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Abstract. This paper proposes a novel approach to segment three dimensional
curvilinear structures, particularly vessels in angiography, by inspecting the
symmetry of image gradients. The proposed method stresses the importance of
simultaneously considering both the gradient symmetry with respect to the curvi-
linear structure center, and the gradient antisymmetry with respect to the object
boundary. Measuring the image gradient symmetry remarkably suppresses the
disturbance introduced by rapid intensity changes along curvilinear structures.
Meanwhile, considering the image gradient antisymmetry helps locate the struc-
ture boundary. The gradient symmetry and the gradient antisymmetry are evalu-
ated based on the notion of oriented flux. By utilizing the aforementioned gradient
symmetry information, an active contour model is tailored to perform segmenta-
tion. On the one hand, by exploiting the symmetric image gradient pattern ob-
served at structure centers, the contours expand along curvilinear structures even
through there exists intensity fluctuation along the structures. On the other hand,
measuring the antisymmetry of the image gradient conveys strong detection re-
sponses to precisely drive contours to the structure boundaries, as well as avoiding
contour leakages. The proposed method is capable of delivering promising seg-
mentation results. This is validated in the experiments using synthetic data and
real vascular images of different modalities, and through the comparison to two
well founded and published methods for curvilinear structure segmentation.

1 Introduction

Segmentation of three dimensional curvilinear objects, particularly vascular structures
has a wide range of applications. In the past decades, incorporating curvilinear structure-
specific image features in active contour models for vessel segmentation has been inten-
sively studied. For instance, Lorigo et al. [8] developed the CURVES algorithm based
on the geodesic active contour model [1], which aims at driving the active contours
to the boundaries where image intensity is rapidly changing. The CURVES algorithm
employs the minimal curvature regularization term to prevent the evolving contours
from vanishing inside narrow vascular structures. Yan and Kassim refined the geodesic
active contour model by introducing the capillary force [14] to encourage contours to
propagate into small vessels. The contour dynamics of these segmentation methods are
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governed by the image intensity gradient. It is possibly problematic if the structure
intensity fluctuates along and inside structures. The intensity fluctuation can halt the
evolving contours inside structures, and such intensity fluctuation commonly exists in
some images, such as angiographic images. Furthermore, low contrast structure bound-
aries cannot exert enough image force to compete against other forces generated from
the intensity fluctuations along the structures. The evolving contours can finally stop
inside structures instead of at the boundaries of the structures.

To extract reliable image features for segmentation of three dimensional curvilinear
structures, the intensity profiles along the structure cross-sectional plane are commonly
considered to be symmetric with respect to the structure center. Classic differential op-
erators, such as the second derivatives of Gaussian [6] and the Hessian matrix [10][4],
which are based on convolving an image with symmetric filter functions1, were pro-
posed for the detection of curvilinear structures. The differential operators quantify the
difference between the intensity inside a local region defined by a scale parameter and
those in the vicinity of that local region. Exploiting the Hessian matrix, Toledo et al.
[11] developed an active contour model based on the eigenvalues and eigenvectors ex-
tracted from the Hessian matrix. In [3], Descoteaux et al. fused the Hessian matrix
and the flux measure [12] to formulate an active contour model to segment vascular
objects. The flux measure was introduced by Vasilevskly and Siddiqi in [12]. It drives
the active contours to segment vessels by using a discretized Laplacian operator, which
inspects the intensity changes that occur at the boundary of a local sphere with a pre-
defined radius. Analogous to the original Laplacian operator, the discretized version is
isotropic and sensitive to symmetric structures. To handle vessels with various widths,
these symmetric operators are always incorporated in multiscale frameworks. However,
they commonly return faint responses at structure boundaries. It is because the local
intensity variations across the structure boundaries are not symmetric with respect to
those boundaries. At the boundaries, the active contours driven by the responses of
these operators can evolve randomly according to the image noise attached along the
object boundaries. It can lead to subsequent contour leakages.

To segment curvilinear objects such as vessels without leakages, this paper proposes
a novel approach that inspects the symmetry of image gradients for active contour evo-
lution. The proposed model considers both the image gradient symmetry with respect
to the structure center, and the image gradient antisymmetry with respect to the struc-
ture boundary. Analyzing both the gradient symmetry and antisymmetry helps devise
image features to encourage contour propagation even through there exists intensity
fluctuation along structures, and simultaneously avoids contour leakages. In this paper,
through the experiments using a noise corrupted synthetic image volume and real vascu-
lar image volumes, the proposed method is compared with two well founded published
approaches, the flux method [12] and the CURVES algorithm [8]. The ability of the
proposed method to correctly segment curvilinear structures, particularly vasculatures
without leakages is validated. It consistently delivers promising segmentation results in
all cases. It is therefore well suited to perform segmentation of curvilinear structures.

