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4.1 Congestion Games: Allocating Bandwidth

We continue the discussion from last time, on Shenker’s paper. Recall the setting of the bandwidth allocation,
in which we have a switch that is shared among n users. Each user presents to the switch a rate ri, and
is serviced, acording to the service discipline Ā, reflected in an expected queue length qi = Ai(r̄). This is
represented in the diagram of Figure 4.1.

We observe that the game created in this setting, by setting the payoffs to be equal to the utilities of each
user,

pi(r̄) = Ui(ri, Ai(r̄)),

actually depends on the Ai chosen.

This leads to the following question, which is central to Mechanism Design: can we create a game, by cleverly
choosing the service discipline (and therefore the allocation function), such that the Nash equilibria are of
‘high quality’? The following theorem is an impossibility result in this direction, answering this question
negatively if we consider all possible sets of utility functions.

Theorem 4.1 There is no A such that for all Ui, all Nash equilibria are Pareto optimal.

Sketch of proof:

Any (r̄, q̄) point can be a Nash equilibrium given appropriate Ui’s.

It is always possible to find utility functions that give high enough utility to these specific queue lengths.
They must be concave, and there are some subtleties involved to make things work out. This is detailed in
Lemma 5, Appendix A, of [?].

For an allocation to be a Nash equilibrium, a necessary (but not sufficient) condition is that for all i, dUi
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Figure 4.1: The setting for the bandwidth allocation.
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On the other hand, if an allocation is Pareto Optimal, then
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For a Nash equilibrium to be Pareto optimal, we then must have
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for all r, which is a contradiction, since it states that the way my behavior affects my delay is independent
of what I do.

Another important result is the following.

Theorem 4.2 If for some Ui’s a Nash equillibrum is Pareto optimal, then ri = rj ∀i, j, and Fair Share
could have achieved this.

These two theorems state that while it is impossible to guarantee that Nash equilibria are Pareto optimal,
there are times when this happens. The Fair Share allocation mechanism achieves all such points. The
proportional allocation (the allocation that FIFO implements), and any other allocation function that has
∂Ai

∂rj
> 0 (meaning that users are not insulated from each other), never have Pareto optimal Nash equilibria.

4.2 Equilibrium Theory

We now move on, and touch on another subject, that of Maket Equilibria and the Price mechanism. Consider
the model:

We have

A set of goods, 1..k

Agents, 1..n

Agents have endowments xi ∈ Rk
+, quantities of goods,

and utilities Ui : Rk → R, strictly concave, that map combinations of goods to real numbers.

In this setting, as agents meet, they will barter items with one another in pairs, to improve their utility.
For example, A can give 2 liters of Olive oil in exchange for 1 kg of wheat from B. This process constitutes
a potentially exponential search to reach the optimal allocation of goods. However, the Price Mechanism
comes to rescue, as the the following theorem states.

Theorem 4.3 There is a price vector p̄ ∈ Rk
+ such that if yi = argmax(Ui(y) : p̄y ≤ p̄xi), then

∑
i
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∑

i

xi.



The proof uses Brouwer’s fixpoint theorem, or Kakutanis fixpoint theorem.

This vector atributes a price to each good, and the allocation has the property that each agent ends up with
the best thing she can afford, and that there is no excess demand and no excess merchandise in the market.

Another theorem states that the final allocation is Pareto optimal. Also, allocation that dominates the intial
endowment can be achieved by prices. Using the price mechanism, trade can be realized without resorting
to the exponential search process.

A variation to the model is to factor in another component, namely factories. Factories are consumers without
an initial endowment who have a choice (determined by the presence of raw materials and technology).

Factories have zj ∈ Tj ⊆ R, strictly convex.

Then the theorem can be altered to include the factories:

Theorem 4.4 (Factories) There is a price vector p̄ ∈ Rk
+ such that if yi = argmax{Ui(y) : p̄y ≤ p̄xi} and

zj = argmax{pz : z ∈ Tj}, then

∑
i
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∑

i

xi +
∑

j

zj .

There are other extensions possible, which we didn’t cover in class, such as consumer having shares of the
factories.

4.2.1 Price equilibrium in the bandwidth sharing problem

Let us look at the bandwith allocation problem discussed above as a market equilibrium situation. All users
have an utility Ui(ri, qi), as represented in the left of figure 4.2. In the Figure, we represent Ui as a function
of ri and ci = qi/ri (the delay).
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Figure 4.2: Discretization of the utility function

Let us assume that we can discretize U , as in the right hand side of the figure.

Ui(r1
i , r2

i , · · · , rm
i ) → R+,

where rj
i is user i’s rate under the queue length cj ṙ

j
i , and these are the goods.

The endowments are

xi = (0, 0, · · · , 0, 1), i.e., there are no rates, and 1 dollar.



The switch is a factory,

r1 . . . rm :
∑

rici ≥.

By prices, one can then schedule, and achieve Pareto optimality. Is there a price equilibrium in this ‘maket’?
This is still a hard problem, though, and all of the algorithms known have complexity that is exponential in
the worst case.


