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ABSTRACT

Ricke recently gave a remarkable proof showing that any
undirected multicommodity flow problem can be routed in
an oblivious fashion with congestion that is within a factor
of O(log®n) of the best off-line solution to the problem. He
also presented interesting applications of this result to dis-
tributed computing. Maggs, Miller, Parekh, Ravi and Wu
have shown that such a decomposition also has an applica-
tion to speeding up iterative solvers of linear systems.

Récke’s construction finds a decomposition tree of the un-
derlying graph, along with a method to obliviously route in a
hierarchical fashion on the tree. The construction, however,
uses exponential-time procedures to build the decomposi-
tion.

The non-constructive nature of his result was remedied,
in part, by Azar, Cohen, Fiat, Kaplan, and Récke, who gave
a polynomial time method for building an oblivious routing
strategy. Their construction was not based on finding a hi-
erarchical decomposition, and this precludes its application
to iterative methods for solving linear systems.

In this paper, we show how to compute a hierarchical de-
composition and a corresponding oblivious routing strategy
in polynomial time. In addition, our decomposition gives an

improved competitive ratio for congestion of O(log? nloglog n).

In an independent result in this conference, Bienkowski,
Korzeniowski, and Ricke give a polynomial-time method
for constructing a decomposition tree with competitive ra-
tio O(log*n). We note that our original submission used
essentially the same algorithm, and we appreciate them al-
lowing us to present this improved version.

*Email: chrishtr@cs.berkeley.edu. Supported in part by a
GAANN fellowship and NSF grant CCR-0105533.

fEmail: hildrum@cs.berkeley.edu. Supported by UC MI-
CRO #02-035.

{Email: satishr@cs.berkeley.edu. Supported by NSF grant
CCR-0105533.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPAA' 03, June 7-9, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-661-7/03/0006 ...$5.00.

Kirsten Hildrum

Satish Rao ¢

Categories and Subject Descriptors

E.1 [Data structures]: Graphs and networks; F.2.2 [Non-
numerical algorithms and problems]: Routing and lay-
out

General Terms
Algorithms, Theory

Keywords

Congestion, oblivious routing, tree decomposition, precon-
ditioning

1. INTRODUCTION

In this paper we consider the following problem: we are
given a weighted, undirected graph. We would like to pre-
process the graph so that whenever flow needs to be routed
from one vertex to another, it can be done without reference
to any flow possibly being routed between any other pair of
vertices. In other words, we would like to find a fized flow
routing that can be used for any set of demands. Such a
construction is called oblivious.

Our goal is to find flow paths for all pairs of vertices, such
that regardless of the flow demands, we can route with a
low maximum congestion on any edge. Our quantitative
measure of “low maximum congestion” is to compare our-
selves with the best possible (non-oblivious, offline) routing
scheme under the same flow demands.

Réicke [23] proved the existence of such a good oblivious
routing scheme by hierarchically decomposing the graph,
and then showing how the graph can approximately sim-
ulate the corresponding hierarchical tree.! This hierarchi-
cal tree can route flow with congestion at most that of the
optimal offline flow on the original graph. Therefore, ap-
proximate simulation of the hierarchical tree by the origi-
nal graph implies an approximately optimal routing scheme
for the original graph itself. He also gives other applica-
tions of his technique. His construction, however, was not
polynomial-time.

Maggs et al. [21] showed that Récke’s result yields a good
family of preconditioners that provably speed up the itera-
tive solution of linear systems. However, since Récke’s con-

'We would like to point out that these trees are very similar
in spirit to the fat-trees developed by Leiserson [19], who
used fat-trees to give similar results for grid graphs. This
was in the context of finding universal networks for VLSI
circuits, which are modeled as grid graphs.



struction is not polynomial-time, neither the precondition-
ers nor the oblivious routing strategies could be efficiently
found.

For routing, this situation was remedied. Azar, Cohen,
Fiat, Kaplan and Ricke [6] used linear programming to show
that one could, in polynomial time, find the optimal obliv-
ious routing scheme for any network. Their result applied
to directed graphs as well as undirected graphs, and they
relied on Ricke’s result to give an upper bound on the re-
lationship between the best offline and oblivious solutions
for undirected graphs. They also showed that for directed
graphs that oblivious routing schemes could be off by a fac-
tor of (y/n) from the best offline schemes.

Their results, however, do not seem to apply to finding
the preconditioners developed by Maggs et al. using Récke’s
result. The preconditioners make essential use of hierarchi-
cal structure, which the Azar et al. construction does not
provide.

We improve Récke’s result by making it constructive, and
show that our decomposition achieves an O(log?n loglog n)
competitive ratio against the best possible off-line routing
strategy. Since our algorithm actually constructs a hierar-
chical tree decomposition, it can be used to efficiently con-
struct the preconditioners presented by Maggs et al.

Again we note that, independent of our result, Bienkowski,
Korzeniowski and Récke [8] present in this conference a poly-
nomial time algorithm for constructing the decomposition
tree. Moreover, they point out the competitive ratio is pa-
rameterized by the max-flow min-cut gap of the input graph.

1.1 Related Work

A totally distributed approach to routing multicommodity
flows was developed by Awerbuch and Leighton [5]. Indeed,
they gave a method that routes flows with a rate that is
within a (1 + €) factor of optimal. The flows were routed
by injecting packets at sources and removing packets at the
corresponding sinks, and generally flowing packets “down-
hill” according to the number of packets queued at each
node. Their approach could clearly incur quite some delay
to build the “hills” that guide the packets to their ultimate
destinations. Moreover, their approach was not oblivious,
i.e., a packet’s path could be influenced by other flows.

