
instead, have them configured as runtime policies understood by the EJB con-
tainers. Our work is concerned with the concurrency models used by application
containers themselves. It is possible to build server programs on top of contain-
ers such as Spring7 and have the container control the concurrency mechanisms.
Due to the fact that containers typically utilize reflection to enable object invo-
cations, we choose not to evaluate such approaches because of their significant
performance overhead compared to the bytecode transformation of the AspectJ
compiler.

Customizable concurrency. Many conventional approaches give server ap-
plications the flexibility of choosing the best concurrency models according to
the specific server needs. SEDA [20] proposed and evaluated an architecture for
Java servers utilizing asynchronous events and thread pools to partition server
data flows into multi-staged pipelines. From the software engineering point of
view, SEDA enables the server application to compose the most appropriate
concurrency models by changing the topology and the depth of the pipeline as
well as the control parameters of pipeline stages. Similarly, the ACE framework
allows C++ servers to choose concurrency models adaptively through the use of
C++ templates. The components of the ACE network library are in the form of
parameterized templates so that the internal implementation mechanisms can
be changed without affecting the user code. This is an instance of the open
implementation principles [12]. The architecture adaptation of concurrency in
these approaches is confined within the provided frameworks themselves. The
applications are hardwired and subject to the framework capabilities, which is
the exact problem we address in this work.

Aspect-oriented treatment of patterns. There have been numerous re-
cent approaches on externalizing the implementation of design patterns with
aspect-oriented programming by Kendall [10], Hannemann and Kiczales [7], and
Cunha et al [5]. The externalization of patterns are realized by reusable pattern
libraries implementing the roles of patterns as mix-in types and role interactions
as re-targetable abstract pointcuts. Our work, inspired by this line of research,
reasons about the common characteristics of concurrency patterns in general
and takes the application-aspect co-design approach. As shown by our examples
later in the paper, it is possible to support complex design patterns through
composition of basic modules using the CAL library APIs.

3 Concurrency externalization

For the virtue of reuse and customizability, the afore-presented design uncer-
tainties mandate the dismantling of both the design-time and the code-level
coupling of server code to particular concurrency models or libraries. We achieve
this goal first by making the observation that there exist common interaction
assumptions which the different concurrency models make towards the server

7 The Spring framework. URL: www.springframework.org



logic. The server code needs to be compatible with these assumptions and be-
come “concurrency-aware”. The main utility of an aspect concurrency library
is essentially to facilitate programmers in capturing these assumptions in the
server code through a uniform API. In this section, we introduce these concepts
in detail.

3.1 Concurrency-aware servers

We loosely define the concurrency-aware server programs as programs not con-
current themselves but having salient properties about their structures and ex-
ecution flows that are compatible to the common interaction assumptions of
concurrency models. Finding a comprehensive list of these assumptions for all
concurrency models is not an easy task. We present our initial findings which
we have found to be effective as follows:

I.Captivity assumption. The primary interaction assumption of concurrency
models is that certain parts of the server logic can be captured as units of con-
current activities and submitted to a concurrent executor. Popular concurrency
libraries identify such parts of the server logic as instances of classes. For Java
programs, a unit of concurrent activity is typically cast as an instance of Thread,
Runnable8, Handler [20], or Task in the util.concurrent package.

II. Execution context assumption. Each concurrent activity has an execution
context that has control over the life-cycle of the activity: creation, modification,
and termination. The context can be exclusive to each activity or shared among
all activities. For example, creating a thread in Java through extending the
Thread class type causes each thread to have independent object states. Creating
threads through inner classes allows all threads to share the same object state.

III. Data flow assumption. Concurrent activities might have an immediate
incoming data flow dependency upon their execution contexts. The context,
however, typically does not have the same dependency upon the activities. For
example, activities supported by thread-pools might rely on the context to per-
petually supply data that are to be processed. These activities are usually con-
tinuously active and do not return control to the context until they terminate,
hence, have no immediate outgoing data flow, such as passing a return value to
the context.

IV. Execution mode assumption. The mode of the execution flow of the server
logic can be active, with instructions executed in loops, or passive, completely
subject to external activations. The execution mode is assumed to be consis-
tent with the currency models of use. For example, for the reactive concurrency
model [18], the concurrent activity is typically passive since it only reacts to
events. Concurrent activities in models based on the abstraction of “thread” are
in general active, i.e., executing in a proactive manner.

