
UNDISCRETIZED DYNAMIC PROGRAMMING

AND ORDINAL EMBEDDINGS

BY RAHUL SHAH

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Martin Farach-Colton

and approved by

New Brunswick, New Jersey

May, 2002

c© 2002

Rahul Shah

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Undiscretized Dynamic Programming

and Ordinal Embeddings

by Rahul Shah

Dissertation Director: Martin Farach-Colton

Many optimization problems which are known to be NP-hard on graphs are polyno-

mially solvable on trees using dynamic programming. Dynamic programming typically

involves recursive functions stored as tables. Each entry of the table corresponds to the

optimal subproblem solution. In many applications the complexity of brute-force dy-

namic programming can be improved especially when the functions involved are sparse,

convex or concave. Algorithms for speeding up dynamic programming on path-like one

dimensional structures are known. Here, we “undiscretize” the functions i.e. represent

them as functions of continuous variable instead of storing the functions as the tables

of discrete values. We use efficient data structures to store such functions and show

how to quickly carry out operations involving these functions. We improve the com-

plexity bounds for many tree dynamic programming problems, typically, from O(n2) to

O(n logn). These include problems like facility location, covering, economic lot sizing

and multicast filtering.

Given a set of pairwise distances on a set of n points, constructing an edge-weighted

tree whose leaves are these n points such that the tree distances would mimic the original

ii

distances under some criteria is a fundamental problem in computational biology. This

problem can also be seen as hierarchical clustering or as an embedding into additive

(tree) metric spaces. In ordinal embeddings, the distance preservation criterion is to

preserve the total or partial order of the pairwise distances. We show that the problem

of finding a weighted tree, if it exists, which would preserve the total order on pairwise

distances is NP-hard. A partial order on pairwise distances between points which orders

all distances that share an end point is equivalent to an order where the distances in each

triangle are ordered. This order, called triangle order, has been studied in biological

settings. We also show the NP-hardness of the problem of finding the weighted tree

which would preserve a triangle order. This answers a long standing open problem

considered extensively by computational biologists.

iii

Acknowledgements

This work reflects a collection of my attempts to rise to a point where I can see beyond

the fortifications of current knowledge and make new frontiers all my own. Whether

this is yet high enough, I do not know. But I stand on many shoulders to achieve this

height, and to each I owe an immeasurable debt of gratitude.

Above all (or beneath all!) stand my family. I thank them for their love and

consistent motivation, and the unbending faith they have in me. Particularly, my

beloved wife Avni. This thesis is as much hers as it is mine. She has supported me in

every way possible. Listening to and creating my presentations, writing my resumes,

proofreading my papers, writing prototypes for my documents and collaborating on

some of my projects are only a few of the unending forms of life support she has

provided.

Special thanks to my childhood friends Jitu and Sunil. They made sure that my

transition to life in US was as smooth as possible, and taught me almost everything

I know about it. They have been an unfailing resource for everything from telephone

deals to tax returns. My life here would not have been as complete and enriching

without them.

Thanks also to Sachin for being a benevolent senior and friend. He taught me the

ABCs of the computer science department at Rutgers - from what courses to take to

how to go about the qualifiers. I thank him for valuable and memorable discussions

on research and philosophy, and for writing a wonderful draft of our award winning

paper. My special thanks to Stefan Langerman whose contributions to, and faith in,

the undiscretization paradigm were really critical to the completion of this thesis. This

thesis would surely not have been anywhere near its completion (in fact, may not have

existed) without his sharp and brilliant ideas. His inspirations motivated several critical

iv

proofs contained herein.

Thanks to Stefan (again) and John Iacono, for their initiative with the Rutgers Al-

gorithms Group. Thanks also to Navin Goyal, for useful discussions and for voluntarily

taking on part of my teaching responsibilities.

Thanks to Val (Mrs. Valentine Rolfe) for being a caring well-wisher. She made the

department seem like a home away from home.

My deepest thanks to Dr. Ondria Wasem, Dr. Farooq Anjum and Dr. Ravi Jain

from Telcordia Technologies for supervising various summer internships and helping to

shape parts of this work.

Thanks are due to Prof. Michael Fredman, Prof. Leonid Khachian, Prof. Bahman

Kalntari, Prof. Joszef Beck and Prof. Mike Saks for the background-building courses

they taught. Thanks to Prof. Fredman and Prof. Saul Levy for being on my qualifiers

committee. Thanks to Prof. Fredman for interesting discussion regarding the choice of

data structures for “undiscretization”.

Thanks are due to Prof. Arie Tamir, Prof. Alexander Ageev and Dr. Stephen

Alstrup for insightful and instructive comments and discussions regarding my work.

I also thank Prof. Muthukrishnan, Prof. Vasek Chvatal and Prof. Sampath Kannan

for serving on my committee, extensively reviewing my work for quality and complete-

ness, and keeping me in agony of suspense for no more than 30 seconds before declaring

my defense successful. Any further delay would have put me in danger of coronary

failure.

Last but not the least, thanks to my advisor Prof. Martin Farach-Colton for intro-

ducing me to deeply interesting problems, for helping me progress in my research every

way possible and for giving me enough independence that I could take my own research

path. Thanks also for his interesting lessons on life, the universe and everything.

Thank you all, for helping me climb this far, and for adding to my strength and

confidence as I take on the road ahead.

v

Dedication

To my pappa

whom I owe my scientific attitude and aptitude

To my mummy

for her unconditional love and sacrifices

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

List of Tables . x

List of Figures . xi

1. Introduction . 1

1.1. Ordinal Embeddings into Trees . 2

1.2. Efficient Filtering in Content-Based Multicast 4

1.3. Facility Location on Tree and Related Problems 6

2. NP-hardness of Embedding Orders into Trees 9

2.1. Preliminaries . 9

2.1.1. Realizability and LP’s . 9

2.1.2. Contractions and Expansions . 10

2.1.3. Midpath Trees, Triangle order and MPT conjecture 10

2.1.4. LP on Midpath tree and Dual . 12

2.1.5. Lemmas and Counter-Examples 13

2.1.6. Unrooted Quartet Consistency(UQC) 16

2.1.7. Well-Separated Numbers . 17

2.2. Generalized Counter-Example to Midpath Tree Conjecture 18

2.3. NP-hardness of Triangle Ordinal Clustering(TOC) 21

2.4. NP-hardness of Total Ordinal Clustering (OC) 25

vii

3. Undiscretized Dynamic Programming: Faster Algorithms for Filter-

ing . 28

3.1. Preliminaries . 28

3.1.1. Notations . 28

3.1.2. Assumptions . 29

3.1.3. Recurrence and Dynamic Programming 29

3.2. Algorithm-1 . 32

3.2.1. Algorithm . 33

3.2.2. Data Structure Operations . 33

3.2.3. Analysis of Algorithm-1 . 34

3.3. Algorithm-2 . 35

3.3.1. Motivation . 35

3.3.2. Data Structure Operations . 35

3.3.3. Description of Algorithm . 36

3.3.4. Analysis of Algorithm-2 . 36

4. Faster Algorithms for Facility Location on Trees and Related Prob-

lems . 39

4.1. Preliminaries and Dynamic Programming Functions 39

4.2. Algorithm . 43

4.3. Data Structure Operations . 44

4.4. Analysis . 46

5. Data Structures and Operations . 47

5.1. Fast Merging Algorithm . 47

5.2. Data Structure for Filtering Algorithms 48

5.3. Data Structure for PLNCF . 51

5.4. Data Structure for PLDXF . 53

6. Covering and Lot Sizing Problems . 57

viii

6.1. Facility Constrained Covering Problem 57

6.1.1. Undiscretized Dynamic Programming for FCC 57

6.2. Customer Constrained Covering Problem 58

6.3. Economic Lot Sizing Problem . 60

6.3.1. Undiscretized Dynamic Programming Algorithm 61

6.3.2. Analysis . 62

7. Conclusions and Future Work . 63

7.1. Ordinal Clustering . 63

7.1.1. Ordinal Clustering in other Metric Spaces 63

7.1.2. Remarks and Future Work . 64

7.2. Multicast Filtering Problem . 64

7.3. Facility Location . 65

7.4. Speeding Up Dynamic Programming . 65

References . 67

Vita . 70

ix

List of Tables

2.1. Witness of infeasibility . 16

2.2. Witness of infeasibility:Inner . 20

2.3. Witness of infeasibility:Outer . 20

3.1. Discrete Dynamic Programming . 30

3.2. Undiscretized Dynamic Programming 30

3.3. Undiscretized Algorithm . 33

4.1. Dynamic Programming Algorithm . 41

4.2. Undiscretized Algorithm . 44

6.1. Undiscretized Dynamic Programming for FCC 59

6.2. Undiscretized Algorithm for FCC . 59

6.3. UDP for ELS . 61

6.4. Undiscretized algorithm for ELS . 61

x

List of Figures

2.1. Not all total orders are realizable . 14

2.2. Total orders not realizable as midpath tree 14

2.3. ∆ not Realizable as Midpath Tree . 15

2.4. ∆ not Realizable as Midpath Tree . 18

2.5. Construction . 22

2.6. UQC implies TOC . 25

3.1. Piecewise Linear Function . 32

3.2. Three types of add operations . 37

4.1. Undiscretized Functions . 42

5.1. Fast Merging Algorithm . 48

5.2. add dissolveFinG . 56

6.1. Undiscretized Functions for FCC . 58

6.2. ELS as UFL . 60

xi

1

Chapter 1

Introduction

We consider two sets of problems in this thesis. One is Ordinal Clustering where

we consider the problem of constructing a tree representing some order on pairwise

distances. The other is a set of facility location related problems on trees where we

propose faster algorithms. We shall organize the material presented in three parts:

• Ordinal Embeddings into Trees: Given a total or triangle order on the set of

pairwise distances on n points, we wish to construct a weighted tree whose leaves

represent these n points and the pairwise pathlengths follow the given order. We

show that this problem is NP-hard.

• Efficient Filtering in Content-Based Multicast: Filters on the intermediate

routers of the content based multicast tree can help reduce congestion and deliv-

ery delays. Optimal dynamic programming algorithms are developed to choose

the best nodes in the tree where the filters could be placed. We develop a tech-

nique called “undiscretized dynamic programming” This technique speeds up the

dynamic programming algorithm for minimizing delays on multicast tree. We

improve an O(nh) algorithm to O(n logh) where n is the number of nodes in the

multicast tree and h is the height.

• Facility Location on Trees and Related Problems: We apply the “undis-

cretization” technique to dynamic programming algorithms for facility location

and related problems on trees. We typically improve O(n2) algorithms to O(n logn).

We provide the detailed introduction to above topics in the remainder of the chapter.

2

1.1 Ordinal Embeddings into Trees

Clustering data based on pairwise distances is a fundamental problem. Weighted trees

can be used to represent hierarchical clusters. Thus, constructing weighted trees that

“fit” a distance matrix is a type of clustering. This metric based problem has been

extensively studied, for example, in evolutionary biology and computational linguis-

tics [15, 21, 8, 12, 36]. The general problem is to find an edge weighted tree which

approximates the distance matrix under some criteria. These kind of trees are also

known as phylogenetic trees or simply phylogenies. A particular instance of this prob-

lem has been considered in the algorithmic computational biology community : Given a

(total or partial) order on the pairwise distances between points, give an edge weighted

tree on those points so that the pairwise pathlengths between these points in the tree

satisfies this order. This can also be seen as the ordinal version of the Hierarchical Mul-

tidimensional Scaling (HMDS) problem [31]. If the tree is unweighted then pairwise

pathlengths would be the number of edges on the path. The problem of obtaining such

an unweighted tree was considered by Kannan and Warnow [23] and Kearney, Hayward

and Meijer [26].

In general, we are given an n×n distance matrix M and asked to find tree T on leaves

1, 2, .., n such that path distance dT (i, j) in the tree closely approximates the matrix

M . When dT (i, j) = M(i, j) the matrix is said to be additive and efficient algorithms

exist for constructing tree from additive distance data in O(n2) time [12, 21, 36]. But

when the matrix is not additive then various optimization criteria were proposed and

many of them are shown to be NP-hard [13, 26, 15].

However, for many applications, the actual numeric data is quite unreliable (see

[15]). The distance data obtained through experiments could have kinds of errors like

homoplasy and superimposed changes [26]. Also there are experiments which give only

relative information about pairwise distances [23]. Hence, Kannan and Warnow [23]

took an approach which assumes confidence only in relative information and the input

is in the form of partial or total order on the pairwise distances. [26] and [23] consider

the problem of constructing an edge-weighted tree which preserves the order among the

3

distances. The advantage of using orders is that they are less vulnerable to errors due

to superimposed changes. Superimposed changes do not affect the relative ordering of

pairwise distances.

The first explicit study of ordinal methods for inferring phylogenetic trees was under-

taken by Kannan and Warnow [23]. They worked with orders generated by experiments

on pairwise distances of triplets of points. They consider a particular partial order on

pairwise distances in which every triangle is totally ordered. This order is called triangle

order. They gave an O(n3) algorithm for constructing an unweighted tree, if it exists,

from a triangle order on pairwise distances. In the unweighted case, each edge of the

tree is assumed to have unit weight. And also it is assumed that there are no vertices

with degree two. Kearney, Hayward and Meijer [26] extended this work. They gave

an O(n2 log2 n) algorithm for constructing an unweighted tree, if it exists, from a total

order. The weighted case was posed as the major open problem in both the papers.

The unweighted case is a special case of weighted case. Although we have polynomial

time algorithms to find the unweighted tree, for many orders the unweighted tree rep-

resenting that order may not exist at all even if the weighted tree exists. A polynomial

time algorithm was conjectured in these papers for the weighted case. The algorithm

was based on so called mid-path tree conjecture which stated that if the weighted tree

representing triangle or a total order existed then it could be represented with some

weight function on a special tree called midpath tree corresponding to that order. Con-

trary to the conjecture, we show in this paper that the problem of constructing weighted

trees from total as well as triangle orders is NP-hard. We call these problems Total

Ordinal Clustering and Triangle Ordinal Clustering, respectively. The reduction uses

the generalization of a counter-example to the midpath tree conjecture given by Shah

and Farach-Colton [31]. This NP-hardness is an interesting result since the unweighted

case here is polynomial time solvable. Also, these are the first NP-hardness results in

this area where all the known NP-hard problems come only from incomplete distance

matrices or incompletely specified orders.

4

1.2 Efficient Filtering in Content-Based Multicast

In this part, we consider the problem of optimally locating filters on a multicast tree.

Since this is a tree problem, O(n2) dynamic programming solution was known. We in-

troduce the technique called undiscretized dynamic programming and pose this problem

as a simple and straight forward application of this technique. We improve the running

time of the dynamic programming algorithm. We first provide some background on the

problem and the technology involved.

There has been a surge of interest in the delivery of personalized information to

users as the amount of information readily available from sources like the WWW in-

creases. When the number of information recipients is large and there is sufficient

commonality in their interests, it is worthwhile to use multicast rather than unicast

to deliver information. But, if the interests of recipients are not sufficiently common,

there could be a huge redundancy in traditional IP multicast. As the solution to this

Content-Based Multicast (CBM) was proposed [5, 30] where extra content filtering is

performed at the interior nodes of the multicast tree so as to reduce network bandwidth

usage and delivery delay. This kind of filtering is performed either at the IP level or,

more likely, at the software level e.g. in applications such as publish-subscribe [6] and

event-notification systems [9].