Aspnes et al. [2] gave an O(log n)-competitive, online al-
gorithm, which is not oblivious. Awerbuch and Azar [4] gave
a less centralized algorithm with the same bounds.

The technique of using a tree decomposition for routing
has also found application in a data management problem
[22, 26].

The work presented by Maggs et al. builds on an unpub-
lished manuscript by Vaidya [24]. Vaidya’s ideas were fur-
ther developed by Gremban and Miller, who first proposed
the framework of using a tree decomposition-based precondi-
tioner and gave explicit constructions for 2D meshes. This
work is described in Gremban’s thesis [14]. Recently, the
ideas have further been extended in [9] and explained in [7].

As noted above, the results are parameterized on the max-
flow min-cut gap n of the class of graphs in question. In
terms of 7, our algorithm gives an O(nlognloglogn) ap-
proximation algorithm. For example, on planar graphs, 7 is
a constant. On graphs that exclude the minor K., n = O(r?)
[12] (their results improves the result in [17], which showed
that 7 = O(r®)).

A polynomial lower bound on oblivious, deterministic rout-

ing has been shown for hypercubes in [10], and subsequently
improved by [16]. The situation is substantially different for
oblivious, randomized algorithms on the hypercube, where
the lower bounds are logarithmic. See [28, 1, 11] for details.

1.2 Techniques

The core of Ricke’s proof is a hierarchical decomposition
of the underlying graph. The decomposition is constructed
by choosing a series of nested edge cuts of subgraphs into
smaller and smaller pieces, until all pieces contain only one
vertex. This is also sometimes called a laminar decompo-
sition, since the subgraphs resulting from the cuts form a
laminar set.

There is a natural tree associated with any such hierar-
chical decomposition, in which each node represents a sub-
graph, and the children of a node represent the different
connected components after the edge cut of the parent. The
weight of an edge from child to parent is the size of the cut
between the child subgraph and the rest of the graph (not
just to the parent).

Now consider routing a particular multicommodity flow
between the leaves of the tree, using only the edges of the
tree. It is not hard to see that routing a multicommod-
ity flow on the associated decomposition tree of a graph
has lower maximum edge congestion than the optimal flow
routing on the original graph. The reason for this is that
the edges in the tree represent upper-bounds on the capacity
between a subgraph and the rest of the graph (recall that
each edge’s weight is equal to the sum of the capacities of
the edges between these two components).

We would like to use the tree decomposition to give us
“hints” as to how to route obliviously in the original graph.
The path between two leaves in the tree induces a nested
series of edge cuts in the graph; the “hint” Récke uses is to
route across each of these cuts sequentially. Each such cut
is a potential bottleneck in the graph for the flow.

Somewhat counter-intuitively, we would like to find small
cuts since these cuts are bottlenecks in that they represent
the true capacity of the graph. Of course, the cuts in a
particular decomposition tree may or may not accurately
reflect the true bottlenecks in the graph. The challenge is to
compute a decomposition in which each edge cut is a “true”
bottleneck. Approximate max-flow min-cut theorems like
Leighton-Rao [18] give a flow and a corresponding bottle-
neck, at least approximately.?

In summary, Récke’s technique is to find a good tree de-
composition, then show that he can route in the original
graph almost as well as in the tree by simulating the tree
with a hierarchical set of multicommodity flows.

This summary is an injustice to the clever arguments that
Réacke develops. For example, his algorithm alternatively
cuts subgraphs whose exit edges are not well connected and
merges pieces whose exit edges cannot communicate. The
tradeoffs are quite subtle. Moreover, he pays only a loga-
rithmic factor for his trouble. He pays another logarithmic
factor for the recursion depth, and a third for the approx-
imate relationship between multicommodity flows and the
cut lower bounds. This leads to his final bound of O(log® n).

We proceed differently; where Ricke divided subpieces by
searching exhaustively, we use the algorithm implicit in the

%In fact, the set of decomposition trees can be viewed as a
family of routing congestion lower bounds on the original
graph.



Figure 1: A graph on six vertices and its visual de-
composition into laminar sets.

approximate max-flow min-cut theorem in [18] to either find
a flow or find a good cut. That is, we recursively construct
both the flows and the decomposition. This can be com-
pared to Réacke who constructs the decomposition and then
argues that no cut is bad, a postieri. We believe this ap-
proach is simpler in addition to being constructive.

We remark that the procedure appears worse than Récke’s,
since he finds the optimal cuts at the time of the decomposi-
tion. Indeed, there are two ways in which the technique ap-
pears worse: first, the error in the approximation procedure
is squared; second, we seem to need an extra logarithmic
factor in order to ensure termination of the procedure.

Récke, however, pays a logarithmic factor at the end when
using the approximate max-flow min-cut theorems to show
that the flow exists. While we don’t find optimal cuts, we
simultaneously construct cuts and flows and pay a logarith-
mic squared factor as we go, which is already contained in
our “squared” error.

In addition, we further examine the cut/merge procedures
of Ricke a bit more carefully. His analysis does not take
credit for the number of cuts that happen in each call to
these procedures, which may result in very small subpieces.
By carefully taking credit for this, we can reduce the com-
bined cost of each level and the depth of the tree from log® n
to log nloglogn.