V. Synchronization assumption. The usages of synchronization primitives
also need to be kept consistent with the concurrency models of use. For ex-
ample, concurrent activities in the reactive model are usually unsynchronized
8 Both Thread and Runnable are documented in the Java 5 Documentation.

URL:http://java.sun.com/j2se/1.5.0/docs/api/



because they are always executed in a serialized manner. However, they need
to be carefully synchronized for thread-based concurrency schemes. Inconsistent
synchronization policies incur either runtime overhead or incorrect program be-
haviours.

One of the essential goals of concurrency awareness is to preserve these in-
teraction assumptions in the server code. We therefore formulate concurrency
awareness as a set of programming invariances as follows:

Rule 1: Group concurrent activities within concurrency-aware procedures. A
concurrency-aware procedure usually satisfies three minimum requirements: (1)
It has well defined termination conditions that are known to the caller; (2) It
does not contain active execution controls such as persistent loops or regularly
scheduled executions; (3) It does not return a value that is to be used later by
the caller. In other words, we avoid the use of data that only live on the stack.

Rule 2: Localize data inflow at either invocations or instantiations. One of
the major functions of concurrent activities in server programs is to process a
continuous inflow of data or requests. We advocate that the data in-flow is in
form of parameter passing at the time of initializing a concurrent activity or of
invoking its procedures.

Rule 3: Make the concurrent activities of the server logic “synchronizable”.
The choices of synchronization mechanisms should be considered in conjunction
with the chosen concurrency models. To protect the shared program state, we
advocate making the relevant server logic synchronizable (not synchronized) by
making critical regions structurally explicit, e.g., having procedural boundaries.

These structural rules are syntactic with no semantic connotations, hence,
generally applicable. The first two rules are also common practices in the eyes
of a veteran concurrency programmer. The last rule is to avoid any critical
regions within undistinguishable code structures, which are problematic to have
synchronization policies applied externally. Server code following these structural
rules generally satisfies the common assumptions of many concurrency models.
The physical composition between the server code and the concurrency libraries
is facilitated by CAL, the Concurrency Aspect Library, presented in the next
section.

3.2 Concurrency Aspect Library

The core of our externalization approach is the Currency Aspect Library CAL.
CAL aims at providing high level abstractions to hide the details of concurrency
models and to enable a closer correspondence between the concurrency design
and the code. We design CAL with the following specific goals in mind:

1. Oblivious. The library should allow concurrency implementors to focus on
expressing the concurrency in terms of application semantics while remaining
oblivious to the details of the concurrency frameworks, as long as the server
code remains concurrency-aware. This is a crucial requirement for achieving
the separation of server semantics from concurrency mechanisms.



2. Versatile. The library should be capable of supporting concurrency frame-
works of very different mechanisms and type abstractions. Neither design
alteration nor coding changes are required for the server code if we choose
to switch from one framework, such as a reactive model, to another, such as
one based on threads.

3. Uniform. The library should provide simple and uniform programming in-
terfaces to facilitate the implementation of concurrency. The programming
effort required to use Framework A should not differ significantly from the
use of Framework B. Otherwise the library is not effective in capturing com-
mon interaction assumptions.

4. Efficient. The library should only incur acceptable runtime overhead as
a trade-off for the structural flexibility. For server programs, performance,
more specifically, throughput and fairness, is the vital quality metric not to
be significantly compromised.

We now describe our library from two perspectives: the static perspective of
dealing with the diversification of types in concurrency libraries through “type
mediation”, and the dynamic perspective of integrating concurrency mechanisms
with the server execution flow through “activity capture”. We believe the first
two design goals can be validated after the design of the library is presented
in detail. The quantitative evaluations of these design goals are deferred until
Section 4.
Type mediation: We have previously argued that the common interaction as-
sumptions of concurrency models center around “activities” and “contexts of
activities”. In CAL, we use the entities Activity and WorkingContext to repre-
sent these two concepts. These two concepts mediate between the server-specific
concepts and concurrency models through a two-step type-space adaptation pro-
cess accomplished by the CAL user. The first step adapts towards the abstract
data types in the concurrency frameworks, and the second to the server class
types. The automatic adaptation is performed by the library if the activities are
mapped to the call-sites of methods. We term this type of activity an auto activ-
ity. Auto activities might share the same working context if the mapped method
invocations are made by the same caller. This simple scheme decouples the di-
rect type-space wiring between the server code and concurrency frameworks.
The liability lies with the generality of the library concepts in representing the
interaction assumption of concurrency models. As we will show in our evalua-
tion, we have found that our existing concepts are quite adequate with respect
to a broad range of different concurrency schemes.

