
Speeding up Stochastic Dynamic Programming

with Zero-Delay Convolution

Brian C. Dean

M.I.T., Cambridge, MA 02139, USA,

bdean@theory.lcs.mit.edu

Abstract

We show how a technique from signal processing known as zero-delay convolution can be used to de-
velop more efficient dynamic programming algorithms for a broad class of stochastic optimization prob-
lems. This class includes several variants of discrete stochastic shortest path, scheduling, and knapsack
problems, all of which involve making a series of decisions over time that have stochastic consequences.
We also correct a flaw in the original analysis [8] of the zero-delay convolution algorithm.

1 Introduction

By allowing for uncertainty in the input data for a problem, stochastic optimization problems are capable of
modeling much more realistic scenarios than their deterministic counterparts. Unfortunately this generality
comes at a price, as stochastic problems tend to be much more computationally intensive to solve. If
we focus on discrete probability distributions, many stochastic optimization problems can be solved using
dynamic programming (DP), although for large instances straightforward DP algorithms often do not run
fast enough to be useful in practice. In this paper we advocate the use of a technique from signal processing
known as zero-delay convolution to substantially speed up DP algorithms for a broad class of stochastic
optimization problems. In the literature many clever techniques have been proposed for speeding up classes
of DP problems — see [7] for a good exposition of many of these results. However, there seem to be few
such universal techniques that have specific application to stochastic problems.

The class of problems we consider includes the stochastic shortest path problem and several variants of
stochastic scheduling and knapsack problems. In the stochastic shortest path problem, the travel times
along edges in a graph are described by independent, integer-valued random variables, whose distributions
are provided as input. Given a source node s, a destination node d, and a deadline T , and wish to find a
route from s to t that has maximum probability of arriving within T time units. The problem is “adaptive”
in the sense that once we follow an edge we realize its travel time, and depending on this outcome we have
the option to select a different route for the remainder of the journey. Zero-delay convolution will allow us
to reduce the running time for solving this problem from O(mT 2) to O(mT log2 T) for an m-edge graph.

There are many ways to generalize the classical knapsack problem by introducing randomness. We introduce
one such variant here, which is also an example of a stochastic scheduling problem, and several more in Section
4. Suppose again that we have a fixed deadline of T time units, and a collection of n types of tasks we might
choose to perform. Each task type has an associated value as well as an integer-valued duration described
by a discrete probability distribution, where durations of different tasks are independent random variables.
At the beginning of time we select some task type to perform, thereby receiving its associated value and
realizing its duration. Again, we have an adaptive problem where based on the duration required by the
first task we can select a second task type (multiple tasks of the same type may be selected), and so on. The
process stops when the deadline is reached, and no value is received from the final interrupted task. One can
think of this problem either as a type of stochastic scheduling problem with a fixed deadline, or alternatively
as a stochastic knapsack problem where items sizes are random variables. Zero-delay convolution reduces
the DP running time for this problem and many other variants from O(nT 2) to O(nT log2 T).

The remainder of this paper is structured as follows. In Section 2 we review the zero-delay convolution
technique in the context of dynamic programming, and we correct a flaw in the original analysis of the
technique in [8]. We then study stochastic shortest path problems in Section 3 and stochastic scheduling
and knapsack problems in Section 4.

1

...

x[4]h[3] +
x[3]h[4]

x[1]h[1] x[2]h[1] x[3]h[1] x[4]h[1] x[5]h[1] x[6]h[1] x[7]h[1] ...

x[1]h[2] ...x[2]h[2] x[3]h[2] x[4]h[2] x[5]h[2] x[6]h[2] x[7]h[2]

x[8]h[1]

x[2]h[4] x[5]h[3]

(x[1..2] * h[3..4]) (x[5..6] * h[3..4])

...

x * H :1

O(T)

O(T)

x[1]h[3]

h: h[1] h[8]h[7]h[6]h[5]h[4]h[3]h[2]

O(T log 2)

HH H

x * H :0

x * H :2

0 1 H 3

...

x[1]h[5]
x[2]h[5] +
x[1]h[6]

x[3]h[5] +
x[2]h[6] +
x[1]h[7]

x[4]h[5] +

2

x[2]h[7] +
x[1]h[8]

...