Finally, we are able to avoid paying the squared logarith-
mic factor for termination by allowing ourselves to recom-
pute cuts from a higher level that now appear suboptimal.

Thus, we obtain a bound of O(log® nloglogn) in terms of
competitiveness with offline multicommodity flows.

We also note that, although this paper talks exclusively
in terms of flows, it is natural to use these flows to randomly
route with expected congestion equal to our bounds. To do
this, simply treat the flows as probability distributions over
paths, and route on a path according to its probability. If a
sufficient number of packets are sent on each route, we can
use Chernoff bounds to show that the actual congestion ex-
perienced is close to the expectation with high probability.?

3This assumption is not restrictive, however, since if the
number of packets is small, then we trivially meet the com-
petitive ratio requirements.
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Figure 2: The resulting tree from the decomposi-
tion.

2. PRELIMINARIES

2.1 General notation

We will be working implicitly throughout with an undi-
rected, weighted graph G = (V, E). Let B(u,v) € Z2° be
the weight of the edge (u,v). We will usually refer to this
as the bandwidth of the edge.

We will use capital letters like S, where S C V, to refer
to both a subset S of the vertices of G, and the induced
subgraph on them.

For any w € S and S C V, let ws(u) = 3_, 45 B(u,v);
in words, ws(u) is the bandwidth » has to the outside of
S. Generalizing, if D = {U;}; is a collection of disjoint
subsets (a partition) of S, then for any ¢ and any u € U;, let
wp (u) = 3,0y, B(u,v).

Similarly, for U C S, let ws(U) = 3,y ws(v) and for
any partition D = {U;};, let wp(U) = > .y wp(v). This
is the amount of bandwidth crossing the boundaries of the
pieces of the partition D, together with all bandwidth that
leaves S.

Let cap(Ut,Uz) = 3

Let 6p(S) = —F/—~——
© P( ) 87(10g %) loglogn

which comes from a sparsest cut approximation algorithm
(see subsection 2.2). In what follows, we discuss a decom-
position tree, and will omit the subscript P; it should be
understood from context that P is the parent of S in the
decomposition tree.

B(u,v).

weU1,v€U
1 , where 7 is a constant

2.2 Notation about flows

We will need to route many multicommodity flows in or-
der to compute the decomposition tree; all of them, however,
will have the same general form. Let UNIFORMFLOW (S, D)
denote a multicommodity flow over a subgraph S and a par-
tition D of S. If u € Uy and v € Us, where Uy, Uz € D, then
the demand from u to v in the flow graph UNIFORMFLOW (S, D)
is defined as

wn () 223 (1)

We will be especially interested in the mazimum congestion
under which these flows can be routed. This is the multi-
plicative inverse of what is called the mazimum concurrent




multicommodity flow under these demands. This is the max-
imum value ¢* such that ¢” - demand(u, v) units of flow can
be routed simultaneously for all pairs v and v without ex-
ceeding the bandwidth of any edge. We note that ¢* and
the flows can be computed in polynomial time by linear pro-
gramming. We will denote ¢* by UNIFORMFLOWVALUE(S, D).

We will also consider the corresponding sparsest cut prob-
lem, whose solution is a lower bound on this multicommod-
ity flow problem. The sparsest cut of a graph under some
set of demands is the edge cut (U, S\ U) which minimizes
%' We will use the notation UNIFORMCUT(S, D)
to represent a <ylog n-approximate sparsest cut on the same
demand graph as UNIFORMFLOW(S, D).

The multicommodity flow demands here are sometimes
called “product” multicommodity flow [18]. A ~ylogn-ap-
proximate sparsest cut can be found for demands of this type
in polynomial time [18, 20, 3]. For this type of demand, a
bound can be proven on the dilation of the low in addition to
its congestion (the dilation of a flow is the maximum length
of any flow path) [18]; the bound is stated in terms of the
expansion of the graph. This bound becomes important for
the application of Maggs et al. We refer the reader to the
relevant literature for details. In this paper will will simply
make use of the fact that these flows can be computed in
polynomial time.

2.3 Conventions and technical issues
We will assume throughout that:

e All edge weights in the graph are bounded to within a
fixed polynomial factor of each other;

e log denotes the logarithm function to base two;
e and n is at least 4, which makes loglogn > 1.

The bandwidth on any edge in the graph is a nonnegative in-
teger. Imagine splitting up the bandwidth on an edge (u,v)
with bandwidth B(u,v) into B(u,v) pieces with bandwidth
one. When we refer to a “unit of bandwidth” from that
edge, we will refer to one of these pieces. When we refer
to the “border bandwidth” of a subgraph S, we mean the
bandwidth that contributes to ws(S). Similarly, when we
refer to a “unit of border bandwidth” of S, we refer to a
unit-sized piece of ws(S). We speak in terms of units of
bandwidth in our discussions and proofs.

3. THE ALGORITHM

Our algorithm builds a tree T one node at a time. Each
node in the tree represents a subgraph of the graph, and
the children of a node are a disjoint partition of the parent’s
subgraph. In order to create T', we will start with V' at the
root and repeatedly create children for each of the (current)
leaves of the tree (by partitioning the set) until the leaves
are all sets of size one. In what follows, we refer to a node
in the tree as either a node or a subset of the graph.

The algorithm produces a tree T' of the graph such that,
for each node S in T, and S’s set D of children:

e We route UNIFORMFLOW(S, D) with low congestion.

(In fact, we show that the congestion is 0(15—0(%))

e Every U € D has size at most |S|/2.