1 The image Hessian matrices can be found by convolving the image with a set of the second
derivatives of Gaussian [10].
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2 Methodology

Without the loss of generality, we assume that the objects of interest have stronger in-
tensity than image backgrounds. For the detection of curvilinear structures, we first
analyze the image gradients at a local spherical region boundary which touches the ob-
ject boundary. These image gradients are projected along a direction on the object’s
cross-sectional plane. As shown in Fig. 1a, along the cross-sectional plane of a curvi-
linear structure, the image gradients point to the structure center and form a symmetric
pattern. When the local spherical region centers at the middle of the object, the projected
gradients are symmetric (see Fig. 1b). The symmetry of the projected gradients implies
that both the magnitudes and the orientations of the projected gradients are symmetric
with respect to the spherical region center. When the local spherical region centers at
other positions, the projected gradients are aligned in various patterns (see Figs. 1c-e).
At the object boundary, the projected gradients at the local spherical region boundary
point along the same direction (Fig. 1d). As such, the projected gradient magnitudes are
symmetric but the projected gradient orientations are antisymmetric with respect to the
spherical region center. This pattern of image gradients is referred to as the antisymmet-
ric pattern (Fig. 1d). In the positions slightly inside or outside the structure, the projected
image gradients are similar to the patterns as shown in Figs. 1c and e respectively, in
which both the projected gradient magnitudes and orientations are antisymmetric. This
pattern of projected gradients is considered as neither symmetric nor antisymmetric. In
summary, there are three situations discussed regarding various positions located,

– at the structure centers, the projected gradients are symmetric (the projected gradient
magnitudes and orientations are symmetric);

– at object boundaries, the projected gradients are antisymmetric (the projected gradi-
ent magnitudes are symmetric but their orientations are antisymmetric); and

– slightly inside or outside the object, the projected gradients are neither symmetric nor
antisymmetric.

2.1 Oriented Flux Symmetry

In this section, two measures are devised to analyze the symmetric gradient patterns
and the antisymmetric gradient patterns. These two measures jointly quantify the gra-
dient symmetry. They are therefore conveying reliable detection responses to identify
the aforementioned three situations. This detection scheme is referred to as oriented
flux symmetry. In oriented flux symmetry detection scheme, the first measure to help
quantify the gradient symmetry is introduced on the basis of a previous work, called
optimally oriented flux [7]. The oriented flux measure quantifies the amount of image
gradient, which is projected on a direction ρ̂, flowing into a local spherical region cen-
tered at x,

f(x; r, ρ̂) =
1

4πr2

∫
∂Br

(
(v(x + A) · ρ̂)ρ̂

)
· n̂dA, (1)

where Br is a local spherical region with radius r, A is the position vector on ∂Br,
n̂ is the inward normal of the sphere at A, dA is the infinitesimal area on ∂Br and
v is image gradient. The differentiability of a discrete image can be approximated by
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Table 1. The analysis of the response magnitudes of various measures obtained at different posi-
tions x. In the second, the third and the fifth columns, ρ̂ is given as the direction on the structure
cross-sectional plane, pointing from object centers to x. In the second to the fifth columns except
the entries with ∗, r is given as the distance from x to the nearest object boundary; in the entries
with ∗, r is assumed to be a value smaller than the structure radius.

Location of x, relative to a curvilinear object |f(x; r; ρ̂)| |s(x; r; ρ̂)| |Λ12(x; r)| Q12(x; r) M(x)
At the center (Fig. 1b) >> 0 ≈ 0 >> 0 ≈ 0 >> 0

At the boundary (Fig. 1d) ∗ ≈ 0 ∗ >> 0 ∗ ≈ 0 ∗ >> 0 = 0
Slightly inside or outside the object (Figs. 1c and e) > 0 > 0 > 0 > 0 ≈ 0

obtaining the image gradient from the image smoothed by a Gaussian filter with the
scale factor of 1.