(x[1..4] * h[5..8])

x[1]h[1]Output:
(x * h)

x[2]h[1] +
x[1]h[2]

x[3]h[6] +

x[2]h[2] +
x[1]h[3]

...

O(T log 4)

......

+

x * H :3

x[3]h[1] + 2

x[3]h[3] x[4]h[4]

(x[3..4] * h[3..4])

...

(x[7..8] * h[3..4])

(x[5..8] * h[5..8])

x[2]h[3] +
x[1]h[4]

x[6]h[3] +
x[5]h[4]

O(T log n)

Figure 1: Illustration of the zero-delay convolution algorithm. We divide h into blocks

H0, H1, H2, . . . of exponentially increasing size (except for the first two, both of size 1).

Each of these blocks is then convolved, in parallel, against x, using buffering and block

convolution. The output, x ∗ h (we denote by ∗ the convolution operation), is obtained

by summing these partial results. Running times are specified in the rightmost column,

summing to O(T log2 n). Applied to our example of computing A[1 . . . T], we would take

each output element, increment it, and feed it back in as the next input element.

2 Zero-Delay Convolution

We illustrate the technique of zero-delay convolution applied to DP using a simple example. Let h[1 . . . n]
be the probability distribution of a discrete random variable X, so h[i] = Pr[X = i]. What is the expected
number of independent samples of X one can draw until their sum reaches some threshold T ≥ n? We can
answer this question using a simple dynamic program. Letting A[j] be the expected number of independent
samples required to reach a sum of j, we have

A[j] = 1 +
n∑
i=1

A[j − i]h[i], (1)

where A[j ≤ 0] = 0 as a base case. Straightforward computation of A[1 . . . T] by direct application of (1)
requires O(nT) time. To improve this, we think of (1) as a special type of convolution between two sequences
A and h. In a standard convolution problem we are given as input two pre-specified sequences to convolve.
However, in this case the sequence A is actually generated in an on-line fashion, with each successive element
of A depending on the results of the convolution so far. From a signal processing standpoint, we can picture
this as a discrete-time system with impulse response h (so any signal fed through the system is convolved
with h) where each output element is immediately incremented and fed back as the next element of the input
signal.

2

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

T (in thousands)

Sp
ee

du
p

Figure 2: Speedup obtained by using zero-delay convolution. The small drops in per-

formance for zero-delay convolution occur right after we cross a power of 2 in T , since

this causes the zero-delay algorithm to perform more quite a few more FFTs on larger

subarrays.

A fundamental computation performed by discrete-time signal processing devices is the convolution of a
long input sequence x[1 . . . T] with the impulse response h[1 . . . n] of the system. Since the Fast Fourier
Transform (FFT) can convolve two length-n signals in O(n log n) time, the usual approach is to buffer x into
T/n length-n blocks and to convolve each of these in sequence against h using the FFT. This requires only
O(log n) time per output element, but it has the unpleasant side effect of introducing some input/output
delay due to the buffering of x; that is, we must wait for n elements of x to arrive at the system before we
can produce any output. Input/output delay is undesirable for obvious reasons in many signal processing
applications, and it is absolutely unacceptable for our problem since we cannot advance the input signal
until the complete result of the convolution thus far is determined.