We illustrate the type mediation process in Figure 5, which depicts three sets
of domain models. The concurrency models are exemplified by three popular
schemes on the top of the drawing: reactive, thread-per-task, and thread pooling.
The outer box with dotted borders represents the state of the program with
respect to the concurrent executions. The inner light-shaded boxes represent
concurrent activities (the “wired” box denotes the “thread” abstraction). The
consistent shading and arrows across the concurrency and the library models
signify the “representation” relationship. Arrows with bold lines represent the



“mapping” relationship between library models and server domain models are
represented as UML diagrams on the bottom of the graph.

Fig. 5. Concept mediation.

Activity capture: The primary purpose of the type mediation is to flexibly in-
tegrate multiple concurrency libraries into a unified type space. To integrate the
dynamic execution flow of the server logic into these libraries, we provide pro-
gramming APIs for the users of the library to identify, based on domain knowl-
edge, the appropriate dynamic execution points in the server program where the
concurrent activities can be “captured” by the library. These APIs are in the
forms of AspectJ [11] pointcuts:

captureOnInstantiation is a call-based pointcut used to identify the instan-
tiation relationship between the WorkingContext and the Activity. The point-
cut is typically mapped to constructor calls or factory methods. This entails
that one class type is associated with one particular concurrency model with
its concurrency-aware method adapted by the generic library interface. If the
adapted concurrency-aware method of the class is invoked somewhere in the
server code, the invocation needs to be canceled. The invocation can be canceled
because, by our definition of concurrency-awareness, there is no data depen-
dencies between the concurrency-aware procedures and their calling stacks. We



provide the cancelCall pointcut to automate this action.

captureOnInvocation is a call-based pointcut used to identify the invocation
relationship instead. In this case, method invocations are created as the new
concurrent activities. Compared to captureOnInstantiation, one advantage of
this finer granularity of activity capturing is that it allows one class to have a
different concurrency scheme per method, if the method is invoked by different
callers. Our implementation of the method-level activity captivity essentially
creates a Java inner class per method invocation, which, in spite of incurring no
runtime overhead in our experiments, can be an expensive operation.9

In Figure 6, we show a simplified version of an AspectJ module in CAL, which
supports the activity capture on method invocations for the Java 5 executor
framework. Line 5 is the abstract pointcut, part of the library API, to be mapped
to the invocation of a concurrency-aware procedure in the server code. Lines 10-
16 execute in place of the procedure invocation by the around advice. The inner
class (Lines 10-13) performs the type-space adaptation of the library native type,
IExecutorActivity, to the Java executor interface type, Runnable. Line 15
submits method executions as inner classes of type Runnable to the executor
framework.

Fig. 6. Implementation of Concurrency Aspect Library

3.3 The CAL Implementation

To verify the fundamental concepts of our aspect oriented approach, we have
created an aspect library consisting of the support for four types of representa-
9 Java duplicates the runtime state of the parent class for each inner class created.



tive and dramatically different concurrency models. All implementations assume
that the concurrency-aware procedure uses a Boolean return value to signal the
termination condition.

Reactive. Central to our reactive concurrency library is a simpler version of
the Reactor [18] event multiplexer using the Java nio package. The server pro-
cesses client requests in a single thread of execution, demultiplexing I/O events
to a collection of IAsyncWorkers. In addition to the type mediation and activity
capture functionalities, our library enables the automatic and seamless socket
replacement for creating the asynchronous counterparts of the synchronous Java
sockets and I/O stream classes. The replacement is realized by intercepting the
creation process for synchronous sockets and streams using AspectJ advices. Our
library implementation is capable of supporting 10K simultaneous connections
on a 2GHZ commodity PC10.

Executor framework. We have implemented the mediation and the cap-
ture capabilities leveraging the new Java 5 Executor concurrency framework11.
Among many capable concurrency models provided in the executor framework,
we chose to implement support for the thread-per-activity and the pooled-thread
models.

JCSP framework. JCSP [19]12 is a Java framework implementing the con-
cepts of the Communication Sequential Process [9]. JCSP facilitates the creation
of “verifiable” concurrent programs for which the model-checking techniques can
be used to check for concurrency problems such as race conditions, deadlocks, or
livelocks. Our JCSP aspect library executes concurrent activities as JCSP pro-
cesses. The pooling model is implemented leveraging the inherent synchronizing
capabilities of JCSP Channels. Special support is needed for common synchro-
nization mechanisms such as locks and synchronized regions due to the lack of
these primitives in the CSP vocabulary.