Essentially, CBM reduces network bandwidth and recipient computation at the

cost of increased computation in the network. CBM at the application level is increas-

ingly important, as the quantity and diversity of information being disseminated in

information systems and networks like the Internet increases, and users suffering from

information overload desire personalized information. A form of CBM is also useful at

the middleware level [9, 3] and network signaling level [24]. Previous work applies CBM

to address issues in diverse areas [9, 3, 24, 37].

[3] addresses the problem of providing an efficient matching algorithm suitable for

a content based subscription system. [6] addresses the problem of matching the infor-

mation being multicast with that being desired by leaves. [5] proposes mobile filtering

agents to perform filtering in CBM framework. They consider four main components

5

of these systems: subscription processing, matching, filtering and efficiently moving the

filtering agents within the multicast tree.

The benefits of CBM depend critically upon how well filters are placed at the interior

nodes of the multicast tree. [30] evaluates the situations in which CBM is worthwhile.

It assumes that the multicast tree has been set up using appropriate methods, and con-

centrates on efficiently placing the filters within that multicast tree. They assume that

subscriptions are appropriately processed and minimum required information for each

subtree of each node is known. It also gives the mathematical modeling of optimization

framework. The problem considered is that of placing the filters under two criteria :

• Minimize the total bandwidth utilization in the multicast tree, with the restriction

that at most p filters are allowed to be placed in the tree. This is similar to p-

median problem on trees. An optimum O(pn2) dynamic programming algorithm

was described.

• Minimize total delivery delay over the network, with no restriction on number of

filters, assuming that the filters introduce their own delays F and the delay on the

link of multicast tree is proportional to the amount of traffic on that particular

link. That means although filters have their own delays, they could effectively

reduce traffic and hence delays. This problem is similar to uncapacitated facil-

ity location on trees. An optimum O(n2) dynamic programming algorithm was

described.

Here, we consider the second formulation, (minimizing delay) and show that the

complexity of the dynamic programming algorithm can be improved. The traditional

dynamic programming computes the optimal objective function for the subproblem at

each subtree of the rooted multicast tree recursively in the bottom-up fashion. At each

node, the incoming traffic at that node is taken as a parameter. There could be as many

as n different values of incoming traffic. Hence, at each node the dynamic programming

table could have n entries. This makes total table size of n2.

We “undiscretize” the traditional dynamic programming function so that we don’t

have to maintain a separate entry for each possible incoming traffic value at a particular

6

node. In that sense, we represent the dynamic programming function as a continuous

function of incoming traffic value. We show that this continuous function is piecewise

linear. We use AVL-tree based data-structure to represent this continuous function. We

bound the size of this data-structure and show how to create subsequent generations

of the data structure as the dynamic programming progresses towards the top. We use

Brown and Tarjan’s fast merging algorithm to add two of such functions and show how

to prune and probe this data structure to create the subsequent functions.

Thus, using a succinct representation of dynamic programming functions and a

quicker way of updating this representation, we achieve the complexity bound of O(n logn)

for this algorithm.

We further show an improvement of this algorithm. This is a two-phased algorithm

which works in between undiscretized and traditional dynamic programming. We im-

prove the running time to O(n logh) where h is the height of the multicast tree.

1.3 Facility Location on Tree and Related Problems

In this part, we further extend, the “undiscretization” technique to dynamic program-

ming functions involving more complex operations. We also exploit concavity and con-

vexity of the functions involved. The problems considered involve the uncapacitated

facility location on trees, covering problems on trees and Economic lot sizing problems.

Again, we improve the complexity of traditional dynamic programming algorithms.

The UFL problem [27, 32, 10] has been studied extensively in location theory. The

essence of the model is a trade-off between the facility placement cost and the trans-

portation cost. The problem is to open a subset of facilities in order to minimize

the total cost (or to maximize profit) while satisfying all demands. Consider a set of

clients I = {1, .., m} and a set of sites J = {1, .., n} where the facilities can be located.

An instance of the problem is specified by integers m and n, an m × n transporta-

tion cost matrix C = {cij} and an n-dimensional facility setup cost vector f = {fj},

such that fj ≥ 0. For any set S of facilities, it is optimal to serve a client i from

a facility j for which cij is minimum over all j ∈ S. Thus, given S, the cost of S is

7

∑
i∈I minj∈S cij +

∑
j∈S fj . The problem is to find a set S so that the cost is minimized.

In [32, 10], an integer linear programming formulation for this problem is given. This

problem, in general, was shown to be NP-hard [10, 18] by reduction to vertex cover.

But on trees, various polynomial algorithms are known.

The first algorithms for tree location problem were independently given by Gi-

madi [19] and Kolen [27]. Kolen reduced UFL problem to covering problem and showed

when the cost matrix has a standard greedy form, UFL can be solved in O(n3). Cost

matrix for trees does satisfy this standard greedy criteria. Gimadi gave O(n2) algo-

rithm for UFL when the cost matrix is connected with respected to a tree. Kolen’s

algorithm was later improved and dynamic programming algorithms were given by

[10, 34]. Shaw [32] gave a limited column generation based algorithm for UFL on trees.

All these algorithms were O(n2).

When defining this problem on trees (or graphs), we take the set of clients and

sites to be the entire vertex set V . Let T = (V, E) be a tree with vertex set V and

edge set E. The cost of opening a facility at vertex j is fj . Each edge e ∈ E has

a nonnegative length. The distance dij between any pair of vertices i and j is the

length of the shortest path for graphs. We also associate a nonnegative weight wi with

each vertex i so that the matrix C becomes a |V | × |V | matrix with cij = widij. The

problem is to select a subset S ⊆ V of open facilities minimizing the following objective,

∑

j∈S

fj +
∑

i∈V

min
j∈S

widij

This model is as formulated in [34, 27]. Note that the solution set S for the problem

defines the partitioning of the tree into smaller subtrees. Each subtree corresponds to

the tree induced by vertices served by a particular facility. Hence, the UFL problem on

trees is often taken as a special case of the tree partitioning problem (in which each pos-

sible subtree has a weight) as in [32, 10]. Both these papers give an O(n2) algorithm for

the tree partitioning problem. UFL is also shown to be a special case of the generalized

(where facilities have a cost and the problem is to place ≤ k facilities) formulation of the

k-median problem in [34] where k ≥ n. Tamir’s [34] dynamic programming functions

8

also give an O(n2)-time dynamic programming algorithm for UFL.

We first show how to replace the “discrete” dynamic programming functions of [34]

with “undiscretized functions. In the filtering problem (section 1.2), the undiscretized

representation of monotonic function as a piecewise linear function and is used and the

technique involves how to quickly add two such functions and probe them. In case of

UFL, there are two functions involved in dynamic programming and the computation of

new functions is more complex than simple additions. Also, the corresponding “undis-

cretized” operations as in the previous section do not maintain the consistency of these

functions in this case. If we were to use these directly, it would give an O(n2)-time

algorithm due to additional operations to ensure consistency. Instead, we modify the

dynamic programming functions of [34] so that the functions involved are either convex

or concave. Further, we extend the “undiscretization” techniques and operations to

convex and concave functions such that the consistency is maintained. These functions

have succinct representations and can be quickly updated to construct new functions.

We achieve an upper bound of O(n logn).

Several generalizations of the UFL problem on trees have been proposed. The tree

partitioning problem by Cornuejols, Nemhauser and Wosley [10] was shown to be a

generalization of the Economic Lot Sizing (ELS) problem as well as of UFL. Shaw [32]

gives the tree partitioning generalization of UFL, Facility Constrained Covering (FCC)

problem, Customer Constrained Covering (CCC) problem and Generic Customer Cov-

ering (GCC) problem. They give O(n2) algorithms for solving all these problems on

trees. As noted earlier the tree partitioning problem differs from the UFL problem

on trees in the sense that the transportation cost can be arbitrary and not linear, in

particular with tree distances. Since the problem size involved in Tree Partitioning is

O(n2), our algorithm can hardly hope to beat O(n2). The same is true in the case of

GCC, where each customer has a specified subtree in which a facility is needed in order

to cover that customer. However, our technique applies well to FCC, CCC and ELS,

giving a time complexity of O(n logn) for each.

9

Chapter 2

NP-hardness of Embedding Orders into Trees

In section 2.1 we give some concepts and basic lemmas established in the field. In

section 2.2, we show a generalization of the counter example for Midpath Tree Con-

jecture In section 2.3, we show the NP-hardness of the Triangle Ordinal Clustering

problem. In section 2.4, we extend the NP-hardness result of section 2.3 to Total

Ordinal Clustering.

2.1 Preliminaries

Here, we discuss some preliminary concepts and results known in this area. We shall

also introduce some useful concepts that we will use in proving our main results.

2.1.1 Realizability and LP’s

Define dTw to be the distance metric of a tree T under a non-negative weight function

w, where dTw(s, t) is sum of the weights of the edges on the unique path PT (s, t) from

leaf s to leaf t in T . A partial order P on pairwise distances is said to be realizable as

tree T if, for some weight function w on the edges of T , we get dTw(a, b) ≤ dTw(c, d)

whenever d(a, b) ≤P d(c, d)

Given a tree T , we can determine in polynomial time via linear programming

whether or not the partial (or total) order P can be realized as T by checking the

feasibility of the order constraints

dTx(c, d)− dTx(a, b) ≥ δ if d(a, b) <P d(c, d) (2.1)

dTx(c, d)− dTx(a, b) = 0 if d(a, b) =P d(c, d) (2.2)

x ≥ 0 (2.3)

10

where δ > 0 is a constant.

2.1.2 Contractions and Expansions

A contraction of a tree T at the edge pq is the tree that results from removing edge pq

from T and identifying vertices p and q. An expansion of T at a vertex v is the inverse

operation of contraction,though many expansions may be possible at any node. A tree

T
′
is called a contraction of T if T

′
is obtained by the contraction of T at some edge,

or if T
′
is a contraction of some contraction of T . T

′
is called an expansion of T if T is

a contraction of T
′
.

2.1.3 Midpath Trees, Triangle order and MPT conjecture

Many assertions in this subsection are analogically true for triangle as well as total

orders. In fact they would be true for any partial order at least as specified as triangle

order. We call such orders as supertriangular order. Note that the triangle order and

the total order are two extreme subcases of supertriangular order. Let T be a tree

which realizes a supertriangular order ∆. For any two leaves x and y, the midpoint of

the weighted path PT (x, y) is that point on PT (x, y) which is equidistant from x and

y. Let u denote the edge or the vertex on which this midpoint is located. Consider

T ′ = T − u. T ′ consists of at least two connected components. Now, since T realizes

the order, the following trichotomy property holds:

• For all leaves v in the connected component of T ′ containing x, d(v, x) <∆ d(v, y).

• For all leaves v in the connected component of T ′ containing y, d(v, y) <∆ d(v, x).

• For all leaves v not in the connected components of T ′ containing x or y, d(v, x) =∆

d(v, y).

The edge or vertex on PT (x, y) that satisfies the trichotomy property is called the

midpath of PT (x, y) and is denoted by M(x, y).

Given a tree T which realizes a triangle (or total) order ∆ on pairwise distances

between points in set S, along with a weight function w,consider a function m : S×S →

11

E(T)
⋃

V (T) which maps each pair of leaves a, b to the midpath M(a, b) on which the

midpoint of the weighted path PT (a, b) falls. Now, contract all the (non-leaf)edges in

T which do not have any midpaths falling on them to obtain an unweighted tree. This

is the tree on which midpaths for all pairs of leaves exists and these midpaths satisfy

the trichotomy property. We call this tree a midpath tree T∆. Note that a midpath tree

is just an unweighted tree with the midpath function.

The midpath M(a, b) gives a bipartition (or tripartition) of points in S based on

whether they are closer to a or to b (or equidistant). Given the midpath tree with the

Midpath function, we can construct the triangle order represented by it. This means

the midpath tree T∆ and midpath function M (weight function not required) can be

used to represent a unique triangle (not total) order. The midpath tree is a minimal

tree on which midpath function satisfying such a trichotomy property can be defined.

As noted in the beginning of this subsection, if a supertriangular order can be realized

by some tree T , then the midpath tree for this order exists. That means the existence

of the midpath tree is a prerequisite for the existence of a tree T which realizes the

supertriangular order order. Hence, while we don’t know the algorithm to construct a

tree T realizing the supertriangular order, the algorithm to construct the midpath tree

is considered to be the first step in developing any such algorithm. and any such T is

an expansion of T∆ [26]. Intuitively, the existence of midpath tree indicates that the

supertriangular order has a tree-like nature.

Following two lemmas (for proofs see [26]) show the importance of midpath trees.

Lemma 2.1 If it exists, the midpath tree of a supertriangular order is unique.

Lemma 2.2 If T is a tree that realizes a supertriangular order ∆, then T is an expan-

sion of midpath tree T∆.

The following is an O(n3) algorithm that constructs the midpath tree: begin with

a star topology and repeatedly expand until all midpaths exists. An optimal O(n2)

algorithm for finding the midpath tree was given by [25]. Hence, constructing the

midpath tree is considered to be the first step in finding the tree T that realizes the

supertriangular order. Kearney, Hayward and Meijer [26] start with the midpath tree

12

and then give an algorithm to expand it to obtain an unweighted tree that represents

the total order, if such a tree exists.

To summarize, Given a weighted tree, the distance matrix can be can be constructed

from it using pair wise pathlengths. Given a distance matrix, a total order can be

induced by it and then the triangle order can be induced as a subset of this total order.

Given a weighted tree, the midpath tree can be constructed from it and again triangle

order can be constructed from the midpath tree. If a midpath tree exists, it can be

constructed from the triangle order and hence from total order and hence form distance

matrix. Lemma 3 gives and example of the midpath tree induced by a total order.

To construct the weighted tree representing the supertriangular order, it was not

known whether we need to expand the midpath tree or if the midpath tree itself is the

tree T that realizes the order. In case an expansion is necessary, no general methods

for expanding the midpath tree are not known. This led to the conjecture [22]:

“If a supertriangular order ∆ is realizable as some tree, then it is realizable as the

midpath tree T∆”

If this conjecture were to be true, then no expansion methods would be necessary.

We could just construct a midpath tree and run the linear program given by (2.1),

(2.2), (2.3) and it would give us the required weighted tree. If the linear program were

infeasible, then we would know that no tree realizes the order. But this conjecture is

false for both total and triangle orders. In the following subsections, we shall show the

counter-examples.

2.1.4 LP on Midpath tree and Dual

If the midpath tree conjecture were true, it would mean that if a triangle order ≤∆ is

realizable, it can be realized by assigning weights to the edges of midpath tree which

satisfy the following linear constraints (2.5),(2.6) and (2.7).