Whereas the authors of [7] focused on finding the optimal projection orientation
to maximize the resultant value of the oriented flux measure, we aim at making use
of the above equation to help quantify the image gradient symmetry. In this aspect,
the oriented flux is regarded as a measure sensitive to the symmetric image gradient
pattern. The above oriented flux measure detects curvilinear structures grounded on
its high sensitivity to the symmetric gradient pattern, as shown in Fig. 1b. Given that
Equation 1 is evaluated when ρ̂ is a direction on the structure cross-sectional plane and
r is equal to the structure radius, f(·) attains its maximal value at the structure centers.
The gradient symmetry decreases with respect to the positions away from the centers
and thus, the strength of the oriented flux detection response declines accordingly. To
identify the antisymmetric gradient pattern, the second measure is devised as,

s(x; r, ρ̂) =
1

4πr2

∫
∂Br

(
v(x + A) · ρ̂

)
dA. (2)

This measure helps quantify the antisymmetry of the image gradients that contributes
to the resultant value of the above oriented flux measure (Equation 1). It is referred to
as oriented flux antisymmetry (OFA). It is sensitive to antisymmetric gradient patterns
occurring at object boundaries. The OFA measure and the oriented flux measure alter-
natively return strong detection responses at the structure centers and at the structure
boundaries (see the second and the third columns of Table 1).

2.2 Quantifying Gradient Symmetry along Structure Cross-Sectional Planes

Developing a measure to indicate the middle of vascular structures is now possible
by aggregating the OFA measure and the oriented flux measure. It is achieved by first
performing the eigen decomposition on a tensor to obtain the optimal projection axis
which maximizes the magnitude of the oriented flux measure [7]. There are three pairs
of resultant eigenvalues and eigenvectors, denoted as λj(x; r) and êj(x; r) respectively,
where j ∈ [1, 2, 3], |λ1(·)| ≥ |λ2(·)| ≥ |λ3(·)|. To detect curvilinear structures, the
amount of the image gradients pointing to the structure center along its cross-sectional
plane spanned by ê1(·) and ê2(·) [7] is evaluated,



724 M.W.K. Law and A.C.S. Chung

Λ12(x; r) =
1

4πr2

∫
∂Br

(
[ê1(x; r) ê2(x; r)]T v(x + A)

)
·([ê1(x; r) ê2(x; r)]T n̂

)
dA,

= f(x; r, ê1(x, r)) + f(x; r, ê2(x, r)) = λ1(x; r) + λ2(x; r). (3)

Utilizing Equation 2, an OFA based measure associated with ê1(·) and ê2(·) is used to
inspect the antisymmetry of gradients along structure cross-sectional planes,

Q12(x; r) =
1

4πr2

∣∣∣∣
∫

∂Br

(
[ê1(x; r) ê2(x; r)]T v(x + A)

)
dA

∣∣∣∣
=

√
s2(x; r, ê1) + s2(x; r, ê2). (4)

The above equation evaluates the magnitude of the sum of the projected image gradi-
ents at ∂Br on the detected structure cross-sectional plane. A moderate or large resul-
tant value signals the situation that x is not located at the structure center (see the fifth
column in Table 1). As presented in the second row, the fourth and the fifth columns in
Table 1, Λ12(·) >> Q12(·) in the middle of a curvilinear structure. Also, both Q12(·)
and Λ12(·) are robust against the intensity fluctuation along structure because they are
evaluated along its cross-sectional planes. Besides, Λ12(·) cannot give a very large mag-
nitude outside the middle of structures (see the fourth column in Table 1), including
the positions either inside the structures and closed to the structure boundaries, at the
boundaries, or slightly outside the structure. It is because the gradients are not symmet-
ric at these positions. Based on Λ12(·) and Q12(·), a measure that only reports positive
responses in the middle of structure is, max

(
0, Λ12(x; r) − Q12(x; r)

)
. As the target

object radius is unknown, the detection response at x is the maximum response among
those responses computed in a set of radii. It therefore retrieves the most significant
responses induced by the image gradients located at the object boundaries. As such,

M(x) = max
r∈R

(
max (0, Λ12(x; r) − Q12(x; r))

)
. (5)

R is the radius set and is specified to include all possible radii of the target structures.
Regarding the proposed active contour based segmentation algorithm, the measure