Native Java thread. We have also implemented support for the native
Java thread class as a representation of the conventional approach to multi-
threading. The thread pool model is implemented as a fixed number of threads
feeding on an activity queue.

3.4 Example

We now go back to our simple server, presented in Section 1, to illustrate how
users of CAL can compose different concurrency models without code modifi-
cations. We present two examples. The first example shows how CAL APIs are
used to support the Java 5 executor framework. We then showcase the compo-
sition capabilities of CAL by building a multi-staged hybrid concurrency model
from two basic ones: the executor framework and the event-driven model, again
requiring no changes to the server code.
10 The C10K problem. URL: http://www.kegel.com/c10k.html
11 Java Executor. http://java.sun.com/j2se/1.5.0/docs/api/java/util/

concurrent/Executor.html
12 Communicating Sequential Processes for Java URL:http://www.cs.kent.ac.uk/

projects/ofa/jcsp/



Fig. 7. (A) Analysis for Executor (B) Analysis for Hybrid

Java executor framework. The Java executor framework is a new addition to
the Java platform that offers improved support for concurrency. We first present
an abbreviated version of the server code in Figure 7(A). We identify, with dotted
rectangles, two activities that can be executed concurrently: the establishment
of a new connection (Line 14) and the persisting of uploaded data (Line 7).
The concurrency implementation is given in Figure 8. Given some degree of fa-
miliarity with the AspectJ syntax, one can see that this implementation looks
very close to an actual design blueprint. The user first determines that the type
Server encapsulates some concurrent activities, represented by dotted rectangles
(declare Server as the WorkingContext at Line 4). She then explicitly specifies
two method invocations to be executed concurrently (“concretize” the abstract
pointcut at Lines 7-9). Lines 11-14 are not part of the library usage, however,
they are necessary to switch the server into the active execution mode. The
example shows that the most important difference of our library approach, com-
pared to conventional ways of concurrency programming, is that the concurrency
perspective of the server program is not only modularized but also more explicit
and descriptive.

Multi-staged concurrency model. In reality, complex server programs often
use a combination of concurrency models to maximize the processing efficiency.
For our simple server example, it could be more efficient to provide the data
uploading service by using the event-based model to accept new incoming con-
nections and the executor framework to dispatch the database operations in
separate threads. In this way, we avoid the threading overhead for a higher
number of clients and pipeline the incoming data towards the database service.
Figure 7(B) depicts our design: The entire start method definition is identified
as a unit of asynchronous activity and the call to the Database.store method



Fig. 8. Implementing the executor framework through CAL

is to be executed concurrently by Java executors. The Server, therefore, is both
an executor working context and an asynchronous activity13.

We realize this implementation with two aspect modules in less than 20
lines of code as presented in Figure 9. In the reactive stage implementation,
Line 3 maps a special pointcut defined in the reactive library to signify when
the reactor starts to gain control of the program execution. Line 4 captures the
instance of Server at creation as an async activity. Lines 6-8 perform the type
adaption, and Lines 10-12 are to associate the Server class with the correct
dispatching key. This example demonstrates the modular “composability” of
CAL in building complex and multi-staged server programs as those described
in the SEDA project [20]. Benefiting from the externalized approach, the server
code remains oblivious to specific concurrency implementations. We have the
option of using an entirely different concurrency model that is possibly better in
a different service context.

3.5 Synchronization.

The externalization of synchronization is a challenging topic. In the context of
this paper, we present the synchronization externalization as an implementation
issue and delay further discussion to future work. We address synchronization
in Java programs via two simple rewriting rules: (1) For methods to be de-
clared with the synchronized keywords, we use around advices with execution
pointcuts to enclose the method body within the synchronized blocks. (2) For
block-level, i.e., intra-method, critical regions, we factor the block into a method,
if necessary, and enclose the call-site of the method with either synchronized
blocks or other synchronization primitives, such as wait/notify pairs, through
the call-based around advices.