Let P+
T (a, b) = set of edges on the path from a to mid-point M(a, b), including the

edge M(a, b) if M(a, b) is an edge. Let P−
T (a, b) be the set of edges on the path from

13

M(a, b) to b not including M(a, b). For each e edge e, let xe be the weight variable on

edge e. Then ∀a, b ∈ S,

minimize 0 (2.4)
∑

e∈P+
T (a,b)

xe −
∑

e∈P−
T (a,b)

xe ≥ δ if M(a, b) ∈ E(T) (2.5)

∑

e∈P+
T (a,b)

xe −
∑

e∈P−
T (a,b)

xe = 0 if M(a, b) ∈ V (T) (2.6)

xe ≥ 0 ∀e (2.7)

Now let’s see what the dual looks like. Let yab be the weight for the midpath

constraint (a, b) in above LP. Then the dual is,

maximize δ
∑

M(a,b)∈E(T)

yab (2.8)

∑

(a,b)ste∈P+
T (a,b)

yab −
∑

(a,b)ste∈P−
T (a,b)

yab ≤ 0 ∀e (2.9)

yab ≥ 0 (2.10)

Then, to prove the infeasibility of this LP, we have to prove that its dual has

unbounded maximum, because dual is always feasible with solution yab = 0 ∀a, b. It

can be seen from the dual that if the maximum objective value is non-zero then it has

unbounded maximum. So, any multiset of constraints from 2.5, 2.6 such that at least

one of them is from 2.5, which adds up to have non-positive weight on each edge, forms

the witness of infeasibility of the LP. To generate, the counter-example to midpath tree

conjecture, we need to work with the weighted tree, in which there is such a multiset

of midpath constraints which add up positively only on some non-midpath edge. (Note

that if it is a weighted tree then, any such multiset of constraints has to add up positively

on at least one edge.)

2.1.5 Lemmas and Counter-Examples

Lemma 2.3 There are total orders which are not realizable as any tree, despite the

existence of midpath tree. [29]

14

A

B

C

D

E

m(B,E) m(A,D)

m(A,C),m(B,C)
m(C,D),m(C,E)

m(B,D)

m(A,B)

m(A,E)
m(D,E)

O P Q

Figure 2.1: Not all total orders are realizable

B

A

C

8

4

9

10

2

5

11

1

D

E

F

O

P Q

Figure 2.2: Total orders not realizable as midpath tree

Proof: Consider the total order AD < DE < AB < BD < AE < BE < AC < CD <

CE < BC. Figure 2.1 shows the midpath tree for this total order. The mid-path tree

is binary so it can not be expanded further. Following analysis shows that this tree can

not be weighted to realize this total order.

BD < AE => BO + DQ < AO + EQ

AC < CD => AO + OP < PQ + DQ

CE < BC => PQ + EQ < BO + OP

summing up we get, 0 < 0, which is contradiction.

Lemma 2.4 There are total orders which are realizable as some tree T but are not

realizable as midpath tree. [29]

Proof: Figure 2.2 gives the example. The total order is the one generated by pairwise

distances in the weighted tree shown in the figure. Note that no mid-point falls on the

edge OP i.e. ∀x, y M(x, y) �= OP . So the midpath tree is obtained by contraction at

edge OP . Let’s identify O and P both by R to obtain the midpath tree. Then,

AC < EF ⇒ AQ + CQ < ER + FR

15

I

K

m1

4

21

21
n

4L

1
J

k
1

G

1
H

5

5

S

R

i

j

g

h

6

6

100

100

P

Q

1

1.1

o 8
1

1.1

M

N

2

2

c

d

B

1
A

18

18
f 1 D

4 F

e 1 C

4 E

100

100

p

a

b

200

200 1
l

Figure 2.3: ∆ not Realizable as Midpath Tree

DE < BC ⇒ DR + ER < BQ + CQ

CF < AD ⇒ CQ + FR < AQ + DQ

BE < CE ⇒ BQ < CQ

summing up , we get 0 < 0. This is contradiction. Hence, this total order cannot be

realized as midpath tree.

Lemma 2.5 There are triangle orders which are realizable as some tree but not the

midpath tree. [31]

Proof: Figure 2.3 gives the counter-example for the midpath tree conjecture for triangle

order. Although a much smaller counter example for total orders exists, note that the

same forms the counter example for midpath tree conjecture for total orders.

It consists of a weighted tree T which is a realization of the obvious triangle order

generated by the pairwise path distances in T . It consists of 18 leaves, and no midpoint

falls on edge op i.e. ∀x, y M(x, y) �= op. Hence edge op is contracted in the midpath

tree. All other edges have some midpoints on them. The question is : is it possible to

have some other weight assignment of T which will maintain the same triangle order

and will have weight of edge op = 0? The linear program generated is infeasible, thus

establishing that the answer is no. The table 2.1 shows the witness to the infeasibility.

Adding up the last column of the table we get,

16

pair midpoint inequality that implies
AD df AB <∆ BD oA + 2pd < oD
DE ac DM <∆ ME oD + 2pa < oE
EG ac EA <∆ AG oE − 2oc < oG
GJ jl GR <∆ RJ oG + 2oj < oJ
JK gi JP <∆ PK oJ + 2og < oK
KD gi KS <∆ SD oK − 2oi < oD
DH pb DN <∆ NH oD − 2ob < oH
HA oh HQ <∆ QA oH − 2oh < oA

Table 2.1: Witness of infeasibility

pd + pa + oj + og < oc + oi + ob + oh

By a similar analysis, we can show that

pc + pb + oi + oh < od + oj + oa + og

Summing yields op > 0. Thus, the midpath tree cannot realize ∆ even though some

expansion of the midpath tree can.

Lemma 2.6 There are triangle orders which are not realizable at all, despite the exis-

tence of midpath tree.

Proof: Consider the midpath tree of triangle order in figure 2.3. This means we have

to contract the edge op. Now, we change this triangle order slightly. We expand edge op

vertically. And all the symmetric midpaths (e.g. M(GH), M(PQ), M(CD), ...) which

were on the edges oh or pb are now moved to this new vertical edge op. Note that

this midpath tree is binary, so it cannot be expanded any further. The witness of

infeasibility in the proof of lemma 5, holds for infeasibility of this midpath tree too.

This proves our lemma.

2.1.6 Unrooted Quartet Consistency(UQC)

We present here a related problem of constructing trees using unrooted quartets, where

a quartet is an unrooted tree on four leaves, vi, vj, vk, vl. Each quartet q is constrained

17

to contain an edge e so that q − e describes a partition of the four leaves into two sets

of two leaves each. We indicate this by writing q = (vivj, vkvl). The unrooted quartet

consistency (UQC) problem is as follows.

Problem: Unrooted Quartet Consistency.

Input: A set Q of quartets on the set of points S = {v1, v2, ..., vn}.

Question: Does there exist a tree TQ with leaves labeled by points in S such that if

q = (vivj, vkvl) ∈ Q, then there is an edge e in TQ such that vi, vj are on one side of e

and vk, vl are on the other side.

The UQC problem was shown to be NP-complete by Steel [33]. This is shown by

reduction to betweenness problem. We shall use this problem to show the NP-hardness

of triangle ordinal clustering as well as total ordinal clustering. The counter-example

of lemma 2.5, imposes a quartet constraint and shows what edge expansion is needed.

The main idea is to superimpose such counter-examples with scaled by different weights

so as to generate the required quartet constraints. We need to make sure that these set

of counter-examples do not interfere with each other i.e. remaining part of the order

(the part not in witness) should stay in the same order after expansion. For generating

such weight values for these set of trees we need well-separated numbers of the following

section.

2.1.7 Well-Separated Numbers

We call a set of m integers, a1, a2, ..., am, well-separated if each pair of these numbers

produces a unique sum and ∀i ai ≤ poly(m). These numbers could be obtained as

2m2i + i2. These numbers are composed of two parts 2m2i and i2. If two pairs of

numbers have the same sum in one part, they cannot have the same sum in the other

part. And in the sense of addition, the two parts of the numbers are scaled appropriately

so that they do not interfere. Similarly, we define k-weighted set of well-separated

integers a1, a2, ...am such that for all u, v ≤ k, uai + vaj is unique for each quadruple

u, v, i, j and ∀iai ≤ poly(m). Note that k is considered to be a constant here. These

numbers could be described as base 2k numbers. The numbers ai consists of lower log m

18

digits from the bits in binary representation of i, (logm + 1)-th digit as 1 and leftmost

part as ((logm+2)-th digit onwards) 4m2ki+i2. That is, if blogm, ..., b1, b0 is the binary

representation of i, then ai is
∑

0≤j≤log m(2k)jbj +(2k)log m+1 +(2k)logm+2(4m2ki+ i2).

Given uai + vaj we can uniquely determine u, v from the right log m + 1 digits and

then ai, aj can be uniquely determined from the remaining part. Hence, each weighted

sum is unique. These numbers are polynomial in m although exponential in the highest

weight k.

We shall be using these numbers to construct the weights in polynomial time re-

duction to show the NP-hardness results. This requires the numbers not to be super-

exponential. However, numbers exponential in m are would still maintain the polyno-

mial time reducibility. We choose to stick with the polynomial weights though, due to

its relation with unweighted (unit-weighted) case. This would imply that if the phylo-

genetic tree were allowed to have degree two vertices, then even the unit weighted case

would be NP-hard.

2.2 Generalized Counter-Example to Midpath Tree Conjecture

A C E

B D F

GIK

HJL

fdbhjl

o p

M N Q R S T U

z z

w

z z

I
i

GK

g

M N Q R S T U

A E

C
ca

ut
sr

m
n

q

b d
D

FBL H

hj
J

k i g
m n

q r s t u
a c e

Figure 2.4: ∆ not Realizable as Midpath Tree

Figure 2.4 gives a generalized counter-example for the midpath tree conjecture.It

19

consists of a weighted tree T which is a realization of the obvious triangle order gener-

ated by the pairwise path distances in T . The weights on the tree are according to the

following tables. Here, we show the distances of leaves from respective points o or p for

the convenience of analysis. This could fully determine all the edge weights if needed.

The weights are in terms of parameters n, m, i which would be defined in section 2.3.

op = w

pÂ = x pB̂ = x + 2z + 1

oĜ = x + 4z + 2 + w oĤ = x + 6z + 3 + w

pĈ = x + 8z + 4 + 2w pÊ = x + 14z + 8 + 2w

pD̂ = x + 10z + 5 + 2w pF̂ = x + 12z + 7 + 2w

oÎ = x + 16z + 9 + 3w oK̂ = x + 20z + 12 + 3w

oĴ = x + 18z + 10 + 3w oL̂ = x + 22z + 13 + 3w

Similarly, for distances of Ā to L̄ replace x by y.

pr̂ = pr̄ = oq̂ = oq̄ = z

pŝ = ps̄ = 2z + 1.25 pt̂ = pt̄ = 3z + 2.25 pû = pū = 5z + 3.25

on̂ = z + 0.75 om̂ = 5z + 3.75 on̄ = 3z + 1.75 om̄ = 7z + 4.75

for Â, , Ĵ and Ā, . . . , J̄ in (alphabetical) order âÂ = 1. Also,

m̂M̂ = n̂N̂ = q̂Q̂ = 10000nm + 400ni + 40n

m̄M̄ = n̄N̄ = q̄Q̄ = 10000nm + 400ni + 80n

r̂R̂ = ŝŜ = t̂T̂ = ûÛ = 10000nm + 400ni + 120n

r̄R̄ = s̄S̄ = t̄T̄ = ūŪ = 10000nm + 400ni + 160n

For parameters, we choose z = 4n, w = 1, x = 2000ni, y = x + 500n. For the

purpose of this section assume n is much bigger than 1. i could take any value between

1, .., n. Although, w is chosen to be 1, for any 1 ≤ w ≤ n this counter example is still

valid and it maintains the same order. Parameters n and m will be useful in the next

20

pair midpoint inequality that implies
ÂD̂ ūb̂ ÂŪ < ŪD̂ oÂ + 2pū < oD̂

D̂Ê ŝt̂ D̂Ŝ < ŜÊ oD̂ + 2pŝ < oÊ

ÊĜ t̂û ÊÛ < ÛĜ oÊ − 2oû < oĜ

ĜĴ m̄ĥ ĜM̄ < M̄Ĵ oĜ + 2om̄ < oĴ

ĴK̂ n̂m̂ ĴN̂ < N̂K̂ oĴ + 2on̂ < oK̂

K̂D̂ n̂m̂ K̂M̂ < M̂D̂ oK̂ − 2om̂ < oD̂

D̂Ĥ r̄s̄ D̂S̄ < S̄Ĥ oD̂ − 2os̄ < oĤ

ĤÂ q̄n̄ ĤN̄ < N̄Â oĤ − 2on̄ < oÂ

Table 2.2: Witness of infeasibility:Inner

pair midpoint inequality that implies
B̂Ĉ t̂û B̂T̂ < T̂ Ĉ oB̂ + 2pt̂ < oĈ

ĈF̂ s̄t̄ ĈS̄ < S̄F̂ oĈ + 2ps̄ < oF̂

F̂ Ĥ s̄t̄ F̂ T̄ < T̄ Ĥ oF̂ − 2ot̄ < oĤ

ĤÎ m̂ĝ ĤM̂ < M̂Î oĤ + 2om̂ < oÎ

ÎL̂ n̄m̄ ÎN̄ < N̄L̂ oÎ + 2on̄ < oL̂

L̂Ĉ n̄m̄ L̂M̄ < M̄Ĉ oL̂ − 2om̄ < oĈ

ĈĜ r̂ŝ ĈŜ < ŜĜ oĈ − 2oŝ < oĜ

ĜB̂ q̂n̂ ĜN̂ < N̂B̂ oĜ − 2on̂ < oB̂

Table 2.3: Witness of infeasibility:Outer

section and will be introduced then. The counter-example consists of 38 leaves, and

no midpoint falls on edge op i.e. ∀x, y M(x, y) �= op. Hence edge op is contracted in

the midpath tree. Also, no midpoint fall on edges oq̄, oq̂, pr̄, pr̂. All other edges have

some midpoints on them. The question is : is it possible to have some other weight

assignment of T which will maintain the same triangle order and will have weight of

edge op = 0? The linear program generated is infeasible, thus establishing that the

answer is no. Following tables 2.2 and 2.3 show the witness to the infeasibility.

table 2.2 implies,

pū + pŝ + om̄ + on̂ < oû + om̂ + os̄ + on̄

table 2.3 implies,

21

pt̂ + ps̄ + om̂ + on̄ < ot̄ + om̄ + oŝ + on̂

adding up,

pt̂ + pû + pŝ + ps̄ < oû + ot̄ + os̄ + oŝ

replacing Â by Ā , and similarly,

pt̄ + pū + ps̄ + pŝ < oū + ot̂ + oŝ + os̄

adding up,

op > 0

This implies that we need to expand the midpath tree, in order to realize the triangle

order. Also, this means that any expansion which realizes the triangle order must

have an non-zero weighted edge op, which imposes, to obtain the tree which realizes

the triangle order, the expansion of the midpath tree in which there is an edge which

separates leaves Â, B̂ from leaves Ĝ, Ĥ. In this sense, this (counter-) example imposes

a quartet constraint on leaves Â, B̂, Ĝ, Ĥ such that if the triangle order was realizable

then there must be a quartet separating edge e such that T − e, i.e. tree T cut at

the edge e will have Â, B̂ in one component and Ĝ, Ĥ in the other. Also, the added

advantage of using this (counter-) example over the previous one (lemma 2.5) is that

this allows a region around the quartet edge (op) where no midpoint falls. This can be

used by other super-imposed quartet constraints, to impose further expansions of the

tree. We shall see this in the next section.

2.3 NP-hardness of Triangle Ordinal Clustering(TOC)

In this section, we show that given a triangle order ∆, it is NP-hard to determine

whether there exists a weighted tree T which realizes ∆. Before we show the reduction,

we introduce few definitions. Let T be the weighted tree in the generalized counter

example of the previous section.