M(x) guides the evolving contours to expand along and inside curvilinear structures,
even through there exists intensity fluctuation along them. To illustrate this idea, M(x)
is evaluated using a noise corrupted synthetic tube with a radius of 4 voxels (Figs. 2a-
d). In this example, the radius set for M(·) is specified as R = {1, 1.5, 2, ...6} voxels.
A sharp intensity drop is observed along the tube. This synthetic tube exaggerates the
situation where a sudden intensity change is present along a structure. Many existing
active contour approaches [1][8][14] can misidentify sudden intensity drops as parts of
object boundaries. On the contrary, the measure M(x) can consistently deliver positive
detected values in the middle of the synthetic tube despite the intensity drop (Fig. 2e). In
each sub-figure of Fig. 2j, it is observed when the detection radius of M(x) differs from
the structure radius (all cases, except the one with “R = {4}“), the detection responses
are smaller than that with a matched radius (in the case of “R = {4}“). It is because
the symmetric gradient pattern vanishes as the spherical region radius differs from the
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(a)

ρ̂

(b) (c) (d) (e)

Fig. 1. Illustrations of image gradients which form various patterns. The black arrows and grey
solid lines represent image gradients and structure boundaries respectively. (a) Image gradients
along a curvilinear structure cross-sectional plane. (b-e) Four examples showing image gradients
located at the local spherical region boundaries (black dotted circles), projected along ρ̂.
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Fig. 2. (a) An xy-plane which shows the cross-section of the synthetic tube with a 4 voxel radius.
(b) An xz-plane of the synthetic tube. (c) The numbers represent the intensity of various parts of
the image in (b). (d) An xz-plane of the synthetic tube corrupted by additive Gaussian noise with
standard deviation 0.1. (e-g) The xz-planes which shows different measures. The black line in (g)
showing the boundary where maxρ̂ |s(x; rs(x), ρ̂)| is maximal along the vertical directions from
the tube center to the image background. (h-i) The profiles of different measures obtained along
the lines shown as dotted lines in (c). (j-k) The values of M(x) and maxρ̂ |s(x; r, ρ̂)|, which are
obtained using one radius for each sub-figure.
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Applying 6 image filters 
in the Fourier domain for 

each radius [7]

Applying 3 image filters 
in the Fourier domain for 
each radius (Equation 9)
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Fig. 3. The flow chart of the efficient algorithm to retrieve the level set evolution speed function
F (x) (Equation 8). The block sizes vary according to the complexity of different tasks.

structure radius. Thus, acquiring the maximum response obtained among all radii as in
Equation 5 offers a reliable measure to quantify the symmetric gradient patterns.

As a major component of M(x), the magnitude of Λ12(·) is insignificant at object
boundaries (see the third row, the fourth column in Table 1). This observation is vali-
dated using the above synthetic tube (see the grey solid line in Fig. 2i, and it is a plot
along the dotted line (i) in Fig. 2c). Along the tube boundary, the response magni-
tude of Λ12(·) is small and slightly fluctuating along the tube boundary. The response
magnitude exhibits no significant change at the position where the tube intensity drops
from 1.0 to 0.6. This implies that the response fluctuates randomly instead of following
the tube intensity. Returning faint and randomly fluctuating response magnitudes along
object boundaries is common to the approaches that extract image features by using
symmetric measures, such as the oriented flux measure, the Hessian matrix [4][11][3]
and the discretized Laplacian operator used by the flux method [12]. Since the local
intensity variations across the object boundaries are not symmetric with respect to the
boundaries, these symmetric measures deliver noisy responses at object boundaries.
Evolving an active contour according to the symmetric measure based responses can
lead to subsequent contour leakages. In the proposed method, M(·) is obtained by sub-
tracting Λ12(·) from Q12(·). It keeps the resultant values of M(·) zero at the object
boundaries (see in the third row, the fourth to the sixth columns in Table 1). It avoids
the interference in the detection results incurred by the fluctuating responses of Λ12(·)
along boundaries.

2.3 The Oriented Flux Symmetry Based Active Contour Model

To locate the structure boundaries in the proposed active contour model, the OFA mea-
sure which can capture the antisymmetric gradient patterns occurring at object bound-
aries is utilized. Suppose that C is a closed contour and N is the contour inward nor-
mal, one of the criteria of finding the desired segmentation solution is to maximize∫
C s(S; r, N )dS, where S and dS are the position vector and the infinitesimal area on
C respectively. Regarding the value of r, for positions inside curvilinear structures or
slightly outside the structures, a proper value is the distance from those positions to the
closest object boundary. It ensures that the responses of s(·) computed at the various
positions, such as those shown in Figs. 1c and e are significant and produced by the
image gradient at the object boundaries. It is illustrated in Fig. 2k, when r is small (1
or 2 voxels), the OFA responses are concentrated in the vicinity of the tube boundary.
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As r grows, more OFA responses can be observed in the regions further away from
the tube boundary, despite the generally weaker responses than those obtained using
smaller values of r. Therefore, large values of r can guide the evolving contours which
are located further away from object boundaries. Meanwhile, a small valued r is ben-
eficial to precisely indicate the boundaries. Hence, r is estimated at each location by
observing the OFA measure along the direction giving the strongest detection response,
which is maximal among a set of radii,