13 Note that in this case Server is not a working context because we identify its method
definition as the activity



Fig. 9. Implementing the hybrid model through CAL

Special implementation concern is given to the JCSP library for its lack
of common Java synchronization operations such as synchronized regions and
wait/notify/notifyAll operations. These Java primitives are supported, with the
exception of the notifyAll semantics, by the JCSP concept of Channel as we em-
ulate mutual exclusion as the exclusive communication between the executing
thread and an oracle. The notifyAll semantics is supported by the JCSP con-
cept of Bucket for its capability of releasing multiple threads simultaneously.
Our implementations support the correct operations of the systems that we
have evaluated with negligible runtime overhead. The functional evaluation is
presented in Section 4.

4 Evaluation

We intend to achieve four design objectives with our aspect-oriented library ap-
proach to concurrency externalization: obliviousness, versatility, uniformity, and
efficiency. To evaluate these design objectives, we have used the CAL library on
two server programs: our simple server presented earlier as a micro-benchmark,
and ORBacus14, a commercial middleware implementation. With respect to these
two server programs, our evaluation aims at answering two questions:

14 ORBacus URL:http://www.iona.com/orbacus



1. How effective is the concurrency awareness concept and the CAL API in sim-
plifying concurrency implementations when working with diversified concur-
rency models?

2. What is the runtime cost of the CAL-based server implementations as a trade-
off for the configuration flexibility compared to conventional approaches?

We answer the first question through the static quantification regarding the
structures of the CAL user code. We provide insights to the second question by
extensive runtime simulations. The rest of the section proceeds as follows. We
first describe the relevant physical attributes of the CAL implementation and
the applications of CAL to both the micro benchmark and ORBacus. We then
present the quantification of the coding quality of the CAL-based implementa-
tions, followed by the metric-based runtime evaluations.

4.1 The CAL implementations

As aforementioned, the CAL library consists of support for four different types of
concurrency models: Java thread, event-driven, Java executor framework, and
JCSP framework. Each model is supported by CAL types extended from the
generic Activity and WorkingContext interfaces. For instance, the Runnable
interface of the thread and the executor models are adapted by IThreadActivity
and IExecutorActivity interfaces in the library, respectively. For each concur-
rency model, we implemented both the bounded and unbounded versions with
respect to the number of concurrently executed tasks. The unbounded version
admits as many concurrency activities as possible and the bounded version uses
a “thread” pool that feeds on a queue of CAL activities.15 The library is fairly
light weight, consisting of 84KB in total bytecode size. We prove by implemen-
tation that the concepts such as Context and Activity are compatible to the
chosen concurrency models.

We implemented the four concurrency models for both the example server
presented throughout the paper and the ORBacus16 object request broker (ORB)
using CAL. ORBacus is implemented in Java. It supports the full CORBA 2.4
specification17 and is being commercially deployed. It consists of around 2000
Java classes and 200K lines of code. The network communication components
of ORBacus use the thread-per-connection model to serve the incoming clients.
Refactoring was first performed to remove the native concurrency implemen-
tation from these components. We then make them concurrency-aware by re-
moving the loop structures and the synchronization code. The relevant method
definitions in the original implementation do not have data dependencies over
the callers. They also have well defined termination conditions defined by state
15 Due to the technical difficulty of sharing Selector across threads, we implemented

the pool version of the event-driven model essentially as to balancing the load among
concurrently running Selector event loops.

16 The ORBacus ORB. URL: http://www.iona.com/products/orbacus.htm?WT.mc

id=1234517
17 CORBA 2.4 URL: http://www.omg.org/corba



variables. These variables are accessible by AspectJ constructs and checked in
the library user code. Applying CAL to the simple server allows us to better
assess the performance characteristics of CAL without being influenced by the
operational complexity of the server. ORBacus, on the other hand, serves as
an experimentation of how our concurrency externalization approach benefits
non-trivial and sophisticated server programs.

4.2 Coding effort

To assess the coding effort of the concurrency implementation using CAL, we
examine the static code structures of the CAL user code for both the micro-
benchmark and ORBacus. Our hypothesis is that, if CAL effectively supports
model variations, the effectiveness can be reflected in two ways: (1) One does
not need to write a lot of code to use a concurrency model and (2) one does
not need to change the code dramatically to switch to a different concurrency
model. Note that the server code stays the same for all of the models.