22

v
v

v

v
v

v

v1

2

O

n

i

j
k

lA-leg

B-leg

G-leg

H-leg

α
α

α

β

β

β

β

j
j

i i

k

l l

γ

δ

δ

γ

γ

δ

γ

δ H

H

G

G

A

A

B

B

α

Figure 2.5: Construction

Definition 2.1 The subtree of T defined by cutting T at edge pr̂ and taking the compo-

nent which contains Â is called A− leg. B− leg, G− leg, H− leg are similarly defined.

Note that these are weighted trees which follow the edge weights of T .

Definition 2.2 The leaves M̂, N̂, Q̂, R̂, Ŝ, T̂ , Û, M̄ , N̄, Q̄, R̄, S̄, T̄ , Ū are classified as dummy

points, while others are non-dummy points.

Definition 2.3 Given a weighted tree T on the vertex set V and a subset S of V (V

consists of internal as well as leaf nodes.) , T (S) is the minimal steiner subtree of T

which connects the vertices in S. Moreover, 2-degree vertices in this steiner tree are

eliminated, replacing two edges with a new edge. The weight of this new edge is the sum

of the weights of the previous two.

Theorem 2.1 TOC is NP-hard.

Proof: The reduction is from UQC problem. Given an instance of UQC, we show

how to construct an instance of TOC. Let I = (S, Q) be an instance of UQC. |S| =

n, |Q| = m. From I we construct a midpath tree T∆ which would uniquely represent

23

the triangle order ∆. We start with a star on n leaves in S = {v1, v2, ..., vn}. Assign

unit weight to each of these edges. Let the center of these star be o. Attach 2n more

leaves αi, βi with 2n new edges of the form oαi and viβi for all i ∈ {1, .., n}. Let

W (oαi) = W (viβi) = 200000nm + 8ni for each i. αi, βi are dummy points.

Now, for each quartet qi = (vi1vi2, vi3vi4) construct a weighted tree Ti as in the figure

for generalized counter example. All of these Ti’s have the same structure but they differ

in weights according to parameter i. Now, take the four legs Ai − leg, Bi − leg, Gi −

leg, Hi− leg and attach these with the edge of weight z−1 to vertices vi1 , vi2, vi3, vi4 as

in figure []. At the endpoints of each of these attachment edges attach two more leaves

(these are also dummy points) γAi , δAi or γBi, δBi or γGi , δGi or γHi , δHi depending on

the leg being attached.

W (vi1, γAi) = W (r̂i, δAi) = 300000nm + 400mi + 40n

W (vi2, γBi) = W (r̄i, δBi) = 300000nm + 400mi + 80n

W (vi3, γGi) = W (q̂i, δGi) = 300000nm + 400mi + 120n

W (vi4, γHi) = W (r̄i, δHi) = 300000nm + 400mi + 160n

Once we have done this for all the quartets, the resulting weighted tree is a super-

imposition of Ti’s with their respective edges oipi contracted to a single vertex o. And

also they share edges ovj ’s according to quartet constraints. Next we define, mid-points

over this tree T
′
. For any leaves a, b belonging to same Ti the midpoint MTi(a, b) is the

edge on which the midpoint of weighted path PTi(a, b) falls. The midpoint M(a, b) is

the edge in T
′
corresponding to MTi(a, b). If a, b belong to Ti, Tj respectively with i < j

then M(a, b) is defined according to weights in T
′
. Note that this means that if a, b

are not dummy points,the midpoint will be either of the edges ûj âj, ūj b̂j, m̂jĝj, m̄jĥj

depending on which leg of Tj b belongs. Now, observe that each non-leaf edge of T
′

has some midpoint falling on it. So, T∆ is in fact same as T
′
along with the midpoint

function M . The triangle order ∆ is as defined by this midpath tree T∆.

Now, the question is: is this midpath tree expandable? i.e. is this triangle order ∆

realizable?

The following two lemmas would complete the proof of the theorem.

24

Lemma 2.7 If the triangle order ∆ is realizable then answer to UQC question is Yes.

Proof: Let T be the tree which realizes ∆. T is an expansion of T∆. Consider the

constraints imposed by each Ti for all i ∈ {1, .., m}. These imply that there is an edge

e such that Âi, B̂i are on one side of e and Ĝi, Ĥi are on the other. Since o is the only

point where such an expansion is possible, this edge e would also separate vi1, vi2 from

vi3, vi4. This means all the quartet constraints are satisfied in T (S).

Lemma 2.8 If the answer to UQC question is Yes, then ∆ is realizable.

Proof: Consider T∆ constructed as above. T∆(S) is a star with vertex o in the center

and vertices v1, v2, .., vn as leaves. Now, since the answer to UQC question is Yes,

consider the expansion of this star which provides solution to UQC problem. Assign a

unit weight to each of the newly expanded edges as well as the leaf edges. Note that

there are at most n new edges introduced since we are expanding a star on n leaves.

Now consider the corresponding expansion in T∆, call this tree T . We show that T ,

indeed, is the tree which realizes ∆. The remaining part of T comes from different Ti’s

corresponding to each quartet. For weight function on those edges consider, T (V (Ti)).

Figure 2.6 shows the sketch of T (V (Ti)). There is a unique edge, say ei, separating Âi, B̂i

from Ĝi, Ĥi. Set the parameter w to weight of ei (instead of unit) in the corresponding

leg’s. Adjust the weights of vi1 r̂i, vi1 r̄i, vi3q̂i, vi4q̄i so that distances of r̂, r̄, q̂, q̄ from edge

ei equals z(= 4n).

This weighted tree T indeed represents the same triangle order ∆. This can be

verified by checking that all the midpoints remain on the same edges, giving the same

triangle order. Note that no midpoint falls on the newly expanded parts. For the

midpoints of the pair of leaves belonging to the same Ti, they still remain on the same

edges giving the same order, since as noted in section 2.2, the value of parameter w is

within the range of 1 and n. The midpoints among the pair of dummy points remain at

the stem of the dummy point which had larger stem earlier. The midpoints of among

the pair of dummy points with equal stems, originally, stay on the same edges. The

midpoints of non-dummy points belonging to two different Ti and Tj, i < j, remain on

the same edge which is one of ûj âj, ūj b̂j, m̂j ĝj, m̄jĥj .

25

w

w

ww

w

1
1

1
1

v

vv

i

j

k

l

A-leg

B-leg

H-leg

G-leg

v
G

G
A

A

B

BH

H

z-1-w

z-1-w

z-1-w

z-1-w

Figure 2.6: UQC implies TOC

Hence, T realizes ∆.

2.4 NP-hardness of Total Ordinal Clustering (OC)

In this section we show that given a total order τ on pairwise distances it is NP-

hard to determine whether there exists a tree T which realizes τ . Again, as in the

previous section the reduction is from the UQC problem. Given an instance of UQC,

we follow exactly the same construction here, except that the weights involved are

slightly different. The parameter z, which was the same (4n) for all Ti’s in TOC, is

different for different Ti’s. So we call it zi. This is done to force the strict total order on

non-critical (not involved in counter example table) distance pairs. We choose zi’s for

1 ≤ i ≤ m such that for 0 ≤ p, q, p′, q′ ≤ 400 we get |(pzi +qzj)− (p′zi′ +q′zj′)| ≥ 1000n

for any i, j, i′, j ′, unless i = i′, j = j ′, p = p′, q = q′. These numbers are the the so-called

k-weighted well-separated numbers, each multiplied by the factor of 1000n, and k = 400

here. Let zm be the highest of these zi’s. Then, we define z′i for 1 ≤ i ≤ 8m + n as

the (unweighted) well separated numbers each multiplied by 2zm. Now, for each Ti we

choose xi = 50zi and yi = 100zi. Each of the distance,

m̂M̂ = n̂N̂ = q̂Q̂ = z′4i−3 m̄M̄ = n̄N̄ = q̄Q̄ = z′4i−2

r̂R̂ = ŝŜ = t̂T̂ = ûÛ = z′4i−1 r̄R̄ = s̄S̄ = t̄T̄ = ūŪ = z′4i

26

While constructing T ′, which is the weighted tree, we make the following weight

changes, W (oαi) = W (viβi) = z
′
8m+i

W (vi1, γAi) = W (r̂i, δAi) = z
′
4m+4i−3

W (vi2, γBi) = W (r̄i, δBi) = z
′
4m+4i−2

W (vi3, γGi) = W (q̂i, δGi) = z
′
4m+4i−1

W (vi4, γHi) = W (r̄i, δHi) = z
′
4m+4i

Apart from these weight changes the construction is exactly the same. Now, any

pairwise distance in T ′ consists of weighted sum of at most two zi’s and at most two

z′i’s. In any Ti, the distance of each point from the center edge oipi, differs in the

weight of zi. Hence, each distance in T ′, which has two end point in different Ti’s,

has unique composition in terms of zi’s,z′i’s and their respective weights. The well-

separation property guarantees that any pair of distances, if it doesn’t have all 4 end

points in the same Ti, differs by at-least 500n. This is because the component of the

distances due to wi’s as well as the constant part is much smaller than the one due to

zi’s and z′i’s. (Note that any distance in this tree consists of the weighted sum of four

parts: w, z, z′ and a constant part.)

Now, to define the total order we first give the pairwise distance values and then

the total order will be defined by these values. For any two leaves vp, vq belonging to

the same Ti, the distance dist(vp, vq) = dTi(vp, vq) and if they belong to different T ′
is

then dist(vp, vq) = dT ′(vp, vq). Again, we define midpoints on T ′. For any leaves vp, vq

belonging to same Ti the midpoint MTi(vp, vq) is the edge on which the midpoint of

weighted path PTi(vp, vq) falls. M(vp, vq) is the edge in T ′ corresponding to MTi(vp, vq).

If vp, vq belong to different T ′
is then M(vp, vq) is the midpoint of the weighted path

PT ′(vp, vq) in T ′. Note that T ′ taken as unweighted tree is indeed the midpath tree Tτ

with midpath function defined as above. Also, because of the well-separation property,

no midpoint is within the distance 100n from the center point o in T ′.

The proof of lemma 2.7 is applicable as it is over here. So if the total order is

realizable then the answer to the UQC question is Yes.

27

For proving the other way round again we do the same construction as in the proof

of lemma 2.8. If the answer to the UQC question is Yes, then we expand the center

vertex o according to the UQC solution and assign unit weight to each of these newly

expanded edge. Then, for each Ti, take w as the number of edges that separate vertices

vi1, vi2 from vi3, vi4. Note that this will also change the corresponding weights in T ′.

Now, no distance in T ′ changes by more than 10n (since w ≤ n) by this expansion and

corresponding increments in w values. So, due to well-separatedness, the same order

is maintained for the distance pairs which do not consist of four leaves in the same

Ti. For distance pair within the same Ti, whether w = 1 or w is number between 1

and n maintains the same order. Also, the order of distances involving αi, βi, δA, γA, ...

(dummy points not belonging to any Ti) remains unaltered during the expansion. Hence

this expanded weighted tree T , represents the desired total order.

Theorem 2.2 Total Ordinal Clustering (OC) is NP-hard.

28

Chapter 3

Undiscretized Dynamic Programming: Faster Algorithms

for Filtering

In this chapter, we consider the minimizing delay from [30] and show that the complexity

of the dynamic programming algorithm can be improved.

In section 3.1 , we show the formulation of the problem. We discuss the preliminaries

and assumptions. We go over the dynamic programming algorithm described in [30]

and give the intuition which motivates faster algorithms. In sections 3.2 and 3.3, we

describe two algorithms, the first being an improvement of the dynamic programming

and the second being an improvement of the first. We also include the analysis of their

running time . The detailed description of data structures and operation involved is

given in chapter 5.

3.1 Preliminaries

3.1.1 Notations

A filter placement on a rooted multicast tree M = (V, E) with vertex set V and edge

set E ⊂ V × V is a set S ⊂ V where filters are placed at all vertices in S and on no

vertex in V − S. Let |V | = N , and so |E| = N − 1. We denote the root of M by r.

Tree(v) denotes the subtree rooted at vertex v ∈ V . For example, Tree(r) = M . Let

us denote the height of tree M by H .

For simplicity of writing, we will use some functional notations. We denote size of

Tree(v), that is the number of vertices in Tree(v), by n(v). Thus, |Tree(r)| = n(r) =

N . c(v) denotes the number of children of vertex v ∈ V , while s(v) denotes the number

of leaves in Tree(v). For example, c(v) = 0 and s(v) = 1 if vertex v is a leaf in M .

29

f(v) is the total size of information requested in Tree(v). For a leaf v ∈ V , f(v)

denotes the size of the information requested from that user. In other words, f(v) is

also the amount of information that node v gets from its parent, if the parent has a

filter. We assume that f(v) for each v is known.

3.1.2 Assumptions

We make the following assumptions in our model.

• The delay on a link is proportional to the length of the message transmitted across

the link, ignoring propagation delay. Thus if m is the length of the message going

across a link (or an edge), then the delay on that link is mL units, where the link

delay per unit of data is L, a constant.

• The delay introduced by an active filter is a constant. We denote it by F . It is

(typically) a big constant.1

• Each internal vertex of M waits and collects all incoming information before

forwarding it to its children. But this time is much smaller than the delay rate

over the link.

3.1.3 Recurrence and Dynamic Programming

Our objective is to minimize the average delay from the instant the source multicasts

the information to the instant that a leaf receives it. Since the number of leaves is

a constant for a given multicast tree M , we can think of minimizing the total delay,

where the total is made over all leaves in M .

Let A(v) stand for the lowest ancestor of v whose parent has a filter. For example,

A(v) = v if parent of v has a filter.

Now consider a CBM with a required flow f known for each vertex in the tree. For

a vertex v, let D(v, p) denote the minimum total delay in Tree(v), assuming A(v) = p.

1It is not necessary to assume that L and F are same constants for each link and each filter locations,
they could be different constants for different links and location as in general formulation of p-median
problem[34]. This will not change the algorithm.

30

Let v1, v2, . . . , vc(v) be the children of vertex v. Let Cv = s(v)F + L
∑c(v)

i=1 f(vi)s(vi)

and Ev = Ls(v). Cv and Ev are constants and can be computed for each vertex v in

O(N) time by bottoms up calculation.

Then the minimum total delay can be expressed by the following recurrence relation

in table 3.1.

if v is a leaf then
D(v, p) = 0 for all p

else
D(v, p) = min{

Cv +
∑c(v)

i=1 D(vi, vi), if v has a filter
f(p).Ev +

∑c(v)
i=1 D(vi, p), otherwise

}
end if

Table 3.1: Discrete Dynamic Programming

The optimal placement can be found using dynamic programming as noted in [30].

However, naive implementation of it would take time O(NH).

We will “undiscretize” the above recurrence relation and write it as a function of

a real number p, which is now the incoming information flow into v. To make it clear

that this function is specific for a vertex v, we denote it as Dv. Now our recurrence

relations takes a new look as in table 3.2

if v is a leaf then
Dv(p) = 0 for all p

else
Dv(p) = min{

Cv +
∑c(v)

i=1 Dvi(f(vi)), if v has a filter
p.Ev +

∑c(v)
i=1 Dvi(p), otherwise

}
end if

Table 3.2: Undiscretized Dynamic Programming

Notice that we can still compute D(v, p) by plugging the discrete value f(p) in Dv.

Intuitively, Dv is a function of real value p which is incoming flow to the Tree(v). It is

a piecewise linear non-decreasing function. Each break point in the function indicates

31

a change in the arrangement of filters in the subtree Tree(v). This change occurs in

order to reduce the rate of increase of Dv (slope) for higher values of p. The slope of

each segment is lesser than the previous, and the slope of final segment (infinite ray)

is zero because this would correspond to filter at v. Once, a filter is placed at v, the

value of variable p no longer matters. Therefore, Dv is a piecewise linear non-decreasing

concave function. We will use |Dv| notation to denote the number of break-points (or

number of linear pieces) in Dv.