In 1995 Gardner [8] introduced a zero-delay convolution technique that eliminates input/output delay at
the expense of only a small running time penalty, producing each output element in O(log2 n) amortized
time (this is incorrectly analyzed as O(log n) time in Gardner’s paper). Assume for simplicity and without
loss of generality that n is a power of 2, and break the impulse response h into blocks of exponentially
increasing size (except the first two, which are both of size 1), as shown in Figure 1. We then launch
separate convolutions that move forward in parallel between each block and the entire input sequence. By
adding together the results of these sub-convolutions, we obtain the final convolution of x with h. We
convolve each block of h against x using the standard buffering approach: for a block of size B we buffer
x into T/B blocks of size B and convolve them each in sequence using the FFT, which requires a total of
O(TB × B logB) = O(T logB) time. Note that the block decomposition of h is designed so that buffering
does not contribute to input/output delay. For example, in Figure 1 when we convolve x with H3 we initially
buffer the values x[1 . . . 4], but the result of convolving these buffered elements against H3 is not used in
computing elements 1 . . . 4 of the output. The total running time spent convolving x with all of the blocks
of h is

logn∑
i=1

O(T log
n

2i
) = O(T log2 n),

3

which amortizes to O(log2 n) time per output element. Applying this technique to our original problem of
computing of A[1 . . . T], we obtain an O(T log2 n) algorithm.

In order to develop a sense of how well the zero-delay convolution algorithm performs in practice, Figure 2
shows the results of a simple computational experiment. Zero-delay convolution was implemented in C using
the well-known FFTW3.0.1 Fast Fourier Transform library of Frigo and Johnson, and compared against the
“näıve” convolution approach for the sample problem above, setting n = T (so the theoretical running times
are O(T log2 T) for zero-delay convolution and O(T 2) for the näıve approach). The zero-delay approach
seems to become superior for T > 2000 and improve from there. For problems that are finely-discretized in
the time dimension, a value of T in the mid thousands is entirely conceivable in practice.

3 The Stochastic Shortest Path Problem

The input to the stochastic shortest path (SSP) problem consists of a graph G = (N,A) with n = |N | nodes
and m = |A| directed arcs, where the length of each edge (i, j) ∈ A is a discrete positive-integer-valued
random variable lij whose distribution we denote Lij [·], so Lij [t] = Pr[lij = t]. We are interested in finding
an optimal path from a source node s to a destination node d.

Since the length of every s d path is a random variable (obtained by convolving together the distributions
of the edge lengths along the path), it is not immediately clear what should be called an “optimal” path.
Several reasonable objective functions have been proposed in the literature — see [13] and [1] for a detailed
account. Some of the more prominent choices include (i) the path of minimum expected length, (ii) the path
having maximum probability of being the shortest [15], (iii) the path whose expected deviation (or squared
deviation) from the shortest path length is minimized [10], and (iv) the path having maximum probability of
arrival by a specified deadline of T time units [6]. Of these objectives, only (i) appears to be computationally
manageable as it is equivalent to a deterministic shortest path problem where every edge length distribution
is replaced with its expectation. The author is not aware of any complexity results for (ii)-(iii), and (iv) can
be shown to be #P-hard, even if edge lengths have Bernoulli distributions (only two possible lengths), using
a result of Kleinberg et al. [11].

In this paper we focus on objective (iv): maximizing the probability of arrival by a specified deadline T .
Although the computation of a static optimal path according to this objective seems difficult, a DP solution
exists if we consider a dynamic, or “adaptive”, variant: rather than selecting an entire path apriori, our
algorithm initially selects only the first edge to follow. After following this edge and realizing its travel time,
the algorithm choose a second edge, and so on. Hall [9] calls such an approach a “time-adaptive route choice”
algorithm. We note that there are instances of the SSP problem in which the best adaptive strategy gives
an exponentially larger probability (in the size of the graph, n) over the best “non-adaptive” static path of
successfully arriving by the deadline (Figure 3).

3.1 Dynamic Programming Formulation

Let Pi[t] denote the probability of arriving at d within t time units if we are currently at node i and henceforth
follow an optimal (adaptive) route. Likewise let Pij [t] denote the optimal arrival probability if we depart
along edge (i, j) at time t. We then have

Pi[t] =
{

1 if i = d
max{Pij [t] : (i, j) ∈ A} if i 6= d

(2)

Pij [t] =
t∑

τ=1

Lij [τ]Pj [t− τ] (3)

where Pi[t < 0] = Pij [t < 0] = 0 as a base case. A straightforward DP algorithm that repeatedly applies (2)
and (3) for increasingly larger values of t spends O(mT) total time evaluating (2) and O(mT 2) total time
evaluating (3). However, notice that (3) is of the same form as (1): we are convolving the fixed distribution

4

2 : 1/2
4 : 1/2

T : 4/5
1 : 1/5

ds

(b)

T = 6k

...