rs(x) = arg max
r∈R′

(
max

ρ̂
|s(x; r, ρ̂)|

)
= argmax

r∈R′

∣∣∣∣ 1
4πr2

∫
∂Br

v(x + A)dA

∣∣∣∣ . (6)

To recognize structures adjacent to the strong edges of undesired objects, R′ can contain
only the smallest radius in R discussed in the previous section. This avoids the detection
being adversely affected by the strong edges of adjacent objects. For detection of curvi-
linear structures with complicated geometry (e.g. high curvature vessel or bifurcation)
or irregular cross-sections, R′ can be defined as the same as R. It ensures that various
positions inside or slightly outside the structures can reach the nearest object bound-
ary by those radii in R. In Fig. 2g, the value of maxρ̂ |s(x; rs(x), ρ̂)| is presented. Its
profiles along the dotted lines in Fig. 2c are given in Figs. 2h and i. Along the verti-
cal direction in Fig. 2g, from the tube center to the image background regions (in the
upper half and in the lower half of Fig. 2g), the locations where maxρ̂ |s(x; rs(x), ρ̂)|
attains its maximum are shown as two black lines. These black lines are located along
the tube boundaries, which become distinctive in the image of maxρ̂ |s(x; rs(x), ρ̂)|.
It illustrates that evolving contours according to the OFA measure with the detection
radius rs(x) can facilitate the detection of object boundaries.

The OFA measure is not limited to the detection of curvilinear structures unlike the
oriented flux measure does. The OFA measure can also highlight the boundaries of
various kinds of structures, which deviates from the curvilinear ones. However, this
flexibility implies that the OFA measure is sensitive to all intensity changes, including
the intensity fluctuation along curvilinear structures. As shown by the black solid line
in Fig. 2h, a large value of maxρ̂ |s(x; rs(x), ρ̂)| is observed when the tube intensity
drops from 1.0 to 0.6 inside the synthetic tube. Nonetheless, M(x) retains a high de-
tection response as compared to maxρ̂ |s(x; rs(x), ρ̂)| (see the black solid line and the
black dotted line in Fig. 2h). On the contrary, maxρ̂ |s(x; rs(x), ρ̂)| is large at the tube
boundary as compared to M(x) (see the black solid line and black dotted line in Fig.
2i). These two measures alternatively deliver higher responses than their counterparts at
the structure centers and at the object boundaries (also see the last two columns of Table
1). Hence, the desired resultant contour maximizes the following energy functional,

E(C) =
∫

Inside(C)

M(V)dV +
∫
C

s(S; rs(S), N )dS, (7)

where V and dV are the position vector and the infinitesimal volume respectively. The
evolving contour C is represented as the zero level of a level set function φ [9]. By
using the gradient descent approach, the dynamic of the level set function is described
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as2 φt = F |∇φ|, where F is the first variation of E(C), i.e.

F (x) = M(x) − div

(
1

4πr2
s(x)

∫
∂Brs(x)

v(x + A)dA

)
. (8)

Considering the large positive responses of M(x) in the middle of curvilinear struc-
tures, the regions with large values of M(x) can be used as the seed positions to initial-
ize the contour evolution. The function F (x) is positive inside curvilinear structures to
keep the contour expanding. It is negative at the positions slightly outside the structure
boundaries. This eventually stops the evolving contour over the structure boundaries.