Consider some node S during the creation of the tree. In
this section we show how to partition S into a set of children,
D, with the required properties. Our strategy is conceptu-
ally simple: start with some partition D of S and try to
route UNIFORMFLOW(S, D). If we can, then we we are done
with S and can recurse on the elements of D. Otherwise,
we can either modify D and try to route again, or tell S’s
parent that it cut incorrectly.

More explicitly, we will think of the partition as having
two stages. The first phase, the merge phase, will consist of
a partition into merge sets, and the second will be a further
partition of each merge set into what we refer to as bandwidth
sets. The second phase is happening at the same time as the
first phase for the children of the current node. At the end
of the merge phase, we will do one of the following:

e Qutput a partition D of S, on which we can route
UNIFORMFLOW (S, D).

e Reject S and return a cut of it to S’s parent. We will
refer to such a cut as a bad child event.

The bandwidth phase, will consist of handling bad child
events from S’s children in D. Each time such an event
happens, we will need to revise D and recurse again on the
new pieces.

For extra clarity, the algorithm appears below in pseu-
docode. Calling MAKETREE(V) will output a nested set of
sets which represents the tree decomposition.

Algorithm MAKETREE(S):

D:={{v}:veS}
// The merge phase:

¢ := UNIFORMFLOWVALUE(S, D)
if ¢ < §(S)/logn then
(U, S\ U) := UNIFORMCUT(S, D)
// assume that |U| < |S\ U|
if wp(U) —ws(U) > ggrzycap(U, S\ U) then
D:=UU (Uxep XN(S\D))
else return failwith (U, S\ U)

// The merge phase has ended, and we can route the
// desired merge flow.

// The bandwidth phase:

Mark all U € D as incorrect
while some U € D is incorrect do
if MAKETREE(U) = failwith (A4,U \ A) then
(U, U\U") := MaxFLow(A4,U \ A)
D= (D\{U}H)L{U,U\U"}
Mark U’ and U \ U’ as incorrect
else Mark U as correct; let Ur be the subtree returned
by MAKETREE(U)
return {Ur : U € D}

3.1 The merge phase

At all times, we will be working with a current partition
D, which will be updated as the algorithm proceeds. At the
start, D = {{v} : v € S}.

Given the current partition D, we will repeatedly merge



a part U of S which is too heavy relative to its capacity to
the rest of S (where heavy is relative to wp).
In particular, we proceed as follows:

1. Find UNIFORMFLOWVALUE(S, D). If this value is at
least 8(S)/logn, then by definition we can route the
flow UNIFORMFLOW(S, D) with congestion at most E)]
and we have achieved the requirement of the merge
phase. Now we can recurse on the subgraphs in D.

2. Otherwise, we find a cut which is quite sparse. Let
(U, S\ U) = UNIFORMCUT(S, D). Since it is a -y log n-
approximate sparsest cut, and

UNIFORMFLOWVALUE(S, D) < §(S)/ logn,

we know that
cap(U, S\ U)

oy <20(S) @

by Lemma 9.
3. Now test whether

wp(U) —ws(U) 2 5—=vcap(U, S\ U).  (3)

o) (S)
This inequality is true when there is too much band-
width across D inside S for the cut (U, S\U) to support
it. We now have two cases:

(a) If condition (3) holds, then we know we can make
progress (as explained in Lemma 1), and so add
U to D, remove vertices in U from other sets of
D,* and repeat from step 1.

(b) Otherwise, we have a bad child event, and we re-
turn (U, S\ U) to the parent of S for processing.
Lemma 2 shows that the cut is within a factor of
two of meeting equation 2 for the parent of S.

We next prove that the process halts, i.e., we get a good
decomposition. This lets us route UNIFORMFLOW (.S, D) with
low congestion, or divide S in its parent’s decomposition into
two bandwidth sets.

LEMMA 1. The process above halts in polynomial time.

PrOOF. The process will halt if either step 1 succeeds or
we get to step 3(b). Hence assume that 3(b) never happens.
We will show that step 1 succeeds after a polynomial number
of steps.

Consider the potential function wp(S) — ws(S). Each
time a non-halting (case 3(a)) cut is found, the potential
function increases by at most twice the size of the cut, or
2cap(U, S’\ U), and it decreases by at least wp(U) —ws(U).
Since 275(5) > 2loglogn > 2 for n > 4, we know by equa-
tion 3 that the increase is less than the decrease. (The first
inequality holds because §(S) > 1 for all S.)

This means wp (S) —ws(S) gets smaller with every merge
step, and since it starts with a polynomial size and cannot
be negative, the algorithm stops after a polynomial number
of steps. [

Now we just need to prove the following Lemma about step
3(b).

4This may create empty sets in D, so remove them.

logn

LEMMA 2. If there is a bad child event with cut (U, S\U),
U,8\U)
then % S 2’)’(5(5)
PRrROOF. Let (U, S\ U) be the cut found in step 1 which
We know that %’(SU\)U) <

~v8(S) because (2) is true; otherwise, we cannot have a bad
child event. We also know that

causes the bad child event.

wp(U) —ws(U) < —=cap(U,S\U),

2 6(5)

or else we would be in step 3(a). These two conditions imply
that S2ERD) < 295(S). O

3.2 Creating flow for the bandwidth sets

Suppose that the merge phase succeeds for S, i.e., we
can route UNIFORMFLOW (S, D) with low congestion. How-
ever, D could be further refined by bad child events into
a new partition C. This subsection shows how to route
UNIFORMFLOW(S, C), while only increasing the congestion
by a constant factor.