(a)

T : 1/2

1

ds

T = 6

4 : 1/2

Figure 3: (a) An instance of the stochastic shortest path problem for which a better
probability of arrival by a deadline T is possible if adaptive routing is allowed. The
best non-adaptive path (the straight edges across the top of the graph) arrives
on time with probability 1/4, where the best adaptive route arrives on time with
probability at least 7/20. By concatenating k copies of (a), we see in (b) an instance
where the non-adaptive and adaptive probabilities are (1/4)k and at least (7/20)k,
so our adaptiv ity gap is exponentially large factor in the size of the graph.

Lij [·] against a sequence Pj [·] that is appearing one element at a time as we increment t. We can therefore
use one instance of Gardner’s zero-delay convolution algorithm for every edge to evaluate (3) in a total of
only O(mT log2 T) time. Moreover, we must employ a type of zero-delay convolution due to the interleaved
structure of the formulation.

3.2 Some Extensions

If we assign a cost cij to every edge (i, j) ∈ A, we can consider the adaptive route choice problem whose goal
is to minimize the expected cost of traveling from s to d, where this cost becomes equal to some large penalty
M if we take longer than T units of time. The DP formulation for the adaptive variant of this problem is
similar to the one above; if we redefine Pi[t] and Pij [t] to be optimal expected path costs, we obtain

Pi[t] =
{

0 if i = d
min{Pij [t] : (i, j) ∈ A} if i 6= d

(4)

Pij [t] = cij +
t∑

τ=1

Lij [τ]Pj [t− τ], (5)

where Pi[t < 0] and Pij [t < 0] are as a base case set to some large specified penalty M . This variant can
also be solved in O(mT log2 T) time using zero-delay convolution.

We can make the edge costs time-dependent by replacing cij with a function cij [t]. By splitting d into two
nodes d′ and d connected by a zero-length edge with time-dependent cost cd′d[t] = f [t] we can impose an
penalty f [t] based on the arrival time at the destination — for example, one might wish to impose a soft
deadline T ′ < T after which arrival is acceptable but penalized based on the extent to which the soft deadline
is violated.

Finally, we have been assuming that edge lengths are strictly positive in order to ensure the acyclicity of our
DP formulation. This assumption can be relaxed, however. Let G′ denote the subgraph of G consisting of
edges (i, j) for which Lij [0] > 0. If G′ is acyclic we can still solve the problem with no increase in asymptotic
running time by processing nodes within each “time level” in a topological ordering. If G′ is not acyclic,
then we do incur a penalty in running time as it is necessary to solve a generalized shortest path problem
within each time level as the DP algorithm progresses.

5

3.3 Sparse Distributions

If we describe the probability distributions Lij that comprise the input to an instance as length-T vectors,
the running time of O(mT log2 T) is only a polylogarithmic factor larger than the O(mT) time required to
read the entire input. However, in practice we are likely to find instances in which many edges have either
fixed deterministic lengths or very “sparse” length distributions. If any distribution Lij has o(log2 T) non-
zero elements we will find it more efficient to evaluate (3) directly for this edge rather than to use zero-delay
convolution. Furthermore, if the distribution of Lij does not range from 1 to T but rather fits into a smaller
range [r,R], we can reduce the log2 T factor for that edge in the zero-delay convolution running time to
logR log R

r . These observation also apply to the stochastic knapsack problem (described in the next section)
with sparse distributions.