2.4 Fourier Expressions of the Oriented Flux Measure and the Oriented Flux
Antisymmetry Measure

Studying the Fourier expressions helps devise the efficient computation algorithm for
the proposed measures. It also reveals the orthogonality of the oriented flux measure and
the OFA measure if they are regarded as two types of image filters. Denote FFT be
the fast Fourier transform operator, i.e. FFT−1{FFT {I}} ≡ I and u is the frequency
(in cycle per millimeter). The Fourier expression of the OFA measure s(x; r, ρ̂) can be
found by first rewriting Equation 2 as,

s(x; r, ρ̂) =
∫

Image
Dr(V )(ρ̂ · (∇g) ∗ I)(x + V )dV = ((ρ̂ · (∇g) ∗ Dr)(x)) ∗ I(x),

where g is the Gaussian filter employed for smoothing the input image as discussed
in Section 2.1, and Dr(x) is a spherical impulse function which is equal to (4πr2)−1

when ||x|| = r and 0 elsewhere. By employing the Hankel transform,

FFT {(ρ̂ · (∇g) ∗ Dr)} =
√−1(r||u||)−1(ρ̂ · u)e−2(π||u||)2 sin(2πr||u||). (9)

Besides, as stated in [7], f(x; r, ρ̂) can be computed by

FFT−1

{
FFT {I}

(
4πr(ρ̂(uT u)ρ̂T )
||u||2e2(π||u||σ)2

) (
cos(2πr||u||) − sin(2πr||u||)

2πr||u||
)}

. (10)

As such, the computation of the oriented flux measure and the OFA measure are con-
sidered as two filtering operations. To facilitate the discussion, we denote Φρ̂,r(u) =
FFT {(ρ̂ · (∇g) ∗ Dr)}, and the non-image terms in Equation 10 (i.e. the terms after
FFT (I)) as Ψρ̂,r(u). These two functions exhibit the following properties,

Φρ̂,r(−u)Ψρ̂,r(−u)= −Φρ̂,r(u)Ψρ̂,r(u), lim
u→0

Φρ̂,r(u)= lim
u→0

Ψρ̂,r(u) = 0, and thus,

∫
Image

(
FFT−1{Φρ̂,r}(x)

) (
FFT−1{Ψ}∗(x)

)
dx=

∫

Image bandwidth

Φρ̂,r(u)Ψρ̂,r(u)du=0,

2 The implementation is based on [13] and a publicly available library, ”The Insight Segmenta-
tion and Registration Toolkit” (http://www.itk.org). The level set evolution is stopped when
the increment of the segmented voxels over 20 iterations is less than 0.01% of them.

(
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(a) (b) (c) (d)

Fig. 4. The 80 × 80 × 80 voxels synthetic image used in the synthetic data experiment. (a) the
isosurface of the spiral with the isovalue of 0.5; (b) the 15th slice showing the bottom part of the
noise corrupted spiral; (c) the 65th slice showing the top part of the noise corrupted spiral; (d) the
initial level set function for the segmentation of the spiral.

where the superscript ∗ is function conjugate. Hence, given the same radius r and ori-
entation ρ̂, the oriented flux measure and the OFA measure can be regarded as two
orthogonal image filters. They convey two distinct types of information - the gradient
symmetry and the gradient antisymmetry. Fusing this information, the measure M(x)
(Equation 5) judges which type of the information is more significant at a given po-
sition. It delivers responses only if that position exhibits a greater degree of gradient
symmetry than that of antisymmetry.

On the other hand, the level set evolution speed F (x) is independent of the evolving
contour. It is therefore evaluated prior to the level set evolution process, in which,

[s(x; r, â1) s(x; r, â2) s(x; r, â3)]T =
1

4πr2

∫
∂Br

v(x + A)dA, (11)

where â1, â1 and â3 are the unit vectors along the x-, y- and z-directions. With the aid of
the aforementioned Fourier expressions, F (x) is evaluated efficiently, with complexity
O(|R|N log N). This is summarized in Fig. 3. It is noted that, whereas the complicated
formulation of F (x), its complexity is comparable to that of the FFT-based multiscale
Hessian techniques (see [7] for details). Finally, the divergence in Equation 8 is evalu-
ated using the central difference scheme.