In Table 1, we enumerate the AspectJ language elements used in the user
code of CAL as a way of reflecting the coding effort as well as the structural
similarity in dealing with the four concurrency models. Each model, including
the pool version, is supported by one aspect module, corresponding to a row
in the table. For ORBacus, we also report the aspect-oriented synchronization
implementations for both the thread-based models and the JCSP model18. We
observe that for both cases, in addition to the light coding effort19, the coding
structure among the bounded as well as the unbounded (pool) versions are al-
most identical. In fact, the actual code only differs from each other for extending
different interface types. Interested readers are invited to verify this themselves
by obtaining a copy of our implementation20. The simplified coding effort reflects
the effectiveness of the high-level abstractions provided by CAL in matching code
with design. The similarity of the coding structures shows that the CAL abstrac-
tions capture the common characteristics of the chosen concurrency models.

4.3 Runtime assessment

To assess the runtime overhead of concurrency through CAL, we measure the
server throughput as well as the client-side fairness on server machines based on
both single-core and multi-core CPUs. To benchmark the two servers, we sim-
ulate four types of client/server communication patterns: the sustained (CPU)
or the periodic (CPU short) connections for CPU-bound factorization requests,
and the sustained (IO) or the periodic connections (IO short) for sending data
chunks of 80K bytes. In all experiments, we use the thread-per-connection model,

18 Recall that the synchronization semantics in JCSP is based on channels.
19 The event-driven model needs more coding effort to associate asynchronous activities

with dispatching keys as illustrated in Figure 9.
20 The examples can be downloaded from http://www.cse.ust.hk/∼charlesz/

concurrency



Model LOC pointcut type ITD method ITD advice
MB ORB MB ORB MB ORB MB ORB MB ORB

event 47 37 3 3 1 4 3 6 1 0
executor 10 46 2 3 1 3 0 3 1 1
thread 9 46 2 3 1 3 0 3 1 1

csp 9 46 2 3 1 3 0 3 1 1
exe.pool 12 50 2 3 1 3 1 4 1 1

thread.pool 12 50 2 3 1 3 1 4 1 1
csppool 12 50 2 3 1 3 1 4 1 1

thread sync N/A 37 N/A 1 N/A 1 N/A 0 N/A 2
csp sync N/A 39 N/A 1 N/A 1 N/A 0 N/A 2

Ave. 16 45 2 3 1 3 1 3 1 1
Table 1. Structural comparison for the micro-benchmark (MB) and ORBacus
(ORB). LOC:lines of code. ITD: inter-type declaration.

implemented in vanilla Java as the baseline for comparison. For each server, we
produce 8 runs. Due to space limits, we selectively report 4 runs for each case.
The fairness is calculated from the average, m, and the standard deviation, δ, of
the number of messages sent by each client as follows: fairness = (m − δ)/m.
It is a measure of how much clients deviate from the mean in successfully being
serviced by the server.

Micro benchmark: The measurements for the micro-benchmark are re-
ported in Figure 10. The first conclusion we draw from our observations is
that CAL does not incur noticeable performance overhead because the base-
line performance is not consistently better than any CAL implementations in
any case. For long CPU-bound connections, the event-driven model (async) sig-
nificantly outperforms the other models when the number of clients increases on
the single CPU server. This is not true on the dual-core machine (CPU(Multi)),
as the single-threaded event-driven model (async) becomes significantly more
costly to use when the number of connections is less than 2000. This is because
thread-based models can be boosted by the dual-CPU configuration. The prob-
lem is solved by our load-balanced event-driven version (asyncpool). For the
I/O-bound periodic connections (IO Short (Single)), the baseline is at par
with other models except the executor framework . The sustained I/O-bound
connections on the dual-core machine (IO (Multi)) are well serviced by thread-
based models, whereas the event-driven models, whether load balanced or not,
suffer severely.

In summary, our experiments confirm that, for this simple server, none of the
concurrency models we chose to implement scales well for all connection types
and processor profiles. Fortunately, due to the externalized approach, we are
able to flexibly choose the most appropriate concurrency implementations and
always outperform the baseline.

ORBacus: For the performance evaluation of ORBacus, we created two
CORBA server objects, one performing the factorization task and the other



Fig. 10. Measurements of the example server for the CPU intensive connections
on both types of servers, the short I/O connections on the single CPU server,
and the sustained I/O connections on the dual-core server. In all charts, the
baseline measurements are plotted as thick solid lines for the ease of visual
comparison. The technical settings of the single-core experiments are identical
to the ones presented in the introduction section. The multi-core experiments
are conducted on two server machines with Intel Xeon dual core CPUs clocked at
1.8GHz with 4MB on-chip cache and 3GB physical memory. These two servers
are both running Linux 2.6 kernels and connected by a 1Gbps switched network.
All experiments are carried out by the JRockit R27.3.1-jre1.6.0 01 JVMs with
1M memory limitations (Xmx flag) and 156K maximum stack size (Xss). The
pool size is fixed at 100.