The big advantage of the above formulation is that it allows us to store Dv as a

height balanced binary search tree which in turn allows efficient probing and merging,

so that we can implement above recurrence and find optimal filter placements in quicker

time.

Before we proceed with actual description of algorithms and data-structures, we

present two simple lemmas which prove useful properties of Dv as claimed above.

Lemma 3.1 Dv is a piecewise linear non-decreasing function and ∃pv, tv such that

Dv(p) = tv for all p ≥ pv.

Proof: By induction on height2 of v. Claim is trivially true for a leaf v. Dv = 0.

So pv = 0 and tv = 0. Let’s assume the claim is true for all c(v) children of v. Also

let Lv(p) = p.Ev. Lv is a line passing through origin. Hence, it is a piecewise linear

non-decreasing function.

Let Wv(p) = Cv +
∑c(v)

i=1 Dvi(f(vi)). Wv is a constant and hence a piecewise linear

non-decreasing function. Let Fv(p) = Lv(p) +
∑c(v)

i=1 Dvi(p). Hence, Fv is a piece-

wise linear non-decreasing function. Dv(p) = min{Wv(p), Fv(p)}. Therefore, Dv is

a piecewise linear non-decreasing function because minimum preserves piecewise lin-

ear non-decreasing property. tv = Wv(p) and pv is the value of p where Wv and Fv

intersect.

Lemma 3.2 |Dv| ≤ n(v).

2Height of v = 1+ max{Height of u | u is a child of v}. Height of a leaf is 0.

32

0 P1 P2 P3 P4 Pv = P5

t v

A nondecreasing piecewise linear function D v

Figure 3.1: Piecewise Linear Function

Proof: By induction on height of v. Claim is trivially true for v if it is a leaf, that is

its height is 0. If claim were true for each of the c(v) children of v, then each of Dvi

is a piecewise linear function made up of at most n(vi) different linear pieces. Dv is a

minimum of sum total of Dvi and a constant. It can have at most one more extra piece

added to it. So the number of linear pieces in it cannot be more than 1 +
∑c(v)

i=1 n(vi).

But that is precisely n(v).

It is apparent from the above proof that each break-point in Dv is introduced by

some node in Tree(v) as a result of “min” operation.

3.2 Algorithm-1

We are now ready to present our first algorithm, Algorithm-1. Let I be the total

amount of the incoming information at r. The function A(r) returns the piecewise

linear function Dr at root r. Dv is stored as a balanced binary search tree whose size

is equal to the number of break-points in Dv.

33

Algorithm-1 {
A(r);
M-DFS(r, I);

}
M-DFS (v, p) {

if c(v) == 0 then
return;

end if
if p > pv then

place filter at v;
for i = 1 to c(v) do

M-DFS(vi, f(vi));
end for

else
for i = 1 to c(v) do

M-DFS(vi, p);
end for

end if
return;

}

A(v) {
if c(v) == 0 then

pv = +∞;
return create(0,0);

else
for i = 1 to c(v) do
qi = A(vi);

end for
tv = Cv;
for i = 1 to c(v) do
tv = tv+probe(qi,f(vi));

end for
z = create(Ev, 0);
for i = 1 to c(v) do
z = add merge(z, qi);

end for
pv = truncate(z, tv);
return z;

end if
}

Table 3.3: Undiscretized Algorithm

3.2.1 Algorithm

3.2.2 Data Structure Operations

The data structure supports the following operations:

create(a, b): Returns a new function with equation y = ax + b in time O(1).

probe(q, t): Returns q(t) in O(log |q|) time.

add merge(q1, q2): Returns a piecewise linear function which is the sum of q1 and

q2. Assuming without loss of generality |q1| ≥ |q2| ≥ 2, the running time is

O(|q2| log(|q1|+|q2|
|q2|)). q1 and q2 are destroyed during this operation and the new

function has size |q1| + |q2|.

truncate(q, t): This assumes that some z s.t. q(z) = t exists. Modifies q to a function

q′ which is equal to q(x) for x ≤ z, and t for x > z. This destroys q. It returns

z. q′ has at most one more breakpoint than q. All the breakpoints in q after z

are deleted (except at +∞). The running time is O(log |q|) for search plus time

O(log |q|) per each deletion.

34

3.2.3 Analysis of Algorithm-1

Algorithm-1 first recursively builds up the piecewise linear function Dr, bottom up, by

calling A(r). It uses pv values stored for each v in the tree and runs simple linear time

Depth-First-Search algorithm to decide filter placement at each vertex of the tree.

We will now show that the total running time of algorithm A, and therefore Algorithm-

1, is O(N log N). There are three main operations which constitute the running time:

probe, truncate and add merge. Over the entire algorithm, we do N probes, each cost-

ing time ≤ log N because each probe is nothing but a search in a binary search tree.

truncate involves N search operations and ≤ N deletions (because each break-point is

deleted only once and there is only one break-point each node in the multicast tree can

introduce) each costing ≤ log N time. Therefore, truncate and probe cost O(N log N)

time over the entire algorithm. We still need to show that total time taken by all the

merge operations is O(N logN). The following lemma proves this.

Lemma 3.3 Total cost of merge in calculation of Dv is at most n(v) logn(v).

Proof: We proceed by induction on height of v. The claim is trivially true for all

leaf nodes since there are no merge operations to be done. At any internal node v,

to obtain Dv we merge Dv1, Dv2, . . . , Dvc(v)
sequentially. Let si =

∑i
j=1 n(vi). Now,

again by induction (new induction on the number of children of v) assume that the

time to obtain the merged function of first i Dvj ’s is si log si. The base case when

i = 1 is true by induction (previous induction). Then, assuming without loss of gen-

erality si ≥ n(vi+1), the total time to obtain merged function of first i + 1 Dvj ’s is

at most si log si + n(vi+1) logn(vi+1) + n(vi+1) log ((si + n(vi+1))/n(vi+1)) which is at

most si+1 log si+1. Therefore time taken to merge all the children at v and obtain Dv

is at most n(v) logn(v).

35

3.3 Algorithm-2

3.3.1 Motivation

We observe that lemma 3.2 suggests a bound of n(v) on the number of different linear

pieces in Dv. On the other hand, we need to probe and evaluate Dv at at most H

different values (that is the number of ancestors v can have !). This suggests that we

can gain more if we “convert” our functions which grow “bigger” and have more than

H breakpoints and reduce them to at most H breakpoints.

For example, consider the case of multicast tree M being a balanced binary tree. Let

Y be the set of nodes at depth log logN . For each v ∈ Y the subtree size n(v) is roughly

logN . |Y | is roughly N/ logN and computing Dv at each such v takes log N log logN

time. This makes it N log logN over all v ∈ Y . Now, we convert Dv into array form

as in dynamic programming and resume the previous dynamic programming algorithm

in [30]. This dynamic programming calculations occur at roughly N/ logN nodes each

taking logN (H = logN) time. Hence we achieve an enhancement in total running

time, taking it down to N log log N which is essentially N log H . However, to achieve

this in the general case, we still have to stick to the binary search tree representation in

the second phase. The advantage is that the size of the binary search tree never grows

larger than H .

3.3.2 Data Structure Operations

Before we proceed with this new algorithm, we consider “converted” functions, since

some of the functions would be evaluated only for a small number of values. A “con-

verted” function qX(x) for q(x) with respect to (sorted) set X = x1, x2, ..., xk is a

piecewise linear function such that q(xi) = qX(xi) for xi ∈ X , and piecewise linear in

between those values. We define the following operations:

convert(q, X): Returns the “converted” function qX in O(k log(|q|/k)). Assumes X is

sorted.

36

add dissolve(qX , g): Adds function g to the converted function qX , and returns the

resulting function dissolved w.r.t. set X . Running time : O(|g| log |qX |)

add collide(qX1, gX2): Adds two converted functions qX1 and gX2. Creates new con-

verted function only on X1
⋂

X2.

truncate converted(fX , t): Almost the same as truncate. Does not cause any deletions.

It uses some “mark” to keep track of invalid values in data structure. Running

time: O(log |fX |).

3.3.3 Description of Algorithm

Using this, we modify the implementation of Algorithm-1. We continue building Dv’s

bottom up as in algorithm A(v). Suppose we are at some v whose all c(v) children,

namely v1, v2, . . . , vc(v), have less than H breakpoints in their respective data-structures.

We now start building Dv by merging Dv1, Dv2, . . . one by one. Suppose after merging

Dv1 through Dvi for the first i children, we find that the number of breakpoints for

function q constructed so far exceeds H (and it’s trivially less than 2H), then we

call function convert(f, X). Here X is the sorted list of values f(p) of v’s ancestors.

Note that X is very easy to maintain due to recursive top-down calls in A(v) and

monotonicity of f(p) values along a path. Then, for the remaining children of v, we use

add dissolve(q, Dvj), where j ∈ {i + 1, . . . , c(v)}. Once, the function is “converted”, it

always remains “converted”. For add operation involving one “converted” function q1

and one “unconverted” function q2 we use add dissolve(q1, q2) which runs in O(q2 log H)

and for two “converted” functions q1, q2 we use add collide(q1, q2) which runs in O(H)

since the size of the bigger data structure is now restricted by H .

Thus, we don’t store more than required information about Dv, while maintaining

enough of it to calculate the required parts of Du, where u is v’s parent.

3.3.4 Analysis of Algorithm-2

Let Y be the set of all nodes v ∈ V such that we needed to use the convert for finding Dv.

Use of convert function implies n(v) = |Tree(v)| ≥ H in the light of lemma 3.2.|Y | ≤ N
H

37

indicates nodes where convert function is used

|Dv| > H

|Dv| < H

add_merge

add_dissolve

add_collide

Figure 3.2: Three types of add operations

because for any two u, v ∈ Y , Tree(u)
⋂

Tree(v) = φ.

Let W be union of Y and all ancestors of nodes in Y . The subgraph of M on set

W forms an upper subtree of M . Let U be the set of children of nodes in Y .

For all nodes v ∈ U , we will run the normal add merge procedure. Since final Dv’s

constructed for each v ∈ U have sizes less than H , the total cost of building them would

be |U | logH ≤ N logH .

For each node v ∈ Y , we do a few add merge operations, followed by a convert

operation, followed by few add dissolve and add collide operations. Let X be the

sorted set of f(p) values for the ancestors of v. 1 ≤ |X | ≤ H . Since the overall effect

of add merge operations leads to a data-structure of size at most 2H , total cost is

O(H logH). convert will cost at most |X | log 2H
|X| = O(H).

If we sum over all add dissolves performed during the run of the algorithm, it is

easy to see that at most N breakpoints will be dissolved in data-structure of size H .

So the total cost of add dissolves is at most N logH .

Further, there are at most N/H “converted” functions, and each add collide takes

O(H) time and causes one less “converted” function. Hence, the total cost of add collide

is O(N).

Thus, the overall cost is at most N logH + N
H · (H log H + H) + N logH + N , that

is O(N log H).

38

Theorem 3.1 Given the multicast tree M having N nodes and height H with source

at root r disseminating I amount of information, along with values f(v) which is the

minimum amount of information required at node v of the multicast tree, the placement

of filters in the multicast tree to minimize total delay can be computed in O(N log H)

time.

39

Chapter 4

Faster Algorithms for Facility Location on Trees and

Related Problems

In this chapter we extend the undiscretization technique from chapter 3 to uncapac-

itated facility location problem on trees. In section 4.1, we define our notation and

describe the O(n2) dynamic programming algorithm for the problem given by [34].

We also show the “undiscretization” of the dynamic programming functions using the

techniques of [28] and prove some necessary lemmas. In section 4.2 we describe the al-

gorithm. In section 4.3 we list the data structure operations and their complexity and

in section 4.4 we derive the complexity bound for the algorithm. Again, the detailed

description of data structure and operations can be found in chapter 5.

4.1 Preliminaries and Dynamic Programming Functions

We shall regard the tree T = (V, E) as a rooted tree with an arbitrarily chosen root

node R. If the tree is a non-binary tree, it can be converted into a binary tree in linear

time using a technique of [34]. This is done by splitting each vertex with k > 2 children

into k−1 vertices, with edges joining them having distance zero and facility placement

cost fj for each newly introduced vertex being ∞. This at most doubles the number

of vertices and hence does not affect complexity. Hence, for the rest of the chapter,

we shall assume that the tree is binary. Let |V | = n and |E| = n − 1. Tv denotes the

subtree rooted at the vertex v. The size of a tree is the number of its nodes. We denote

the size of Tv as sv.

Let Gv(x) be the minimum objective function value of the subproblem defined on

the subtree Tv such that there is at least one facility in Tv within distance x from v.

Let Fv(x) be the minimum objective function value of the subproblem defined on Tv

40

such that the nearest facility in T − Tv from v is exactly at distance x from v. Note

that Gv(x) is a step-wise decreasing function of x (i.e. it is a piecewise linear function

with the slope of each piece equal to zero.). There is a breakpoint at Gv(x′) if x′ is

the distance from v to some node u ∈ Tv, and the solution that realizes the objective

function value of Gv(x′) has u as the facility serving v. Hence, each breakpoint in

Gv(x) corresponds to some unique node in Tv. Gv(∞) is the minimum value Gv(x) can

achieve. GR(∞), where R is the root, is the final value of objective function we are

interested in minimizing. Fv(x) is a piecewise linear non-decreasing concave function

of x. Fv(∞) = Gv(∞).

For any piecewise linear function F , let the size of F , denoted |F |, be the number

of breakpoints in F . Let x1, x2, ..., xk, ..., xsv be the distances of vertices in Tv from

v in increasing order. Let l and r be left child and right child of v, separated from

v by distance xl, xr respectively. The dynamic programming algorithm of Tamir [34]

stores, at each vertex v, the values of Gv(x) and Fv(x) for n − 1 distinct values of x

corresponding to the distances of all other vertices in T from v. So, the storage space

at each node in their algorithm is O(n). They show how to compute the (n−1 discrete)

values of Gv(x) and Fv(x) in O(n) time at each node. Hence, their algorithm runs in

O(n2) time.

By “undiscretizing” the representation of Gv and Fv we make these functions in-

variant of the distances of v from all vertices u which are not in the subtree Tv. In

the following lemmas, we shall show that this representation of Gv and Fv takes O(sv)

space. Now, if the tree T is a balanced binary tree and the computation at each vertex

v is linear in the space required to store each function, we would get an O(n logn)-time

algorithm. However, that may not be the case, so we design a data-structure along

with operations on it, that allows us to compute Fv and Gv in O(sl log ((sl + sr)/sl)),

assuming wlog that sr ≥ sl. Roughly, the computation at each node is linear in the size

of its smaller subtree and logarithmic in the size of its larger subtree. This leads to an

O(n logn)-time algorithm over any tree. We present the following recurrence relations

which show the computation of the “undiscretized” functions Gv and Fv. These are

41

if v is a leaf then
Gv(x) = fv and Fv(x) =min{wvx, fv}

else
Gv(0) = fv + Fl(xl) + Fr(xr)
Gv(xk) = min{Gv(xk−1), wvxk + Gl(xk − xl) + Fr(xk + xr)}

whenever xk corresponds to a distance between v and a
vertex in Tl

Gv(xk) = min{Gv(xk−1), wvxk + Gr(xk − xr) + Fl(xk + xl)}
whenever xk corresponds to a distance between v and a

vertex in Tr

Gv(x) = Gv(xk) whenever xk < x < xk+1

Fv(x) = min{Gv(∞), wvx + Fl(x + xl) + Fr(x + xr)}.
end if

Table 4.1: Dynamic Programming Algorithm

simply Tamir’s [34] dynamic programming recurrences written in terms of the “undis-

cretized” parameter x.