3 Experimental Results

The proposed method is compared with two published vascular segmentation tech-
niques, the CURVES algorithm [8] (CURVES) and the flux method [12] (FLUX). Prior
to performing segmentation using these methods, the image volumes are smoothed by
a Gaussian filter with a scale factor of 1 smallest voxel length, for noise reduction for
CURVES and FLUX, and for ensuring differentiability of the discrete image signal for
the proposed method. Based on visual assessments of the clinical data, the widths of the
target structures are all less than 3mm. The radius set used for FLUX and the proposed
method R covers the radii from 1 voxel-length (the physical length depends on the voxel
sizes of different images) to 3mm (or 8 voxel-length in the synthetic case). The second
radius set for the proposed method R′ is the same as R in all tests except the fourth real
vascular image case. For CURVES, for each case, we present the structure which re-
ports no leakage and that segmented region has the largest number of segmented voxels
among those obtained using different heuristic parameter values used by CURVES.
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CURVES FLUX The proposed method

Fig. 5. The segmentation results of the noise corrupted synthetic spiral by using CURVES, FLUX
and the proposed method

Image dimension: 512 × 512 × 64 voxels
Voxel size: 0.39 × 0.39 × 1.0mm3

(a)

Image dimension: 512 × 512 × 64 voxels
Voxel size: 0.39 × 0.39 × 1.0mm3

(b)

Image dimension: 512 × 512 × 60 voxels
Voxel size: 0.39 × 0.39 × 0.95mm3

(c)
Image dimension: 380 × 360 × 236 voxels

Voxel size: 0.32 × 0.32 × 0.40mm3

(d)

Fig. 6. The image volumes used in the real vascular image experiment. (a, b) The perspective
maximum intensity projections, along the axial, the sagittal and the coronal directions of two
intracranial PC-MRA volumes; (c) the axial perspective maximum intensity projection (left) and
the 53th image slice (right) of an intracranial TOF-MRA volume; (d) The 182th (left) and 214th
(right) slices of a cardiac CTA volume. The red circles indicate the aorta and the blue dots are the
manually placed initial seed points. (Please refer to the electronic version of this paper for better
illustration).
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 7. (a, b, e, f) The segmentation results of the clinical cases shown in Figs. 6a, b, c and d
respectively, by using CURVES. (c, d, g, h) The segmentation results of the clinical cases shown
in Figs. 6a, b, c and d respectively, by using FLUX.

(a)
(b)

(c) (d)
Fig. 8. The segmentation results obtained by using the proposed method from the four angio-
graphic images shown in Figs. 6a-d
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3.1 Synthetic Data

Using a noise corrupted synthetic spiral, as shown in Figs. 4a-c, we examine the ability
of different approaches to segment an elongated structure, where the intensity is chang-
ing along the structure and image noise is present. The inner radius and the intensity
of the spiral are gradually reduced from 4 voxels and a value of 1 at the bottom of the
structure, to 1 voxel and a value of 0.5 at the top of the structure. This synthetic spiral
is corrupted using additive Gaussian noise with standard deviation equal to 0.1.

The active contours of all methods are initialized inside the bottom part of the spiral
(Fig. 4d). In Fig. 5, the segmentation results of various approaches are shown. In which,
the contour of CURVES cannot propagate along the spiral to reach the top of the struc-
ture. As the image intensity declines along the structure, the image gradient generated
by the image noise inside the spiral exerts higher image force than that exerted by the
weak boundary of the structure having low intensity value. Thus, the evolving contour
of CURVES is halted inside the structure. Besides, the contour of FLUX (Fig. 5) pene-
trates the object boundary and it results in contour leakages. It is because the symmet-
ric discretized Laplacian operator used by FLUX returns faint responses along object
boundaries. The contour is randomly evolved at the low contrast spiral boundaries and
leaks through these boundaries. On the contrary, for the proposed method, the measure
M(x) allows the contour to propagate along structure and the OFA measure stops the
evolving contour at object boundaries. The proposed method is therefore capable of
segmenting the entire spiral without leakages (see Fig. 5, the proposed method).

3.2 Real Vascular Images

There are four angiographic images employed in this experiment, including two in-
tracranial phrase contrast magnetic resonance angiographic (PC-MRA) images 3 (Figs.
6a and b), one intracranial time-of-flight MRA (TOF-MRA) image 3 (Fig. 6c) and one
cardiac computed tomographic angiographic (CTA) image 4 (Fig. 6d). The voxel inten-
sity of these images was scaled to be in the range of 0 and 1. The experimental settings
of different approaches are the same as those settings in the synthetic data experiments
except the procedures of contour initialization. For the PC-MRA and TOF-MRA image
volumes, the initial level set function is obtained by thresholding the 0.1% image voxels,
which produce the highest values of M(x) among all voxels in the image. The initial
contours are only placed in the middle of vessels with large detected values of M(x).
For the CTA image volume, the object of interest - coronary arteries are connected with
the aorta, which is not a part of the target region. They share the same intensity range.
We manually select two spheres with a radius of 3mm at two positions where the aorta
is connected with the left coronary artery, and the right coronary artery. The level set
update (i.e. the contour evolution) is disabled within these two spheres for all methods.
Two initial seeds are placed in the left coronary artery and the right coronary artery (see
the blue dots in Fig. 6d). In this CTA image, the radius set R′ of the proposed method

3 Acquired using a Philips 3T ACS Gyroscan MR scanner without the use of contrast agent, at
the University Hospital of Zurich, Switzerland.