simply receiving the inbound data chunks. We observe that, in accordance to
the case of the micro-benchmark, the CAL-based approaches do not incur per-
ceivable performance overhead. For the I/O-bound measurements (IO (Single)
and IO Short (Multi)), the server throughput generally degrades as the num-
ber of client ORBs increases. This behavior is different compared to the micro-
benchmark version in which case the server scales well. This is due to a particular
demarshalling mechanism used in the request broker. The demarshalling process
is a CPU-bound operation carried out for each incoming data chunk for decod-
ing the middleware frames from the network data. The demarshalling process
is in contention with the thread context switches on the CPU resources. The
sustained CPU-bound connections (CPU (Multi)), in accordance to the case of
the micro-benchmark, are well serviced by the load balanced event-dispatching
model. In the case of CPU Short (Single), we observe that the thread pooling
is very effective in servicing periodic short CPU-bound requests as all of the
three pooling versions have near constant throughput. The event-driven model
is most suitable for both kinds of CPU-bound connections. As for the fairness
measures, the Executor and JCSP frameworks have consistently the worst fairness
measures compared to all other versions. We suspect this is due to the intrinsic
mechanisms of these frameworks not to the use of CAL because the fairness of
the baseline is not consistently better than the rest of the models.

In summary, our experiments reveal that we made significant improvements
over the original implementation for the continuous and periodic CPU-bound
requests by changing the concurrency models to either the event-based or the
pool-based. The improvements range from around 50% on the single CPU server
to about 4-10 times on the dual-core CPU. The benefit of changing concurrency
models for the I/O-bound requests, however, is not significant compared to the
original implementation of ORBacus. On the one hand this shows that the use
of CAL achieves the same performance as the conventional approach and, at the
same time, exhibits the customization flexibilities. On the other hand, it poses
new challenges for us to improve processing for requests that are both I/O and
CPU intensive. Our future work will address this issue.

5 Conclusions

The ubiquitous trend of network-based computations require the architecture
of concurrency in today’s server programs to adapt to the large variations of
runtime conditions. Consequently, server programs often need to employ multiple
concurrency models that can be very different in nature. In this work we propose
CAL, the Concurrency Aspect Library, as a way of both raising the level of
abstraction for programming concurrency and, more importantly, separating the
specific semantics of concurrency models from the server architecture.

We have presented CAL as both a design methodology and a prototype imple-
mentation. Server programs leveraging CAL must maintain a set of coding invari-
ants to become “concurrency-aware”. This is an effective compromise between
the conventional approach of invasive concurrency programming and the seman-



Fig. 11. Measurements of ORBacus: Sustained CPU-bound (CPU (Multi))
and periodic I/O-bound (IO Short (Multi)) requests on dual-core servers;
Sustained I/O-bound (IO (Single)) and periodic CPU-bound (CPU Short
(Single)) requests on single-core servers. For fairness measures, we present
the plots for the sustained dual-core CPU-bound and the periodic single-CPU
I/O-bound. The technical settings are identical to the previous case except that
the Xss flag is not used.



tic obliviousness of concurrency that is highly desired but difficult to achieve.
Concurrency-aware server programs are amenable to the basic interaction as-
sumptions of many intrinsically different concurrency models. CAL provides a
uniform programming interface consisting of both static type and dynamic exe-
cution abstractions for programmers to work with the concurrency-aware server
code and CAL hides the semantic details of individual concurrency models.

Our general conclusion is that the externalization of concurrency mecha-
nisms using CAL is effective. The effectiveness of the CAL approach is based
on two factors: the imposed programming invariants need to give applications
the customization and performance advantages; the API abstractions of CAL
need to reduce the programming effort in coding architecture customizations for
the concurrency libraries. To evaluate these design objectives, we implemented
the CAL support for four different concurrency models and applied CAL on two
server programs. Our observation is that even for a sophisticated server pro-
gram the coding effort of programming concurrency with CAL is both light and
consistent in spite of model differences. The server code, without being modi-
fied, can be composed with the four concurrency libraries either individually or
in combination. We have also shown that the code written based on CAL has
closer correspondence to the design of concurrency as compared to conventional
approaches.