Lemma 4.1 Fv is a piecewise linear non-decreasing concave function (PLNCF) with

size |Fv| ≤ sv.

Proof: By induction on the height of v. For leaf v, Fv(x) = min{wvx, fv} is initially

an increasing linear function with slope wv, eventually becoming a constant function

fv. It has exactly one breakpoint at x = fv/wv. For internal node v with children l

and r, wvx + Fl(x + xl) + Fr(x + xr) is a summation of three PLNCFs whose number

of break points are not more than 0, sl, sr, respectively, by induction. Since the sum of

PLNCFs is a PLNCF whose number of breakpoints is at most the sum of the original

two, |wvx + Fl(x + xl) + Fr(x + xr)| ≤ sl + sr. Taking the minimum of this function

with a constant Gv(∞) will add at most one more breakpoint, and still maintain the

PLNCF property. Hence, |Fv| ≤ sv.

The new breakpoint added due to taking the minimum of PLNCF with a constant

function is said to correspond to v. Thus, it clear from the above proof that each

breakpoint in Fv corresponds to a unique vertex in Tv.

Lemma 4.2 Gv is a piecewise non-increasing step function(PDSF) with number of

42

G

G

F

conx
v

v

v

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

x

Figure 4.1: Undiscretized Functions

steps |Gv| ≤ sv.

Proof: The only values of x where Gv(x) can change value are those where x equals

distance of v from some vertex in Tv. So it is a piecewise step function and |Gv(x)| ≤ sv.

Also, from the definition of Gv and the dynamic programming recurrence we get that

Gv is non-increasing.

Define Gconx
v (x) to be the convex hull function of Gv(x). That is, Gconx

v is a con-

vex function such that ∀xGconx
v (x) ≤ Gv(x) and any convex function H(x) such that

∀xH(x) ≤ Gv(x) satisfies ∀xH(x) ≤ Gconx
v (x).

Note that Gconx
v is a piecewise linear non-increasing convex function (PLDXF). The

set of breakpoints of Gconx
v is a subset of breakpoints of Gv. Thus, the number of

breakpoints |Gconx
v | ≤ |Gv| ≤ sv. Also, it is clear from the proof of the previous lemma

that each breakpoint in Gv corresponds to some vertex in Tv. From the dynamic

programming recurrence relations it is clear that each breakpoint in Gv comes either

from breakpoints of Gl or Gr or the vertex v itself for Gv(0). The figure 4.1 illustrates

these three functions.

43

Lemma 4.3 For any breakpoint at y in Gl (or Gr) that is not in Gconx
l (or Gconx

r),

there will not be a corresponding breakpoint at y + xl in Gconx
v .

Proof: Gv would possibly have the breakpoint y +xl corresponding to breakpoint y in

Gl with Gv(y + xl) = wv(y + xl) + Fr(y + xl + xr) + Gl(y). Since y does not belong to

the breakpoints of Gconx
l , there are two breakpoints t, u in Gl such that t < y < u and

Gl(y) >
(u−y)Gl(t)+(y−t)Gl(u)

u−t . That means that the point (y, Gl(y)), lies above the line

formed by points (t, Gl(t)) and (u, Gl(u)). Since H(x) = wv(x+xl)+Fr(x+xl +xr) is

a concave function of x, H(y) ≥ (u−y)H(t)+(y−t)H(u)
u−t . Hence, summing up, Gv(y +xl) >

((u+xl)−(y+xl))Gv(t)+((y+xl)−(t+xl))Gv(u)
(u+xl)−(t+xl)

. So y + xl is not a breakpoint in Gconx
v .

Lemma 4.4 At each vertex v, computing Gconx
v instead of Gv is sufficient to carry on

the recursion and Gconx
R is sufficient for computing the minimum objective function for

T .

Proof: For any vertex v, Gconx
v (∞) = Gv(∞) and since GR(∞) is the final value

we are interested in, it is sufficient to compute Gconx
R . Now we only need to show

how to compute Gconx
v , given Gconx

l , Gconx
r , Fl and Fr where l and r are the left and

right children of some node v. If v is a leaf, then Gconx
v (x) = Gv(x) = fv. Given

the previous lemma, we compute Gconx
v by taking H(x) as the convex hull function of

min{wvx + Gconx
l (x − xl) + Fr(x + xr), wvx + Gconx

r (x − xr) + Fl(x + xl)} and then

making it non-increasing by taking a break point t where H(x) achieves minimum and

defining Gconx
v (x) = H(x) for all x ≤ t and Gconx

v (x) = H(t) for all x > t.

4.2 Algorithm

We are now ready to present the algorithm to compute the functions defined in sec-

tion 4.1. We describe UFL(v) which is a recursive procedure that returns (Gconx
v , Fv).

Recall that l and r are the left and right children of v at distances xl and xr respectively.

Wlog, we assume sl ≥ sr .

The algorithm presented in table 4.2 above is nothing but a translation of the dy-

namic programming recurrences shown in section 4.1. The procedures in the algorithm

44

UFL(v){
if v is a leaf then
Gconx

v = createG(fv);
Fv = createF (wv, fv);

else
(Gconx

l , Fl) = UFL(l);
(Gconx

r , Fr) = UFL(r);
g0 = fv + probeF (Fl, xl) + probeF (Fr, xr);
G1 = add dissolveFinG(Gconx

l , Fr, xl, xr);
G2 = add probeFforG(Gconx

r , Fl, xr, xl);
G2 = add point(G2, (0, g0));
G3 = min mergeG(G1, G2);
Gconx

v = add lineG(G3, wv);
ginf = probeG(Gconx

v ,∞);
Fv = add merge(Fl, Fr, xl, xr);
Fv = add line pruneF (Fv, wv, g

inf);
end if
return (Gconx

v , Fv);
}

Table 4.2: Undiscretized Algorithm

mainly perform four functions: create new PLFs with unit size, make a unit update in

the existing PLF, evaluate a PLF at some point or add two PLFs. Depending on the

relative sizes and the types of PLFs, these operations need to be carried out differently.

4.3 Data Structure Operations

Here we describe each of the operations used in the algorithm above and give their

running times. The corresponding data structure operations are described in chapter 5.

createG(c): returns a constant PLDXF with value identically c for all x. Running time

O(1).

createF (d, c): returns a PLNCF with exactly one breakpoint at x = c/d. The slope of

the first line segment from 0 to c/d is d and the slope of the line segment from

c/d to ∞ is 0. The running time is O(1).

probeG(G, t): takes the PLDXF G and a value t as parameters and returns the y value

of the breakpoint in G just less than t. Running time O(log |G|).

45

probeF (F, t): takes the PLNCF F and a value t as parameters and returns the value

F (t). Running time O(log |F |).

add line pruneF (F, d, c): adds a linear function with slope d to PLNCF F , finds the

point of intersection t of PLNCF F with constant c, and makes F (x) = c for all

x ≥ t. Running time O(log |F |) plus time for deleting all breakpoints u > t in F .

add lineG(G, d): adds a linear function with slope d to PLDXF G. Then prunes the

function as required to restore non-increasing behavior. Running time O(log |G|).

add point(G, (t, u)): inserts a new breakpoint t with function value u into a PLDXF G

and then restores convexity by deleting points in neighborhood of t if necessary.

Running time O(log |G|) plus time for deletions.

add merge(F1, F2, t1, t2): adds two PLNCFs F1, F2 shifted back by values t1, t2 respec-

tively. Running time O(|F2| log |F1|+|F2|
|F2|).

min merge(G1, G2): lists the breakpoints of PLDXF G2 and inserts them along with

their function values into PLDXF G1 sequentially in increasing order, restoring

convexity after each insertion by deleting few points if necessary. Returns G2.

Running time O(|G2| + |G2| log |G1|+|G2|
|G2|) plus the time for deletions.

add probeFforG(G, F, tg, tf): lists all breakpoints in PLDXF G and shifts them for-

ward (add) by tg + tf . Sequentially probes PLNCF F at these values and adds

the return value to the function value at breakpoints in G. Shifts them back-

wards (subtract from x coordinate) by tf . Now, with these points in sorted

order, takes the convex hull and generates a new PLDXF. Running time O(|G|+

|G| log |F |+|G|
|G|).

add dissolveFinG(G, F, tg, tf): inserts the linear segments in PLNCF F sequentially in

PLDXF G, adding the linear value to breakpoints in G. It also checks and restores

convexity around each breakpoint of F . Running time O(|F |+|F | log |G|+|F |
|F |) plus

time for deletions.

46

4.4 Analysis

Here, we show that our algorithm solves the UFL problem on a tree in O(n logn). The

time required by functions createF and createG is constant per leaf. Hence the total

time for these operation over the entire algorithm is O(n). The time required for each

of probeG, probeF, add line pruneF, add lineG and add point operations is bounded

above by O(logn) and each operation is carried out at most once at each vertex v.

Hence, the time taken by these operation over the entire algorithm is bounded above

by O(n logn). In operations involving deletions, the time taken is O(logn) per deletion.

Once the breakpoint is deleted it never re-enters the data structure. Hence the total

number of deletions is bounded above by 2n (for F and G) and the total cost of deletion

is O(n logn) over the entire algorithm. What remains to be shown is that the total cost

of “merge” operations min merge, add merge, add probeFforG and add dissolveFinG

is bounded by O(n logn).

Theorem 4.1 The total time required to compute all the “merge” operations in Tv (in

UFL(v)) is O(sv log sv).

Proof: By induction on height of v. If v is a leaf then in UFL(v), there are no “merge”

operations, so the claim is true. Note that for any x ≥ y > 2, O(y +y log((x+y)/y)) is

asymptotically same as O(y log((x + y)/y)). So, for any internal node v with left child

l and right child r, with sl ≥ sr by induction we get that the total cost of “merge”

operations is O(sl log sl)+O(sr log sr)+O(sr log ((sl + sr)/sr)). This is bounded above

by O(sv log sv).

47

Chapter 5

Data Structures and Operations

Here, we describe the data structures used to store piecewise linear functions involved in

each of the algorithm previously discussed. We also show how the operations defined on

these data structures are carried out and give the complexity bound for each operation.

Particularly, we describe how to store piecewise linear functions, the “converted”

functions and the functions Fv and Gconx
v which are PLNCF and PLDXF respectively.

The main data-structure is a height balanced binary search tree. We shall use AVL

trees [1, 4, 11] which can be merged fast using Brown and Tarjan’s fast merging algo-

rithm [7].

5.1 Fast Merging Algorithm

Brown and Tarjan [7] described the algorithm to merge two binary search trees which

represent ordered lists. They use AVL trees which are height balanced. If T1 and T2 are

AVL trees representing sorted lists of m and n elements respectively, with m ≥ n, they

insert the elements from T2 into T1 in sorted order to obtain a new AVL tree with m+n

elements. Rather than doing each insertion independently of the others by starting each

search from the root, the search for the insertion of a new element is started from the

position of previously inserted element, climbing up to the first ancestor(LCA) having

the next element to search in its subtree, and continue searching down the tree from

there. Brown and Tarjan show this can be done in O(n log((m + n)/n)). It is easy to

show that the upper bound of the length of the walk performed during the insertions

of n sorted elements is indeed O(n log((m + n)/n)). This is done by considering the

distance traveled in two parts, one that is within the top log n levels of AVL tree and

the other which is within the bottom log((m + n)/n) levels of the tree. For m ≥ n ≥ 2

48

B

A

D F

HE

(+α,+β)

J (+α,+β) M O
(−α,−β)

(+α,+β)G K N

(−α,−β)
C L

(−α,−β)
I

(+α,+β)

A

C

I

L

K N

M

G

HE

O

J

F

B

D

Sorted lists represented as height-balanced trees

Merging by sequential insertions (square nodes have been inserted)

Figure 5.1: Fast Merging Algorithm

both of these are bounded above by O(n log((m +n)/n)). They additionally show how

to maintain the height balance during these operations. Also n values, given in sorted

order, can be accessed (searched) in the tree containing m nodes in O(n log(m/n)) time

by the same algorithm.1

5.2 Data Structure for Filtering Algorithms

In the previous sections, we have assumed the existence of a data structure to maintain

non-decreasing piecewise-linear functions. Here, we describe the data structure along

1We had independently proved the amortized O(n log(m/n)) bound for the fast merging using 2− 3
trees which is sufficient for our purposes.

49

with the implementation of the operations.

The data structure will maintain the breakpoints (or each value in X for a converted

function) sorted by x coordinate in an AVL tree [1, 11]. An AVL tree is a balanced

binary search tree in which for any node, the height difference between its left and right

subtrees is at most one. Along with the x coordinate of the breakpoint, each node will

also contain two real numbers a and b such that the linear segment to the left of the

breakpoint is of equation y = Ax + B where A (resp. B) is the sum of all the a (resp.

b) values on the path from the node to the root of the tree. A dummy breakpoint at

x = +∞ will be included in the tree to encode the rightmost linear piece of the function.

Each node will also contain a mark for handling truncated parts of a function. A

node is invalid (i.e. its a and b values are not correct) if itself or a node on the path

to the root is marked. The linear function at the x value of an invalid node will be the

same as the function of the first valid node that appears after it in the tree inorder. The

node at x = +∞ will always be valid. Every time we visit a marked node during any

of the operations, we unmark it, correct its a and b values and mark its two children.

This ensures that the only invalid nodes are the ones the algorithm doesn’t see. This

marking scheme will be necessary to implement truncate converted which is “truncate”

on “converted” functions, since we cannot delete the nodes in that case.

The data structure will use the AVL tree merging algorithm of Brown and Tarjan

[7] to implement add merge, convert and add dissolve. In order to add two functions,

while merging the corresponding AVL trees using Brown and Tarjan’s method, and

we will need to update the a and b values of the nodes. First, when we insert a new

node in the tree, we find its “inherited” A and B values and adjust its a and b values

accordingly. Then we consider the effect of adding the linear piece y = αx + β to its

right in the previous data structure where it came from. This can be done along the

same walk in the tree. While walking in the tree from an element u to the next element

to be inserted v, we will need to add the piecewise linear function joining them, say

αx + β to all the nodes between u and v. To do that, add α and β to the a and b

values of the least common ancestor (LCA) of u and v. Now, the function values for

all the nodes between u and v have been increased correctly, but some nodes outside

50

of that range might have been increased as well. To correct that, we walk down from

the LCA to u. This is a series of right child and left child choices, the first being left.

In this series, whenever we choose a right child after some (non-empty) sequence of

left child choices, we subtract the tuple (α, β) at that node. Similarly, whenever we

choose the left child after a (non-empty) sequence of right child choices, we add the

tuple (α, β) to the node where choice is made. Similarly (vice-versa) a and b values

can be adjusted along the path LCA to v. Thus, updates are only required along the

Brown and Tarjan’s search path. To complete the argument, it can be verified that the

validity of the a and b values of the nodes can be preserved during the rotations and

double rotations in the tree for the AVL insertion. The figure 5.1 illustrates the insert

path along with updates due to linear segment αx + β between inserted points F and

J.