Consider some parent whose child disappoints it by caus-
ing a bad child event. Let Sc be the child node, S, be the
parent node, and C be the partition of S, just before the
bad child event. Note that C is not necessarily the partition
at the end of the merge phase. In this case, the parent re-
ceives a cut of Sc into U and S, \ U, and needs to update C
accordingly.

Suppose that we can already route UNIFORMFLOW (Sp, C)
with low congestion. This is equivalent to saying that we
can route between all of the units of bandwidth in S that
contribute to we(S). Now we need to cut one of the sets
Sc € C into U and S. \ U, but this creates more units of
bandwidth that need to be routed. In order to handle these
new units of bandwidth, we first route them to the old units
of bandwidth, then use the flow on the old units of band-
width to route to the destination. We will argue that:

e This does not congest any edge too much.

e No old unit of bandwidth receives too many units of
new bandwidth.

Without loss of generality, assume that |U| < |S. \ U|. We
would like to establish a flow from the 2-cap(U, Sc\U) units
of bandwidth created across the cut to the units of border
bandwidth of S in U (i.e., ws, (U)).

Though we may not be able to route such a flow, we are
able to find a U’ C U such that the cut (U’, S\U’) is at least
as good and from which we are able to route the flow. This
set U’ is computed by the procedure MAXFLoW (U, S; \ U),
which is defined below.

In particular, for an arbitrary S and a cut (U,S \ U),
define N'(U, S \ U), where |U| < |S\ U| as the following
single-commodity maximum flow network, augmenting the
subgraph U as follows:

e Add special source and sink vertices s and t, respec-
tively.
e Add an edge from s to each vertex u € U with capacity

cap(u, S\ U).

e Add an edge from each vertex v € U to t with capacity

(U,8\U)
ws(v)A, where A = %.



Figure 3: The max-flow adjustment. U’ is to the
right of the green, dotted line, and U is the right-
hand semicircle. There are three edges across the
cut (U,S\ U, with right-endpoints a, b and ¢, each
with one unit of bandwidth. The red, dash-dot edges
are saturated, and the black edges are not. Other
edges are not shown and have no flow.

DEFINITION 1. (Maz-flow condition) Say that the cut (U, S\

U) satisfies the maz-flow condition if the minimum cut of
N (U, S\ U) has capacity Aws(v).

Note that if the max-flow condition is satisfied, then with
congestion 1 we can route flow from the cut units of band-
width to the border bandwidth of U.

LEMMA 3. Let S be a subgraph and (U,S \ U) be a cut.
Then there ezists some cut (U', S\ U’) such that:

cap(U',S\U") _ cap(U,S\U) .
* Tusn S Tasmy

e U'CU.

o and the maz-flow condition holds for (U',S\U’);

PrOOF. We argue that if U does not meet the max-flow
condition, we can find a smaller set U’ C U such that
Capgé’(’g,\)(]l) < ca%suzg\)u)_ If this set also does not meet the
max-flow condition, we will repeat the process until we do
find a set U’ such that M (U’, S\U’) is satisfies the max-flow
condition.

Consider the maximum flow from s to ¢t in N (U, S \ U).
There is a corresponding minimum cut of this network which
has capacity equal to the maximum flow.

If the minimum cut puts s and the vertices of U on one
side, and t on the other, then U’ = U satisfies the conditions
of the lemma, because the capacity of this cut is exactly
Aws(U).

Now suppose not. Then let U’ be the set of vertices on
the t side of the minimum cut. Note that U’ is strictly
smaller than U, since the cut separating U and s has capac-
ity Aws(U). The capacity of this cut in the flow network is
cap(U\U',U")+cap(U’, s)+cap(U\U', t) = cap(U’, S\U")+
ws(U\ U')X (the first two terms sum to cap(U’, S\ U")). It
must be that

cap(U', S\ U") + ws(U\ U)X < ws(U)A

cap(U', S\ U")
ws(U")

<A

But recall that A = M; hence cwgﬂi,sl\(ﬂ) is at

ws (U) s(U")
%. So U’ meets the first two conditions of the

Lemma. Note that if max-flow condition does not hold for
(U, S\ U’) we can repeat the argument above to find a set
U" C U’ meeting the first two conditions.

Since the set in question gets smaller at each repetition,
we either find a set meeting the max-flow condition, or we
get to a set of one vertex which trivially meets the max-
flow condition. Since each set has at least one fewer vertex
than the previous one, we terminate after no more than |U]|
iterations. []

most

Note that the flow only uses edges in U’, and creates con-
gestion at most 1 on them. This flow routes the units of
bandwidth created by the cut the to units of bandwidth
that already existed, just as we wanted.

One technical point is that we actually create not one unit
of bandwidth with each cut, but two: one on each endpoint
of an edge in the cut. We will get around this by first routing
directly across the cut, then using the max flow to route to
the final destination. For clarity, we ignore this factor of two
in the next subsection.

3.3 Bandwidth routing analysis

In this subsection, we consider the congestion created by
routing through all of the bandwidth sets described above.

Let U be a set in the final merge phase partitioning D of
S; consider the final bandwidth phase decomposition C of U
(this is after the last cut has been sent from the children
of S). We route one unit of flow from each unit of border
bandwidth of sets in C to the border bandwidth of U such
that each unit of border bandwidth of U receives at most a
constant amount of flow as described above. Now we show
that the total additional congestion in this process is small.