4 Stochastic Knapsack and Scheduling Problems

The classical knapsack problem involves a set of n items with sizes s1 . . . sn and values v1 . . . vn, where our
goal is to maximize the value we can pack into a knapsack of capacity C. There are two common variants
of the problem: one in which multiple copies of items can be placed in the knapsack, and the so-called 0/1
knapsack problem in which at most one copy of each item is allowed. In addition to the more common
packing formulation, both of these variants can be rephrased as covering problems, where items have costs
c1 . . . cn rather than values, and we wish to compute a minimum-cost collection of items whose total size is
at least C. If items sizes are integral, all of these problems can be solved in O(nC) time with simple DP
algorithms.

Stochastic knapsack problems involve item sizes and/or item values/costs that are independent random
variables with known distributions. In this section we will focus primarily on the case where sizes are
integer-valued random variables and values/costs are deterministic, since this is the case where zero-delay
convolution applies. As an example, let us consider the stochastic “multiple copies allowed” knapsack
packing problem. We interpret our n items as different types of tasks, where the duration of each task
is an independent random variable of known distribution, and each task type, if performed by a specified
deadline T , offers us a deterministic value. Our solution to the problem will be an adaptive scheduling
policy, where at the outset we select only the first task to perform. After realizing the duration of the first
task, we select a second task type (multiple tasks of the same type may be selected) based on the amount of
time remaining before the deadline, and so on, until eventually we run out of time and receive no value for
the final interrupted task. Our goal is to compute a policy that maximizes the expected value we receive.
Although we motivated this problem as a stochastic knapsack problem, we could just have easily approached
it as a type of stochastic scheduling problem. Stochastic scheduling problems involve optimally sequencing a
set of tasks with probabilistic durations — see [17, 3] for a thorough discussion. To date, the only results in
the stochastic scheduling literature that focus on the knapsack objective (maximizing the expected value of
tasks scheduled by a fixed deadline) consider only special classes of probability distributions, typically only
those for which optimal analytic solutions are possible.

As another example, consider the stochastic “multiple copies allowed” knapsack cover problem. Derman et
al. [5] describe an excellent motivation for this problem in which we have a machine (e.g. an automobile)
that must be kept running for T units of time and that depends on some critical component (e.g. a battery)
to run. We have n types of components from which to choose, each with a deterministic cost and each having
a lifetime described by a random variable of known distribution. Our task is to devise an optimal adaptive
policy that selects a sequence of components over time that keeps the machine running at minimum expected
cost. Derman et al. [5] study instances of this problem in which component durations are exponentially
distributed, as well as instances in which one type of component is available in limited supply and the
remaining types are unlimited.

Regarding previous results from the literature for the stochastic knapsack problem, the first dynamic pro-
gramming formulation for the stochastic knapsack problem appears in Steinberg and Parks [16], who consider
problems where sizes are deterministic and costs are random variables, with a goal of packing the knapsack

6

with a collection of items that maximizes the probability of achieving some target value V (we consider this
variant in Section 4.4). Several heuristics have been proposed in the literature for solving this problem (e.g.
branch-and-bound, preference-order dynamic programming), and item values are typically assumed to be
normally-distributed (see Carraway et al. [2] for a more detailed historical account). Previous literature on
the stochastic knapsack problem appears to be entirely focussed on the non-adaptive case where a subset
of items is determined apriori, which seems to be much more computationally demanding than the corre-
sponding adaptive variant we study in this paper, where items are sequentially chosen for placement in the
knapsack based on the accumulated size (or cost) thus far.

