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What is Interesting?

• = Best ?
– Quantitative metric of optimality as surrogate 

for the non-measurable

• Leads to an exhaustive search for ALL 
possibly interesting patterns.



Perfection Has a Price

• Often require combinatorial optimization, 
with exhaustive consideration of an 
exponential number of options.

• To render algorithms tractable, the 
optimization is often defined over problems 
that are too narrowly constrained.



Our Thesis

• One should use cheap approximate 
techniques to do almost the best, and to 
cover almost all the possibilities.

• Approximation heuristics are not very good 
for many difficult optimization problems, 
BUT, by their nature, data mining problems 
are “special” 
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The Human in the Loop

• For OLAP, we now have a well-accepted 
need for data reduction, and for 
approximate query answering.

• If data mining is to be an interactive 
process, we need tools for quick and dirty 
data mining.



An Example

• Finding fascicles.
– Interesting patterns in subsets of a relation.

– Introduced in JMN_VLDB99.

• Pattern is a set of attributes on which the 
tuples (almost) match.
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Some Fascicles with k=1
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Association Rule Mining

• Much studied data mining problem
• Given a number of transactions, in each of 

which several items were purchased -------
find sets of items that were frequently 
purchased together.

E.g.  AC is frequent (>=5) in:

ABC, ACD, BCE, ACF, BCG, ABCD, ACDE



A Priori Algorithm

• Exponential number of item combinations –
cannot count them all.

• Count candidate combinations of size k in 
the kth pass.

• Prune candidates using anti-monotonicity: 
An item set can be frequent only if each of 
its subsets is frequent.



Like Association Rules?

• Bin attribute values into discrete buckets.
• Call each distinct attribute value occurrence 

an “item”.
• Each tuple in the relation is an item-set.
• A fascicle with k compact attributes is a 

frequent itemset of size k.

• Compute using A Priori, or variants.



Randomized Algorithm

• Pick a tuple at random.
• Pick a second tuple at random, and see if at 

least k attributes match.
• If so, pick a third tuple at random.
• Keep going until adding one more tuple 

leaves less than k compact attributes.
• Select all tuples in the relation with these k 

attribute values in the compact range.



Performance -- Runtime

> 2500s3.4s5

1591.0s3.4s4

299.8s3.5s3

13.5s3.5s2

A PrioriRandomizedk



Performance -- Coverage

N/A0.9415

0.8460.9744

0.9670.9883

0.9920.9992

A PrioriRandomizedk



Poor Coverage in A Priori

• Due to “pre-binning”.
• Coverage can be improved, at much greater 

computational cost by creating overlapping 
bins.



Lesson Learned

• Approximate algorithms can not only solve 
problems (at least for the one example 
problem considered) a lot faster than 
optimal algorithms, but also:

• They are amenable to a more general 
problem statement and hence can produce 
better overall results than a narrowly 
constructed optimal algorithm.



Desiderata

Approximate/Interactive Algorithms must:
– Be quantifiable, w.r.t. error guarantees;

– Be tunable, w.r.t. degree of error;

– Be incremental, w.r.t. finding solutions to 
related problems;

Lots of interesting research questions …



In Conclusion

• Much good work in approximate query 
answering for decision support.

• Some excellent work on sample-based 
clustering, sampling for association rule 
mining.

• But much yet to be done before we can 
reach the holy grail of interactive data 
mining.