The partition C of U is produced by a series of bandwidth
cuts. These cuts can be visualized as a binary tree, where
subpieces are children of their containing pieces. Each such
tree of cuts is rooted at a particular set in D. Note that this
tree is not the same as the decomposition tree of the graph.

We will route the flow by routing up the tree, one cut
at a time. Each cut will be routed according to the flow
described and proven to exist in subsection 3.2. We now
bound the congestion incurred in routing this flow.

LEMMA 4. Let U be a set in the final merge phase parti-
tion of S, and let C be the final bandwidth phase partition
of U. The units of bandwidth contributing to we(U) can be
routed inside U to the units of border bandwidth of U such
that each unit receives at most 2 units of flow, and the max-
imum congestion on any edge in U is at most 2logn.

PRrROOF. The core idea of the proof is to notice that the
capacity of bandwidth cuts is small relative to the weight on
the smaller side. In particular, we know that cuts returned
by bad child events are small by Lemma 2. Further, we
know by Lemma 3 that the final bandwidth cuts made are
also small.

The bandwidth sets formed by cutting a merge set U form
a binary tree. Each node in this tree is a subset of U. We
will use the convention that the left child of a node is the
smaller side of the cut. Now define the left depth of a unit
of bandwidth to be the number of left branches on the path
from the root (the merge set) to the tree node in which
the unit first appears as border bandwidth, plus one. For



Figure 4: A two-level example of bandwidth flows.
The large red circle is the boundary of U, a merge
set, and the small red circles are the units of border
bandwidth of U. The blue cut is a top-level band-
width cut, and the blue squares are the units of bor-
der bandwidth of X. The green cut is a second-level
bandwidth cut, and the green triangle is a unit of
border bandwidth of X’. The green and blue paths
are the routes used in the max flow to send flow up
the bandwidth tree.

example, the left depth of the merge-level units of bandwidth
in U is one.

Let ®(j) denote the maximum overload factor of a unit
of bandwidth at left depth at most j in the tree. This is the
total amount of flow that is routed to that unit of bandwidth
before being sent further up the tree.

We will now prove by (backward) induction that

)< lﬁn( m) @

For the base case, note that since the left depth can be no
more than (—1+1logn)+1, ®(logn) = 1 (the —1 is because
|U| < n/2). Now assume equation 4 is true for all [ > j+1.
We will prove it for j.

Consider a unit of bandwidth at left-depth j in the tree. It
can only have flow routed to it when it first appears further
down in the tree on the left side of a cut. Let (X', X \ X')
be this cut of a node X. We know that the left-depth of the
units of bandwidth in this cut are at least j.

Assume without loss of generality that X' is the left node,

e, |X'| <X\ X'|. Now the units of bandwidth in X’
across the cut are at left-depth j + 1, and our unit of band-
width is in X’. Then the following inequality holds:

®(j) < ®(J +1) +298(X)2(5) +270(X)2(j +1).  (5)

The first term comes from the fact that a unit of weight
at left depth at most j is also a unit of weight at left depth
at most j + 1. Hence before flow has been routed at this
level, the overload factor of this unit of bandwidth is at
most ®(j + 1).

The second two terms account for the units of bandwidth
created when X is split into X’ and X\ X’'. By Lemma 2 the
capacity of the cut is at most 26 (X)wx (X'), and Lemma 3
preserves this property, so there are at most 28 (X)wx (X")

units of weight created in X', and each such unit of weight
is at left depth at least ®(j + 1). There are also at most
2v§(X)wx (X') units of bandwidth created in X \ X', and
each such unit has left depth at least ®(j). Since all of this
is true for any unit of bandwidth at left depth j, equation 5
holds.

Noting that ®(j + 1) < ®(j) and solving for ®(j), equa-
tion 5) becomes

() <e(G+1) < (G + 1(1 + 8y6(X)),

1
1—475(X)
as long as 4y4(X) < 1/2.

Since the left child has size at most half its parent, and
it takes j — 1 left child steps to get to X, it must be that
|X| < |U|/27". Since |U| < [S]/2, |X| < ISI/Z’, and hence
log(]S|/|X]) > j. This makes 6(X) <

8 10 logn*
Hence nleslos
. . 8y
< __°r
®0) < 2G+1) (1 + 8v7 loglogn)
logn
1 1
< 14— 14—
- _1_[ ( + lloglogn) ( + jloglogn)

l=j+1

logn 1
1 (1+ g
i lloglogn

1=

The second inequality is the inductive hypothesis. This con-
cludes the sub-Lemma.
By the sub-Lemma, we know know that

logn
)< -
H ( llog logn)

By Lemma 10, the product on the right-hand side is at most
2. Hence any unit of bandwidth receives at most 2 units of
flow.

Now, by Lemma 3 each maximum flow can be routed with
no congestion if only one unit of flow is routed from each unit
of new bandwidth to each unit of old bandwidth. Recall
that we are sending at most two units of flow. Hence the
congestion on an edge involved in any particular max flow
is at most two.

An edge is only congested by max flows when it is on the
small side of the cut (the left child side), or is contained in
the cut. In the first case, since both endpoints of the edge
must be in the small side, the edge can only be congested
at most —1 + logn times (the —1 is since |U| < n/2). The
second case only happens at most once. Hence the maximum
congestion over any edge is at most 2logn. [

3.4 Routing Uniform Flow

We now show how to use the max flows described in sec-
tion 3.2 to route among the units of bandwidth of the band-
width sets. Let D,, be the merge sets of S, and let D, the
refinement into bandwidth sets. By construction, we know
that we can route UNIFORMFLOW (S, D, ) with low conges-
tion. Our aim is to route UNIFORMFLOW (S, Dy).