4.1 Packing and Covering with Multiple Item Copies Permitted

If multiple copies of items are allowed, this simplifies the state space of DP subproblems, since all that
matters is how much room remains in the knapsack and not the set of items that have already been placed
in the knapsack. Consider first the knapsack packing problem. Let V [j] denote the optimal expected value
one can pack into a capacity-j knapsack, and let Vi[j] denote the optimal expected value where item i is the
next to be added. We then have a DP formulation based on the following recurrences:

V [j] = max
i=1...n

{Vi[j]}. (6)

Vi[j] = viPr[si ≤ j] +
j∑

j′=1

Pr[si = j′]V [j − j′] (7)

Computation of V [1 . . . C] by straightforward evaluation of (6) and (7) requires O(nC2) time, and this is
improved to O(nC log2 C) time if we employ n interleaved instances of zero-delay convolution to evaluate
(7) for each item. The DP formulation for the covering problem variant is quite similar, and the running
time improvement achieved using zero-delay convolution is the same. Although (6) and (7) assume that item
sizes are positive integers, it is not difficult to write a slightly more complicated set of recurrences (with no
impact on running time) that accommodates items with Pr[si = 0] > 0. It is worth noting that one can also
express the packing variant as stochastic shortest path problem, in the same way that a classical knapsack
problem can be expressed as a standard shortest path problem.

4.2 The Stochastic and Dynamic Knapsack Problem

We can extend the DP formulation above to solve a problem variant known as the stochastic and dynamic
knapsack problem [14, 12], in which items arrive in an on-line fashion. Returning to the scheduling interpre-
tation of the stochastic knapsack problem, suppose Ai[t] denotes the probability that a copy of task type i
arrives when precisely t units of time remain before our deadline. At this point in time if we are currently
not processing any task we may choose to accept the arriving task and begin processing it. Otherwise, if we
decline the task it is cannot be recalled later (although another task of the same type might arrive later).
Papastavrou et al. [14] describe numerous applications of stochastic and dynamic knapsack problems. Note
that only packing problems make sense in this framework, and that an optimal adaptive policy might involve
“idle” time. To easily accommodate idle time we introduce a dummy task with unit size, zero value, and
unit arrival probability. It is therefore guaranteed that at least one task arrives at every point in time, so our
goal is to compute a policy that selects the best possible arriving task every time the current task reaches
completion. We can write a DP formulation for this problem by replacing (6) with

V [j] = max
i=1...n

{Vi[j]Ai[j]}. (8)

Zero-delay convolution provides an O(nC log2 C) algorithm that optimally solves this problem. The resulting
policy should be employed as follows: every time a task is completed at time t we examine the set S of
incoming tasks and select the task maximizing Vi[t] over i ∈ S.

For this problem variant as well as the previous non-dynamic packing and covering variants we can acco-
modate items with time-varying values/costs at no additional running time expense. We can also extend

7

the formulations for these variants to allow the final interrupted item to generate some pro-rated amount of
value based on the amount of progress on the item prior to its termination.

4.3 The 0/1 Case

A very interesting phenomenon occurs when we consider the 0/1 knapsack problem. In this case we restrict
our focus to the packing variant, as the covering variant is not well-posed in the 0/1 case since we could run
out of items before successfully covering the knapsack. Whereas in the deterministic case the 0/1 problem is
no harder (from a DP running time standpoint) than the “multiple items allowed” variant, in the stochastic
case the 0/1 problem seems to be significantly more difficult. The natural DP algorithm for the deterministic
0/1 problem computes an optimal “ordered” solution: it builds a subset of items to include in the knapsack
sequentially — to compute the best subset of items 1 . . . i to include in the knapsack, we decide whether to
insert item i after first optimally scheduling a subset of items 1 . . . i− 1. The items comprising the resulting
optimal solution are implicitly ordered by their index in the problem input, but this is of no concern in
the deterministic case since the order of the items in the knapsack is of no consequence. However, in the
stochastic case the optimal adaptive policy might not involve inserting items in order of their input indices.

It does not seem that there exists a DP formulation for computing the optimal adaptive policy whose state
space is polynomial in n and C. However, it turns out that for any ordering of the items, the expected value
of the optimal “ordered” policy (constrained to insert items in an order consistent with their indices in the
input) is within a constant factor of the expected value of the optimal unordered policy [4]. An optimal
ordered adaptive policy can be computed using DP, although it does not require zero-delay techniques (the
standard FFT suffices).