We now outline the workings of the different operations:

create(a, b): Create a new AVL tree with one node at x = +∞, and set its a and b

values.

add merge(f1, f2): Use the method of Brown and Tarjan as described above.

truncate(f, t): Find z such that f(z) = t by performing a search in the tree. As we

go down the tree, we maintain A and B, the sum of the a and b values of all the

ancestors of the current node. This way, we can compute the value of f(x) for

the x value of each of the nodes visited. Since the function f is non-decreasing,

the tree is also a binary search tree for the f(x) values. Once the search is done,

find the linear segment for which Az +B = t, and thus find z. Then insert a new

breakpoint in the tree at x = z, and delete all the break-points in f which come

after z (except the one at +∞) one-by-one, using usual AVL-tree deletion. Add

the line segment (0, t) between z and +∞.

probe(f, t): Search in the tree the successor for t in the x values. Compute the A and

B sums on the path, returns f(t) = At + B.

convert(f, X): Use the method of Brown and Tarjan to find the successors of all xi ∈ X

51

in O(k log(n/k)). Evaluate f(xi) at each of those values, and construct a new AVL

tree for a piecewise linear function with xi values as breakpoints, and joining each

adjacent breakpoints with an ad-hoc linear function.

add dissolve(fX , g): Just like in add merge, but do not insert the breakpoints, just

update the a and b values of the existing breakpoints.

add collide(fX1, gX2): Find the values of f and g on X1
⋂

X2 and construct a new AVL

tree as in convert.

truncate converted(fX , t): As in truncate, find z. But in this case do not insert the

new break-point. Also do not delete the break-points in fX after z. Invalidate

the (a, b) values of the remaining points by marking the right child of the nodes

traversed from the left and also adjust (a, b) value at these nodes so that the linear

function reflects the line y = t, while walking up from the position of z to the

root. Once at the root, walk down to +∞, validating the a and b values on that

path. Then set the a and b values at +∞ such that A = 0 and B = t. It returns

z.

5.3 Data Structure for PLNCF

For storing the PLNCF F we will maintain the breakpoints sorted by their x coordinate

in an AVL tree. Along with the x coordinate of the breakpoint each node also contains

two numbers a and b such that the linear segment in PLNCF to the left of this break-

point has the equation y = Ax + B where A (resp. B) is the sum of all the a (resp. b)

values on the path from the node to the root of the tree. Along with this, we also store

a number xoff which records the offset of the x values within the tree. The actual x

coordinate of a breakpoint is its x coordinate stored in the data structure node minus

xoff . The function value F (x) is given by y = Ax′ + B where x′ = x + xoff and A, B

represent the equation of the line passing through x′ in the data structure. Note that

given the breakpoints and equations of the line segments joining them in sorted order,

we can construct the data structure for F in linear time of size i.e. O(|F |). Similarly,

given the data structure representing F we can list all the breakpoints and equations

52

of lines in O(|F |). Given this, we describe how the operations in chapter 4 are carried

out.

createF (d, c): Create an AVL tree with singleton node, with x = c/d, a = d, b = 0. Set

xoff = 0.

probeF (F, t): Let t′ = t + xoff . Search for t′ in the data structure and reach the node

at coordinate u in the data structure such that u ≥ t′ and there is no breakpoint

s such that u > s ≥ t′ in the data structure. Let A and B be the sums of

the a and b values from root to u. These values can be computed along the

search path. Return At′ + B. If there is no such value u then access (search) the

rightmost breakpoint and return its y value with obtained by A, B, x values at

that breakpoint.

add line pruneF (F, d, c): Shift the equation of the line. The slope remains the same,

but the y-intercept instead of zero is now −dxoff . So add the tuple (d,−dxoff) to

tuple (a, b) at the root. The slope of the rightmost (infinite) line segment, assumed

to be 0 by the data structure, is no longer zero, but d. To make it consistent and

correct, prune the function at y = c. For this, search the breakpoint with smallest

x (leftmost) value starting from root with its y value bigger than c. This search

can be carried out in the same way as an AVL search because y monotonically

increases with x. Then, set the x value of this breakpoint to (c−B)/A where A, B

are sum of a, b values from root to this breakpoint. Now delete all the breakpoints

from the data structure with x > (c− B)/A.

add merge(F1, F2, t1, t2): Assume |F1| ≥ |F2|. In F1 set xoff
1 = xoff

1 + t1. Delete all

breakpoints in F1 with x < xoff
1 . Similarly, in F2 set xoff

2 = xoff
2 + t2 and delete

breakpoints similarly. Before adding F1 and F2, we need to align their offsets.

Since |F2| ≤ |F1|, list all the breakpoints in the data structure for F2 and list

all the equations of the line segments in increasing order. Subtract (xoff
2 − xoff

1)

from each x coordinate and for each line segment Ax + B, add A(xoff
2 − xoff

1)

to B. With this transformation the offset of F2 is same as that of F1. Now, use

Brown and Tarjan’s Fast Merging Algorithm to insert the breakpoints of F2 in

53

F1. When a breakpoint u is inserted, the addition of the equation of line segment

y = αx + β on the left of u to all points in the data structure between u and

the previously inserted point s is required. This can be done by updating the a, b

values along the walk from s to u performed during the merge algorithm. To do

this, add tuple (α, β) to (a, b) values at the LCA(s, u). Then, on the path from

LCA(s, u) to s, whenever we choose a right child after a (non empty) series of

left children, subtract (α, β) from the node where the decision is made and add

the (α, β) in the vice-versa case. On the path from LCA(s, u) to u, do the same

thing reversing the sense of left and right. For completeness sake, we state that

the values of (a, b) at the nodes can be preserved during rotation and double-

rotation operations involved in AVL insertions and deletions. The offset of the

new PLNCF is same as that of F1.

5.4 Data Structure for PLDXF

Here, again we maintain the breakpoints of PLDXF G in the AVL tree. Also, the

tuple (a, b) is stored along with its x value. However, unlike PLNCF, the tuple doesn’t

represent the equation of line-segment to the left. In fact, in this case, it is only used to

obtain the y value (same as G(x)) at a particular breakpoint. The value is calculated as

y = Ax+B where A, B are same as in the previous subsection. xoff is defined similarly,

except that it records the addition required to the x values in the data structure to

reflect the correct x values. PLDXF G can be listed and constructed from the list in

linear time, as in the case of PLNCF.

createG(c): Create an AVL tree with a singleton node. Set x = 0, a = 0, b = c. Set

xoff = 0.

probeG(G, t): t′ = t − xoff . Search for t′ in the AVL tree and reach the breakpoint

u ≤ t′ such that there is no breakpoint s with u < s ≤ t′. Return the y value at

u calculated as Au + B where A, B are sums of a, b values along the path from

root to the breakpoint at u.

54

add line(G, d): Take the y intercept of the line as +dxoff . Add (d, dxoff) to the tuple

(a, b) at the root. Now, to ensure non-increasing character, delete points from

behind (right to left) till reach a point u, the point to the left of which has higher

y value. Then, do not delete u and halt.

add point(G, (t, u)): Insert a breakpoint at t− xoff . Calculate the inherited y value u′

at this point. Set a = 0, b = u − u′. Now, having inserted this point we need to

maintain convexity and non-increasing property. Check left and right neighbors of

this point in sorted order. If this point lies above the line formed by joining these

neighbors then delete the newly inserted point and return. If not then from this

newly inserted point go rightwards and delete all the points which have y values

higher than u. Now, traverse leftwards in the AVL tree and check the points

in decreasing order of x coordinates. Keep track of slopes of segments formed

by adjacent pairs of points. In the case of convex functions, the slope (which is

negative always) should decrease as we move leftwards. If we find that the slope

increased then delete the breakpoint to the right of that segment. And continue,

till we find the decreasing slope. Then stop. If the inserted point is a leftmost

point then do the similar convexifying step towards the right. In this procedure,

there are only a constant number of more accesses than the number of deletions.

We charge the cost of access of the deleted point to the deletion operation. So,

the time taken by this procedure is same as the time taken for access, which is

O(log |G|).

min merge(G1, G2): Assume |G1| ≥ |G2|. Assume offset xoff
2 of |G2| is 0. List all the

points in |G2| in increasing order of x with their x and y values. Subtract offset

xoff
1 of G1 from all x values. Now using Brown and Tarjan’s algorithm, insert these

points into the AVL tree representing G1 along with their y values as in add point

and also perform the convexifying step around each insertion. The offset of the

new PLDXF is the same as that of G1. Again, we access only a constant number of

extra undeleted points per insertion. Also, these accesses are in the neighborhood

of newly inserted points. Charging the cost of accessing deleted points to deletion,

55

it can be shown that the total cost is O(|G2| + |G2| log((|G1| + |G2|)/|G2|)) plus

the cost of deletion.

add probeFforG(G, F, tg, tf): We first list all the breakpoints of G in increasing order

with their x and y values. We then add tg to each x value. For each breakpoint x

in G, we check the values of probeF (F, x+tf) and add them to their corresponding

y values in G. Now, we keep only those points in G which form a convex function.

Since the points are already sorted, the convex hull can be computed in linear

time. For sequential probes in F we again use Brown and Tarjan’s algorithm.

add dissolveFinG(G, F, tg, tf): We list all the breakpoints in F along with the equa-

tions of segments and transform them accordingly as in add merge considering

the values xoff
g , xoff

f , which are x offsets of G, F respectively, and tg, tf . The

offset of the new data structure will be same as that of G. Now we virtually

insert the breakpoints of F and actually insert linear segments of F into G. By

this we mean that we do update the (a, b) values along the Brown and Tarjan’s

Merging walk performed during the algorithm but do not actually insert points.

However, we remember the locations of each virtually inserted breakpoint of F in

G. There could be a possible region of concavity around this virtual breakpoint.

Again we apply a convexifying step around these virtual breakpoints to make G

convex and non-increasing. Figure 5.2 illustrates the convexifying step involved.

56

X

non-increasing PLDXF

convexifying step
around virtual
breakpoint

virtual breakpoint of F

G + F is piecewise convex (add_dissolveFinG)

Figure 5.2: add dissolveFinG

57

Chapter 6

Covering and Lot Sizing Problems

In this chapter, we consider some of the facility location related problems to which

our method of undiscretization applies. We do not separately describe the data struc-

ture operation for these because they are almost same as those found in the previous

algorithms.

6.1 Facility Constrained Covering Problem

This problem was first studied by Kolen [27]. In this problem, there exists a radius

sj for each facility j which has a set-up cost of fj. A customer i can be served by a

facility j only if the distance dij between them is at most sj . If a customer i is not

served by any facility, then a penalty cost of qi is incurred. Here, for each v we define

Gv(x) as the optimal subproblem value in subtree Tv assuming that there is at least one

facility in Tv whose radius of influence covers at least distance x beyond v in T − Tv.

We define Fv(x) as the optimal subproblem value in subtree Tv, assuming that the

distanced covered in Tv by the most influential facility in T − Tv is exactly x. Here Gv

is a stepwise increasing function and Fv is a stepwise decreasing function of x. Similar

recurrences hold and the data structure using the fast merging of BSTs can be used

to give an O(n logn) algorithm. The data structure operations are much simpler here

since slopes and convexity issues need not be handled. The figure 6.1 shows illustrates

these functions.

6.1.1 Undiscretized Dynamic Programming for FCC

Let 0− denote any number less than 0. So here, Fv(0−) = Gv(0−). Let x1, x2, .., xsv

be sorted order of possible values of distances of influence covered outside Tv by each

58

F

G

G (0)V
-

Undiscretized Functions for FCC

Figure 6.1: Undiscretized Functions for FCC

facility in Tv. These form breakpoints in Gv. Let xi = sv. Table 6.1 gives the dynamic

programming recurrence.

Here, all the slopes are zero so equation of each line in the data structure has just one

constant value. We don’t need any convex hull function here. Only when G and F are

added we need to do monotonizing step around each insertion to ensure that G remains

monotonic non decreasing. The undiscretized algorithm is just the same as given in

table 4.2. There are no add line functions here. However there are two breakpoints

introduced at each node of tree during the dynamic programming algorithm. Hence

the number of breakpoints in Fv or Gv are bounded above by 2sv and not sv

6.2 Customer Constrained Covering Problem

This problem is also due to Kolen [27] and it differs from the FCC in that instead of

a radius for facility, there is a radius of attraction ri for each customer ci. Here, we

define Gv and Fv in exactly the same way as in the UFL problem in chapter 4. In this

case, Gv is a stepwise decreasing function and Fv is a stepwise increasing function with

Gv(∞) = Fv(∞). As in FCC, we get an O(n logn) algorithm. Here, instead of add line

59

if v is a leaf then
Gv(x) = ∞ for x > sv

Gv(x) = fv for 0 ≤ x ≤ sv

Gv(0−) = min{qv, Gv(0)}
Fv(x) = 0 for x ≥ 0
Fv(0−) = Gv(0−)

else
Gv(0−) = min{Gv(x1), qv + Gl(0−) + Gr(0−)}
Gv(xi) = min{Gv(xi+1), fv + Fl(xi − xl) + Fr(xi − xr)}
Gv(xk) = min{Gv(xk+1), Gl(xk + xl) + Fr(xk − xr)}

whenever xk corresponds to facility in Tl

Gv(xk) = min{Gv(xk+1), Gr(xk + xr) + Fl(xk − xl)}
whenever xk corresponds to facility in Tr

Gv(x) = Gv(xk) whenever xk−1 < x < xk

Fv(x) = min{Gv(0−), Fl(x − xl) + Fr(x − xr)}

end if

Table 6.1: Undiscretized Dynamic Programming for FCC

UFL(v){
if v is a leaf then
Gv = createG(qv, fv);
Fv = createF (qv, fv);

else
(Gl, Fl) = UFL(l);
(Gr, Fr) = UFL(r);
g0 = fv + probeF (Fl, sv − xl) + probeF (Fr, sv − xr);
G1 = add dissolveFinG(Gl, Fr, xl, xr);
G2 = add probeFforG(Gr, Fl, xr, xl);
G2 = add point(G2, (sv, g

0));
Gv = min mergeG(G1, G2);
Gv = add point(G3, (0−, Gl(0−) + Gr(0−) + qv));
gmin = probeG(Gv, O

−);
Fv = add merge(Fl, Fr, xl, xr);
Fv = pruneF (Fv, g

min);
end if
return (Gconx

v , Fv);
}

Table 6.2: Undiscretized Algorithm for FCC

60

p p p p p p
3 j n-1 n1 2

f f f f f f
1 2 2 j n-1 n

c c c

ccc
1
-

2
-

n-1
-

n-1
+

2
+

1

+

at demand point j the facilty cost is infinite

and w = dj j

w
j

= 0

Figure 6.2: ELS as UFL

functions in UFL case, we consider penalty costs. The rest of the algorithm is similar

and hence we will skip the description.

6.3 Economic Lot Sizing Problem

We note here that, the same improvement on Economic Lot Sizing (ELS) Problem,

was earlier achieved by Aggarwal and Park using a different technique to speed up

one-dimensional dynamic programming. In ELS, there is a demand di in period i,

i = 1, .., n. The fixed cost of producing in period j is fj and the variable cost is pj.

The variable storage and backorder costs are c+
j and c−j . This problem can be seen as

UFL on a path[20], with the distance function on each edge being c+
j in one direction

and c−j in the other.