Here is the way in which we will route flow:

1. Using the maximum flows, send the units of bandwidth
of Dy to their corresponding merge set (the root of
their trees). By Lemma 4, (along with the technicality
described at the end of Section 3.2), this puts at most



a factor four more weight on the units of bandwidth
of Dy,. That is, each unit of bandwidth of D, is now
responsible for as many as 4 units of bandwidth.

2. Use UNIFORMFLOW(S, D,,) to route the flow uniformly
between the merge sets. The demand between u and
v has increased by a factor of at most 4, so the con-
gestion increases by a factor of at most 4. Since we
can already route UNIFORMFLOW(S, D,,,), this causes
no problems.

3. Use the maximum flows to send flow from the units of
Dy, to their corresponding bandwidth children. Note
that this is step one backward, and therefore doubles
the amount of congestion from step 1.

3.5 Total congestion of an edge over all flows

Now we turn our attention to the congestion experienced
by an edge (u,v) in the graph. The edge can be congested
in two ways: by max flows, and by the multicommodity
flows found at the end of the merge phase (recall that the
multicommodity flow for each node in the decomposition
tree is the combination of these two flows).

Max-flow congestion The edge can be congested by a
max flow each time both u and v appear in a band-
width routing tree, in the sense of Lemma 4. By the
lemma, each time the edge adds congestion of at most
2-2 = 4, where the extra factor of two comes from fact
we must support both vertices of the newly cut edges.
(See the last paragraph of section 3.2.)

Each time u and v appear in the smaller half corre-
sponds to a given subgraph S’s partition in the tree.
A given max flow is used exactly once to be able to
route each flow UNIFORMFLOW (S, D), as described in
subsection 3.4. Each of these flows is used in multi-
commodity flows UNIFORMFLOW (S, D) for at most two
nodes of the decomposition tree (S, and S’s parent),
by Lemma 8. Hence each max flow in which (u,v)
participates is used at most twice.

The edge participates in at most log n flows, since the
sets for those flows all lie on a single root-leaf path in
the decomposition tree. Hence (u,v) incurs at most
2logn -4 = 8logn congestion over all of the flows in
the decomposition tree.

Multicommodity flow congestion The edge can be con-
gested, for various sets S with merge-level partitions
Dm, by the flow UNIFORMFLOW(S, Dy,). As in the
max flow case, by Lemma 8, each of these flows is
used twice to route: once for S’s parent, and once for

S.

The total congestion due to the multicommodity flows

is at most
z logn
8(8)’°
tree nodes s3{u,v} ()

by condition 2. All of these sets S lie on a single path
in the decomposition tree which starts at the root and
stops at the decomposition which separates u from v.
We can therefore index the set which is j steps from
the root in this path as S;; let m be the number of

sets in the path. In this notation, the above sum can
be written as

logn
Z 3(Sk) -

m—1

(logn) Z 8vlog |5 |f9 |1| loglogn

= 8ylognloglogn E 10 |5|?S' |1|
k=1 ¢
2
< 8vylog“nloglogn (6)

The inequality (6) is proven as follows: consider the

product []7 ! lS'S 1l

hence equal to

. The product telescopes, and is

S0l /[Sm—1] < n.
Taking logs of both sides yields the inequality.

Putting it all together, we see that any edge incurs at
most 8logn + 8ylog® nloglogn total congestion over the
entire tree. This is summarized in the Lemma below.

LEMMA 5. The congestion of any edge over all of the
flows in the entire tree is at most 8log n+8ylog® nloglogn =
O(log® nloglogn).

3.6 Running Time

LEMMA 6. The algorithm runs in polynomial time.

PrOOF. The depth of the decomposition tree is at most
logn since each merge set is at most half the size of its
parent (see Lemma 9), and any bandwidth sets produced
are smaller than the merge set that spawned them.

The running time of the merge procedure without any bad
child events is polynomial, since we have assumed that the
total bandwidth in the graph is polynomially bounded. Pro-
cessing a bad child event also takes polynomial time. Hence
we next need to bound the number of bad child events. The
number of bad child events is O(n log n) since each produces
a new bandwidth set. The total number of bandwidth sets
in the entire decomposition is O(nlogn) since any level of
the decomposition is a partition of the nodes and there at
most O(logn) levels of the decomposition. []

The running time could be more shrewdly bounded, but this
is not in the scope of this paper.

4. COMPETITIVE ROUTING

Now we turn to using the tree T computed in the previous
section to route in the graph. In order to route from a to b,
we will route through a sequence of multicommodity flows.
There will be one flow for each edge in the path in T from
the leaf {a} to the leaf {b}.