4 Rotterdam Coronary Artery Algorithm Evaluation Framework,
http://coronary.bigr.nl/

�http://coronary.bigr.nl/�
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contains only the smallest radius in R to avoid the disturbance introduced by the edges
adjacent to the arteries (see Fig. 6d).

It is noted that the vessel intensity of the flow-sensitive PC-MRA images fluctuates
significantly because of the variation of blood flow speeds inside the vessels with differ-
ent sizes. This intensity fluctuation produces image gradient along vascular structures
and stops the evolving contours of CURVES inside the vessels (see Figs. 7a and b).
For FLUX, the faint responses detected by the symmetric discretized Laplacian opera-
tor cannot precisely position the boundaries of the vessels. The evolving contours leak
through the object boundaries and are subsequently guided by image noise as shown
in Figs. 7c and d. In TOF-MRA image, the non-vascular tissues can report intensity
values similar to those of vascular regions (see Fig 7c, right). It greatly reduces the
intensity contrast of the vessel boundaries where a non-vascular structure with simi-
lar intensity is nearby. As a result, the weak vessel boundaries cannot exert enough
image force to draw the evolving contours of CURVES along the vessels and causes
under-segmentation (Fig. 7e). In Fig. 7g, the contour of FLUX expands beyond the
weak vessel boundaries and follows the non-vascular structures. In the CTA image, the
evolving contours of both CURVES and FLUX (Figs. 7f and h) leak through the arteries
and follow the edges of the heart chamber surface. The contour evolution of FLUX and
CURVES in this case was manually stopped for contour visualization.

In contrast, the measure M(x) of the proposed method encourages contours to ex-
pand along vessels despite the intensity variation of vessels. On the other hand, the OFA
based measure, as stated in Equation 7, is capable of halting the evolving contours at
the vessel boundaries. It can segment the vessels without leakage (Figs. 8a-c). Based
on the visual comparison between the segmented vessels of the proposed method, and
the original image volumes shown in Figs. 6a-c, the proposed method is able to deliver
faithful segmentation results. It can also withstand the disturbance introduced by the ir-
relevant edges adjacent to the target structures. Thus, the proposed method successfully
segment the coronary arteries as presented in Fig. 8d.

4 Perspective and Conclusion

The proposed active contour model is devised based on various measures which aim at
locally quantifying the image gradient symmetry. In our application vascular segmen-
tation, since the tissue intensity can vary spatially due to the presence of multiplicative
bias field, the proposed model avoids encapsulating the regional intensity variance in-
formation [2][5]. Albeit the three dimensional formulation of the proposed method, it
is general to cope with curvilinear structures in two, three or higher dimensions, if any.
Also, we are acquiring more data sets and also segmenting ground truth in order to
perform quantitative comparison to other approaches.

Besides, analogous to the studies in [8][10], introducing geometric constraints to the
proposed active contour model may be beneficial. The major concern is that these ge-
ometric constraints require intensive parameter searching. Furthermore, vast numbers
of application specific constraints or supplementary information have been proposed re-
cently, for instance, detecting only structures with circular cross sections, regularization
based on the curvature of structure centerlines or structure radii, disallowing bifurcation,
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exploiting training data or interactive segmentation (see [15] for a comprehensive sur-
vey). The proposed measures can provide useful features to detect curvilinear structures
along with these constraints or supplementary information for particular applications.

Regarding the proposed active contour model, the oriented flux symmetry based for-
mulation expands the evolving contours in the middle of curvilinear structures where
the image gradients are symmetric. The contours are eventually driven to the object
boundaries, in order to maximize the gradient antisymmetry along the contour inward
normal direction. Benefited from the oriented flux antisymmetry measure and the ori-
ented flux measure, the proposed model is capable of segmenting the entire structures
without contour leakages, in both the experiments using the synthetic image and the
real images of different modalities. It is experimentally demonstrated that the oriented
flux symmetry based active contour model achieves promising segmentation results.
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