As in UFL formulation, here,

cij = (pj + c+
j + ... + c+

i−1)di if i ≥ j

cij = (pj + c−j + ... + c−i+1)di if i < j

The figure 6.2 shows how ELS can be regarded as UFL on a path like tree with

different costs in two directions.

Gv(x) and Fv(x) can again be similarly defined with the minor modification that x

for Gv means upward distance while x for Fv means downward distance. The variable

costs pj’s are seen as the distances of leaves attached to the path.

61

We achieve a complexity bound of O(n logn) and when pj’s satisfy certain restric-

tions we even get an O(n) algorithm. Note that the tree structure is almost like a path

so there are no merge operations involved in the undiscretized algorithm.

6.3.1 Undiscretized Dynamic Programming Algorithm

Let Fj(x) be optimal subproblem solution for time periods j, j+1, .., n assuming that if

the i facility among 1, .., j−1 which could supply for j-th period then x = pi +c+
i + ...+

c+
j−1. Let Gj(x) be optimal subproblem solution for time periods j, j +1, .., n assuming

that there is a production in time period i, i ≥ j such that pi + c−i + ...+ c−j+1 ≤ x. Gj

is a PDSF and Fj is a PLNCF. Fj(∞) = Gj(∞) and we want to compute G1(∞). Let

sorted order of pj , c
−
j + pj+1, ..., c

−
j + c−j+1 + ... + c−n−1 + pn be x1, x2, x3, ..., xn−j+1 Let

k be the index such that xk = pj.

Gn(x) = ∞ for x < pn

Gn(x) = fn + dnpn for x ≥ pn

Fn(x) = min{dnx, fn + dnpn}
Gj(xi) = min{Gj(xi−1), Gj+1(xi − c−j+1) + djxi} for i �= k

Gj(xk) = min{Gj(xk−1), fj + djpj + Fj+1(pj + c+
j)}

Fj(x) = min{Gj(∞), xdj + Fj+1(x + c+
j)}

Table 6.3: UDP for ELS

Again, we define the function Gconx. We first construct Gconx
n and Fn. To construct

Gconx
j and Fj from Gconx

j+1 and Fj+1 we do the following operations:

g0 = djpj + probeF (Fj+1, pj + c+
j)

G1 = shiftG(Gconx
j+1 , c−j+1)

G2 = add lineG(G1, dj)
Gconx

j = add point(G2, (pj, g
0))

ginf = probeG(Gconx
j ,∞)

Fj = shiftF (Fj+1 , c+
j)

Fj = add line pruneF (Fj , dj, g
inf)

Table 6.4: Undiscretized algorithm for ELS

62

6.3.2 Analysis

The data structure used to store these function is exactly the same as data structure for

UFL. Only new functions which appear here are shiftG and shiftF which appropriately

shift the x coordinate of the function. Each operation is a constant time operation

except for probeF and add pointG which take O(logn) time. Hence, the complexity

of entire algorithm is O(n logn). However, if pj follow the restricted coefficient model

of [2] which is pj ≤ c+
j−1 + pj−1 and pj ≤ c−j+1 + pj+1 then we can prove that all the

probes in F are come in increasing order and all insertions in G are in decreasing order.

This would give us linear time algorithm. Also, we could get the linear time algorithm

similarly if the fixed cost fj ’s are a constant independent of j.

63

Chapter 7

Conclusions and Future Work

Here, we present some discussion and conclusions related to the problems considered in

this thesis. We also list some related problems which could be considered in the future

along the similar lines.

7.1 Ordinal Clustering

7.1.1 Ordinal Clustering in other Metric Spaces

In this thesis, we considered the problem of embedding orders into trees. There are

other related metric spaces closely related to trees, where embedding orders could give

rise to interesting problems. For example on a path (or line), the problem can be

solved in polynomial time by mid-path tree algorithm (note that the path is subcase of

trees). However, if it is a partial order i.e. incompletely specified orders then again the

problem on path can be shown to be NP-complete by reduction to betweenness problem.

In euclidean space, this problem could be determined by semi-definite programming.

Also orders could be embedded into l∞ metric space, because any distance metric can

be isometrically embedded into l∞. It remains an interesting question to determine the

lowest dimension of the target space (euclidean or l∞) required to embed the order. In

this sense we could define a property called dimensionality of an order. Since l1 metric

spaces are a superset of tree (additive) metric spaces, the methods involved here could

give a good intuition for embedding orders into l1.

64

7.1.2 Remarks and Future Work

Our result, in a way, ends the quest for constructing a weighted phylogeny from orders

on a negative note (unless P = NP). There are some approximation criteria which

could be considered. For example, dropping out the minimum number of leaves so that

the order becomes embeddable or finding a tree embedding with the least number of

inversion pairs in the order. All these criteria would become NP-hard, but one could

seek some approximations there.

Also, this is the first kind of NP-hardness result known in phylogeny construction

where the input data is fully specified. Most similar NP-hardness results known were for

tree construction from an incomplete distance matrix or erroneous data or incompletely

specified orders. Also, this is the first result where weighted phylogenies are addressed

for representing orders.

7.2 Multicast Filtering Problem

From the practical point of view, proposed work for the future includes further investi-

gations into aspects of this problem such as costs associated with the instantiation and

migration of filters as well as consideration of heuristics for some practical topologies.

An actual implementation using Aglets technology is also something to be done. These

are not considered by [30].

Also being considered is the problem of constructing an application layer filter tree,

given the user subscription pattern. This would form some kinds of common interest

clusters and then the multicast tree is constructed in accordance with the information

requests from these clusters.

On the algorithmic aspect the future work is to design an algorithm based on similar

methods for the first model of [30]. Here, the dynamic programming algorithm runs in

O(pn2) time, since the objective function at each node involves two parameters. One

way of extending the second model (uncapacitated) to the first one is to try and vary

the value of filter cost F and check how many filters our O(n logh) algorithm places

in the network. Binary search can be used to get exactly p filters, if we know that for

65

each k there is a value F , such that when the filter delay is F there are exactly k filters

deployed. This would lead to O(n logh logT) algorithm, where T is the total traffic on

the network assuming no filtering. This might be better than O(pn2) in many cases.

Particularly, if p is large (some constant fraction of n) then the dynamic programming

algorithm may take time cubic in the size of input, while refinement of our technique

can give an algorithm which runs in roughly quadratic time. However, if the traffic

values are very big, then one may not like to have dependency of algorithm on T . The

future work is to design the faster algorithm in this regard. This model, where only p

filters are allowed, is a variant of p-median on tree where all the links are directed away

from the root.

7.3 Facility Location

Along the similar lines, the extension of faster algorithm for UFL, to develop faster

algorithm for k-median on trees is an interesting area of future work. Another gener-

alization of UFL was given by Tamir [34] which has UFL as a particular case of the

general model for k-median problem. Again, the dynamic programming functions here

can be undiscretized but this involves two parameters, and an effective data structure

for handling this is not known. [34] gives an O(kn2) algorithm for the k-median prob-

lem. The number of facilities opened in UFL can be controlled by varying the facility

costs. In this sense, faster algorithms for UFL can, in effect, lead to faster algorithms

for k-median on trees. Also, related generalization is the k-forest problem [35].

Also, extending the O(n logn) algorithm for classical UFL on tree to the general-

ization, where the transportation costs are some concave non-decreasing functions of

tree distances instead of linear, is a promising direction.

7.4 Speeding Up Dynamic Programming

There have been several algorithmic advances in speeding up typical dynamic program-

ming algorithms[17, 16, 14, 2]. Many of these work on one-dimensional problems. Galil

and Park [16] improve O(n2) one-dimensional dynamic programming algorithm to O(n)

66

assuming the concavity of the cost function. On the similar lines O(n) algorithm for

UFL on line was given by Hassin and Tamir [20]. We have to note that our improve-

ment for ELS was earlier achieved by Aggarwal and Park [2]. Their algorithm also was

the one which speeds up one dimensional dynamic programming on path. They exploit

fast searching techniques in Monge arrays (matrix) to achieve the improvement.

For higher dimensional dynamic programming problems, the speeding algorithms,

typically, exploit sparsity. For example, Tamir’s [34] algorithm for k-median problem,

analytically uses sparsity of tree structure and proves O(kn2) bound for brute-force

O(k2n2) dynamic programming algorithm. [17] gives improvements in dynamic pro-

gramming for one-dimensional as well as higher dimensional dynamic programming

problems using convexity, concavity and sparsity.

Our approach, in this sense, generalizes the one-dimensional path dynamic pro-

gramming speeding approach to one-dimensional tree dynamic programming speed-up

by exploiting Brown and Tarjan’s [7] fast merging algorithm. Since tree is a generaliza-

tion of path our technique also works for the one dimensional dynamic programming

improved earlier, like in the case of ELS. To the best of our knowledge, this is the first

time the dynamic programming algorithms over tree structures are improved in general.

67

References

[1] G. Adel’son-Vel’skii and Y. Landis. An algorithm for the organization of informa-
tion. Soviet Math. Dokl., 3:1259–1262, 1962.

[2] A. Aggarwal and J. Park. Improved algorithms for economic lot size problem.
Operations Research, 41(3):549–571, May-June 1993.

[3] M. Aguilera, R. Storm, D. Sturman, M. Astley, and T. Chandra. Matching
events in a content-based subscription system. In Proceedings of the eighteenth an-
nual ACM symposium on Principles of distributed computing, pages 53–61, 1999.
http://www.research.ibm.com/gryphon/matching.pdf.

[4] A. Aho, J. Hopcroft, and J. Ullman. The design and analysis of computer algo-
rithms. Addison-Wesley, Reading, Massachusetts, 1974.

[5] F. Anjum and R. Jain. Generalized multicast using mobile filtering agents. Tech-
nical report, Telcordia Technologies, March 2000.

[6] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Storm, and D. Stur-
man. An efficient multicast protocol for content-based publish-subscribe systems.
In Proceedings of the 19th IEEE International Conference on Distributed Comput-
ing Systems, 1999.

[7] M. Brown and R. Tarjan. A fast merging algorithm. Journal of ACM, 26(2):211–
225, April 1979.

[8] P. Buneman. Additive evolutionary trees, pages 387–395. University Press, Edin-
burgh, 1971.

[9] A. Carzaniga, D. Rosenblum, and A. Wolf. Design of scalable event notification
service: Interface and architecture. Technical Report CU-CS-863-98, University of
Colorado, Department of Computer Science, 1998.

[10] G. Cornuejols, G.L. Nemhauser, and L.A. Wosley. The uncapacitated facility
location problem. In Discrete Location Theory (P. B. Mirchandani and R. L.
Francis eds), pages 119–171, New York, 1990. Wiley.

[11] C. Crane. Liner lists and priority queues as balanced binary trees. PhD thesis,
Stanford University, 1972.

[12] J. C. Culberson and P. Rudnicki. A fast algorithm for constructing trees from
distance matrices. Information Processing Letters, 30, 1989.

[13] W. H. E. Day. Inferring phylogenies from dissimilarity matrices. Bulletin of Math-
ematical Biology, 49(4), 1987.

68

[14] D. Eppstein, Z. Galil, and R. Giancario. Speeding up dynamic programming. In
Proc. 29th Symp. Foundations of Computer Science, pages 488–496, October 1988.

[15] M. Farach, S. Kannan, and T. Warnow. A robust model for finding evolutionary
trees. Algorithmica, 13(1), 1995.

[16] Z. Galil and K. Park. A linear-time algorithm for concave one-dimensional dynamic
programming. Information Processing Letters, 33:309–311, 1989-90.

[17] Z. Galil and K. Park. Dynamic programming with convexity, concavity and spar-
sity. Theoretical Computer Science, 92:49–76, 1992.

[18] M. Garey and D. Johnson. Computers and Intractability: A guide to the theory of
NP-completeness. Freeman, San Francisco, California, 1979.

[19] E. Gimadi. Efficient algorithm for solving the plant location problem for serving
regions connected with respect to an acyclic network. Upravlyaemye Sistemy,
23:12–23, 1983. (Russian).

[20] R. Hassin and A. Tamir. Improved complexity bounds for location problems on
the real line. Operations Research Letters, 10:395–402, 1991.

[21] J. Hein. An optimal algorithm to reconstruct tree from additive matrices. Bulletin
of Mathematical Biology, 51, 1989.

[22] S. Kannan. Personal Communication.

[23] S. Kannan and T. Warnow. Tree reconstruction from partial orders. SIAM Journal
of Computing, 24(3):511–519, June 1995.

[24] S. Kasera, S. Bhattacharya, M. Keaton, D. Kiwior, J. Kurose, D. Towsley, and
S. Zabele. Scalable fair reliable multicast using active services. IEEE/ACM Trans-
actions on Networking, 3:294–310, 2000.

[25] P. Kearney. A six-point condition for ordinal matrices, 1995. Manuscript.

[26] P. Kearney, R. Hayward, and H. Meijer. Phylogenies from relative dissimilarity.
Algorithmica: Special issue on computational biology, 25:196–221, 1999.

[27] A. Kolen. Solving covering problems and the uncapacitated plant location problem
on trees. European Journal of Operations Research, 12:266–278, 1983.

[28] S. Langerman, S. Lodha, and R. Shah. Algorithms for efficient filtering in content-
based multicast. In Algorithms - ESA 2001, volume 2161 of Lecture Notes in
Computer Science, pages 428–439. Springer-Verlag, 2001.

[29] D. Robak. Untitled document. Personal Communication.

[30] R. Shah, F. Anjum, R. Jain, and S. Rajagopalan. Mobile filters for efficient dis-
semination of personalized information using content-based multicast. Technical
Report 2001-20, DIMACS, 2001.

[31] R. Shah and M. Farach-Colton. On the midpath tree conjecture: A counter-
example. In Proceedings of Symposium on Discrete Algorithms (SODA), 2001.

69

[32] D. Shaw. A unified limited column generation approach for facility location prob-
lems on trees. Annuals of Operations Research, 87:363–382, 1999.

[33] M. A. Steel. The complexity of reconstructing trees from qualitative characters
and subtrees. Journal of Classification, 9, 1992.

[34] A. Tamir. An o(pn2) algorithm for the p-median and related problems on tree
graphs. Operation Research Letters, 19:59–64, 1996.

[35] A. Tamir and T. Lowe. The generalized p-forest problem on a tree network. Net-
works, 22:217–230, 1992.

[36] M. S. Waterman, T. F. Smith, M. Singh, and W. A. Bayer. Additive evolutionary
trees. Journal of Theoretical Biology, 64, 1977.

[37] H. Zhou and S. Singh. Content based multicast in ad-hoc networks. In Proceedings
of First Annual Workshop on Mobile and Adhoc Networking and Computing, pages
51–60, 2000.

70

Vita

Rahul Shah

1991-97 National Talent Search (NTS) scholarship, instituted by the National Council
for Educational Research and Training (NCERT), New Delhi, India.

1993 Ranked Ninth in all over India in the Joint Entrance Exam (JEE) for IITs.

1993-95 Institute academic award winner for academic excellence at Indian Institute
of Technology, Mumbai, India.

1993-97 B.Tech. in Computer Science and Engineering at Indian Institute of Tech-
nology, Mumbai, India. Ranked fifth in the class.

1997-02 Teaching Assistant, Department of Computer Science, Rutgers, The State
University of New Jersey.

1998 M.S. in Computer Science, Rutgers, The State University of New Jersey.

2001 Best Student Paper Award at ESA 2001 for the paper- Algorithms for Effi-
cient Filtering in Content-based Multicast.

2002 Ph.D. in Computer Science, Rutgers, The State University of New Jersey.