We presented the evaluation of the performance of the CAL-based concur-
rency on both single and multi-core CPU hardware platforms. We conclude that
CAL does not incur observable runtime overhead on both kinds of platforms while
enabling customization and flexibility. Compared to conventional approaches,
the CAL-based concurrency customization can produce speedups as much as ten
fold. The load-time transformation capability of AspectJ allows us to make very
delayed concurrency customization decisions for servers after gathering sufficient
information about how the servers are being used in deployment.

We are only at the initial stage of the concurrency externalization research.
We plan to continuously gain experience with the applications of CAL by evalu-
ating more broader types of server programs including Web servers and database
servers. We will continue to validate our design by enriching the concept of con-
currency awareness and the capabilities of CAL. In particular, we plan to focus
on the externalization of synchronization and intend to explore the meaning of
“synchronizable code” as well as the structure of a synchronization aspect li-
brary. We also plan to study more sophisticated load characteristics and think
about how concurrency customizations can help with server loads that are not
exclusively CPU or I/O bound.

References

1. Gul Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems.
The MIT Press, 1986.

2. Frank Buschmann and Regine Meunier. A System of Patterns. John Wiley &
Sons, 1997.



3. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In USENIX
OSDI, pages 173–186, Berkeley, CA, USA, 1999. USENIX Association.

4. Gregor Kiczales Cristina Videira Lopes. D: A Language Framework for Distributed
Programming. TR SPL97-010, P9710047 Xerox PARC.

5. Carlos A. Cunha, ao L. Sobral Jo and Miguel P. Monteiro. Reusable aspect-
oriented implementations of concurrency patterns and mechanisms. In AOSD,
pages 134–145, New York, NY, USA, 2006. ACM.

6. Rémi Douence, Didier Le Botlan, Jacques Noyé, and Mario Südholt. Concurrent
aspects. In GPCE, pages 79–88, New York, NY, USA, 2006. ACM.

7. Jan Hannemann and Gregor Kiczales. Design Pattern Implementation in Java and
AspectJ. In ACM OOPSLA, pages 161–173. ACM Press, 2002.

8. Max Haustein and Klaus-Peter Löhr. JAC: Declarative Java Concurrency. Con-
currurrent Computing: Practice & Experience, 18(5):519–546, 2006.

9. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
10. Elizabeth A. Kendall. Role model designs and implementations with aspect-

oriented programming. In ACM OOPSLA, pages 353–369. ACM Press, 1999.
11. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G. Griswold. An overview of AspectJ. In ECOOP, volume 2072, pages
327–355, 2001.

12. Gregor Kiczales, John Lamping, Cristina Videira Lopes, Chris Maeda, Anurag
Mendhekar, and Gail C. Murphy. Open implementation design guidelines. In
IEEE ICSE, pages 481–490, 1997.

13. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors, ECOOP, volume 1241, pages 220–
242, Berlin, Heidelberg, and New York, 1997. Springer-Verlag.

14. Jörg Kienzle and Rachid Guerraoui. AoP – does it make sense? the case of concur-
rency and failures. In ECOOP, Lecture Notes in Computer Science 2374, Springer
Verlag, pages 37 – 54, 2002.

15. L. Lamport. Proving the correctness of multiprocess programs. IEEE Transaction
of Software Engineering, 3(2):125–143, 1977.

16. Bertrand Meyer. Design by contract. Advances in Object-Oriented Software Engi-
neering, pages 1–50, 1991.

17. D. L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053–58, December 1972.

18. Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture Patterns for Concurrent and Networked Objects,
volume 2 of Software Design Patterns. John Wiley & Sons, Ltd, 1 edition, 1999.

19. Peter H. Welch, Neil C. Brown, James Moores, Kevin Chalmers, and Bernhard
Sputh. Integrating and Extending JCSP. In Alistair A. McEwan, Wilson Ifill, and
Peter H. Welch, editors, CPA, pages 349–369, July 2007.

20. Matt Welsh, David Culler, and Eric Brewer. Seda: an architecture for well-
conditioned, scalable internet services. In ACM SOSP, pages 230–243, New York,
NY, USA, 2001. ACM.

21. Matt Welsh, Steven D. Gribble, Eric A. Brewer, , and David Culler. A design frame-
work for highly concurrent systems. UC Berkeley Technical Report UCB/CSD-00-
1108.

22. Charles Zhang and Hans-Arno Jacobsen. Refactoring Middleware with Aspects.
IEEE Transactions on Parallel and Distributed Systems, 14(11):1058–1073, Novem-
ber 2003.