4.4 Random Costs/Values and Deterministic Sizes

One can also consider stochastic knapsack problems in which item sizes are deterministic but costs/values
are independent random variables with known discrete distributions. The objective in this case is similar
to that of the stochastic shortest path problem: we seek an adaptive policy that maximizes the probability
of delivering a solution of at least some specified target value (or alternatively, of at most some specified
maximum cost). The DP formulation for these problems allows use of the standard FFT, so zero-delay
techniques are not necessary. However, even using the FFT we still encounter factors of both V (target
value) and C (knapsack capacity) in the running time, so these DP algorithms are rather computationally
intensive.

References

[1] ANDREATTA, G., Shortest path models in stochastic networks, Advanced School in Stochastics and Combinato-
rial Optimization, Edited by G. Andreatta, F. Mason, and P. Serafini, CISM Udine, World Scientific Publishing,
Singapore, 1987.

[2] CARRAWAY, R.L., SCHMIDT, R.L., and WEATHERFORD, L.R., An algorithm for maximizing target achieve-
ment in the stochastic knapsack problem with normal returns, Naval Research Logistics, Vol. 40, pp. 161-173,
1993.

[3] DEAN, B.C., Approximation Algorithms for Stochastic Scheduling Problems. PhD Thesis, Massachusetts Insti-
tute of Technology, 2005.

[4] DEAN, B.C., GOEMANS, M.X., and VONDRAK, J., Approximating the stochastic knapsack problem: the
benefit of adaptivity, Proceedings of the 45th annual IEEE symposium on the Foundations of Computer Science
(FOCS), pp. 208-217, 2004.

[5] DERMAN, C., LIEBERMAN,G.J., and ROSS,S.M., A renewal decision problem, Management Science, Vol. 24,
No. 5, pp. 554-561, 1978.

[6] FRANK, H., Shortest paths in probabilistic graphs, Operations Research, Vol. 17, pp. 583-599, 1969.

8

[7] GALIL, Z. and PARK, K., Dynamic Programming with Convexity, Concavity and Sparsity, Theoretical Computer
Science Vol. 92, pp. 49-76, 1992.

[8] GARDNER, W.G., Efficient convolution without input-output delay, Journal of the Audio Engineering Society,
Vol. 43, No. 3, pp. 127-136, 1995.

[9] HALL, R., The fastest path through a network with random time-dependent travel times, Transportation Science,
Vol. 20, No. 3, pp. 182-188, 1986.

[10] KAMBUROWSKI, J., A note on the stochastic shortest route problem, Operations Research, Vol. 33, pp. 696-698,
1985.

[11] KLEINBERG, J., RABINI, Y., and TARDOS, E., Allocating bandwidth for bursty connections, proceedings of
the 29th annual ACM Symposium on the Theory of Computation (STOC), pp. 664-673, 1997.

[12] KLEYWEGT, A., PAPASTAVROU, J. D., The dynamic and stochastic knapsack problem with random sized
items, Operations Research, Vol. 49, No. 1, pp. 26-41, 2001.

[13] LOUI, R., Optimal paths in graphs with stochastic or multidimensional weights, Communications of the ACM,
Vol. 26, No. 9, pp. 670-676, 1983.

[14] PAPASTAVROU, J.D., RAJAGOPALAN, S., KLEYWEGT, A., The dynamic and stochastic knapsack problem
with deadlines, Management Science, Vol. 42, No. 12, pp. 1706-1718, 1996.

[15] SIGAL, C.E., PRITSKER, A.A.B., and SOLBERG, J.J., The stochastic shortest route problem, Operations
Research, Vol. 28, pp. 1122-1129, 1980.

[16] STEINBERG, E., and PARKS, M.S., A preference order dynamic program for a knapsack problem with stochastic
rewards, The Journal of the Operational Research Society, Vol. 30, No. 2, pp. 141-147, 1979.

[17] UETZ, M., Algorithms for deterministic and stochastic scheduling. PhD Thesis, Institut für Mathematik, Tech-
nische Universität Berlin, 2001.

9