We will first define a particular flow with respect to each
tree node S, and then show how to use those flows to give
flows for the path from a to b. Let the decomposition of S
into children be D;, and its decomposition into grandchil-
dren be D2 (note that D, is in some sense a refinement of
D). Define the demand from u € S to v € S be

RS TG g

where X, € D; is the subpiece containing u.
Here are three observations about the flow we need to
route:




e Suppose that, for some X,, € D1, a € X, and b € X,
so that any flow from a to b in the tree needs to route
across the tree edge from X, to S. Further suppose
that (using induction) we have already spread our flow
from a to b evenly across the bandwidth of the vertices

of X, with respect to D2, that is, with a WD, (v)

wp, (Xu)
fraction of the flow at each vertex v € X,,. We would
like to send the flow out of X, and spread it over all of
the vertices of S with respect to D; (each vertex v € S
wp, (v)
wp, (S)
our inductive condition, and it will also give us a way
to route out of X,,.

receives a fraction). This will let us maintain

e Any flow out of X, is limited by wx, (X.); if we would
like to send ¢ - wx, (X, ) units of flow out of X,, then
by averaging there must be some edge between X, and
the rest of the graph that has congestion at least c. On
the other hand, if we can find a way to route wx, (Xu)
units of flow out of X, with low congestion L, we can
also route cwx, (X, ) units of flow with congestion ¢L
by simply multiplying the flow on each edge by a factor
of ¢. Putting these facts together, we see that the ratio
of our congestion to the optimal congestion will be at
most L, regardless of the amount of flow that needs
to be routed. For this reason, we will concentrate on
trying to route only wx, (X, ) units of flow.

e Since it is only harder to route more flow, in the worst
case we will need to simultaneously route wx (X) units
of flow out of all of the sets X € Ds.

These observations put together motivate the definition of
the demands in (7) (reading from left to right in the equa-
tion): they say we need to route wx, (X,) units of flow,
originally distributed according to the D, distribution in
X5, to the Dy distribution over all of S, and that we need
to do this simultaneously for all sets X,.

4.1 Congestion analysis

This subsection will make the previous subsection’s argu-
ment formal. We will be working throughout with a fixed
but arbitrary set of demands that need to be routed on the
graph. Our goal is to find out how much worse our conges-
tion is than the best possible.

DEFINITION 2. For any S CV, let dem(S) be the demand

originating inside S which needs to leave it. Let B(S) =
dem(S)
cap?S,V\S)'

LEMMA 7. (Lower bound on OPT) Any routing of these
demands must incur congestion at least B3 = maxs 3(S) on
some edge, where the mazimum is taken over all sets S in
the decomposition tree.

Consider a set S in the decomposition tree. Let D1 be the
partition of S into children, and D2 be the partition into
grandchildren.

Suppose that, for any X € D;, the demand dem(X) is
spread uniformly over the border bandwidth of the sets of
D, inside U (i.e., each vertex v € X has 7Zfz((;i,)dem(X) =

2
wp, (v)B(X) units of the demand).

Then we want to route that demand so that it is uniformly
spread over the border bandwidth of the sets in D; (i.e.,

each vertex v € S gets :}J%((VS)) > xep, dem(X) units of de-
mand). Furthermore, this routing will be accomplished us-
ing UNIFORMFLOW(S, D1), and UNIFORMFLOW (X, D3), for
each X, with only one use of each flow, and only overloading

each of them by a multiplicative factor of £.

LEMMA 8. We can use the flows UNIFORMFLOW(S, D1),
and UNIFORMFLOW (X, D3), for each X € D1, to route the
demands from equation 7 with congestion at most 8. Fur-
ther, each of the above flows is used once.

PrROOF. Notice that for any X € D1, we know from the
assumptions of the Lemma that any vertex v € X starts
out with wp, (v)B(U) units of demand. We will assume for
simplicity that they all have wp, (v)3 units of demand, since
this is only larger.

We will now show how to route assuming that each vertex
has only wp, (v), and then multiply by g at the end to give
the result of the Lemma.

Recall that the D, distribution in X is the final result
after the merge and bandwidth decomposition phases of the
subgraph X, and that the D; distribution in S is the final
result after the phases on S.

Our routing scheme is as follows:

1. For each X, inside X, route from the border band-
width with respect to wp, to the border bandwidth
with respect to wp,. In equations, the demand from
u to v will be

WD, (u) WD, (U)
wpy (X) wp, (X)

Wp, (u)w'Dl (U)
wpy (X)

wp, (u)wp, (v) (8)
WD, (X)

To do this, notice that inequality (8) shows that the

flow UNIFORMFLOW(X, D) is sufficient to route this
flow.

WD, (X)

2. Route between the border bandwidth with respect to

wp, on all of S, i.e.the flow demands UNIFORMFLOW (S, D1).

Note that each flow is used only once, as required. [l

THEOREM 1. The competitive ratio of our algorithm is
O(log® nloglogn).

Proor. This is a consequence of Lemmas 5, 7, 8. [

5. MISCELLANEOUS LEMMAS

LEMMA 9. Fiz a subgraph S and a decomposition D of S.
Suppose that UNIFORMFLOWVALUE(S, D) < q, for some q.
Let (U,S \ U) = UNIFORMCUT(S, D). Assume that |U| <

|S\ U|. Then %’(SU\)U) < qylogn.

PROOF. Since the cut (U, S\ U) is a ylog n-approximate
sparsest cut, it must be that

cap(U, S\ U)

wp (V)wp (S\U)
wp ()

< gylogn

This implies that %’(SU\)U) < gylog n as desired, since since
wp(S\U) <wp(S). O

LEMMA 10. If ¢ < 1/(logk), then [TF_, (1 + ¢/i) < 2.



PROOF. Let y = Hle(l + ¢/i). Take natural logs of
both sides of the equations to get that Iny = Zle In(1 +
¢/7). Using the fact that In(1 + z) < z, we can rewrite the
equations as Iny < 3°.(c/i) < clnk. But Iny < clnk <

Ink
log k
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