
Operations Research Letters 27 (2000) 93–96
www.elsevier.com/locate/dsw

Monge strikes again: optimal placement of web proxies
in the internet(

Gerhard J. Woeginger
Institut f�ur Mathematik B, TU Graz, Steyrergasse 30, A-8010 Graz, Austria

Received 1 June 1999; received in revised form 1 May 2000

Abstract

In a recent paper (Proceedings of IFIP’98), Li et al. study the problem of placing m web proxies in the internet under
a given tra�c pattern. They consider the special case of a linear net topology with n nodes. Their goal is to minimize the
overall latency of accessing the target web server subject to the network resources and tra�c pattern. They show how this
problem can be solved in O(n2m) time. In this short note, we observe that one of the underlying cost functions in this
problem carries a Monge structure. By exploiting this structure and by applying some well-known results from the literature,
we get a faster algorithm with time complexity O(nm). c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Optimization; Dynamic programming; Monge property; Internet; Caching; Web proxy; Web server

1. Introduction

The poor performance and the long response times
on the internet are due to many reasons, like conges-
tion during peak times, links with inadequate band-
width, long propagation delays, etc. Caching is one
method for dealing with some of these problems. The
main idea in caching is to keep retrieved documents
close to the clients and thus to bring down the access
latency. Essentially, caching can be done either at the
client’s web browser, or at the web server itself, or
at a web proxy [10]. A web proxy is an intermediate

(Supported by the START program Y43-MAT of the Austrian
Ministry of Science.
E-mail address: gwoegi@opt.math.tu-graz.ac.at

(G.J. Woeginger).

server acting as a caching agent between clients and
web servers. There has been considerable work done
on various aspects of web proxies, see e.g. [2,5]. The
e�ectiveness of a proxy is primarily determined by its
locality which in turn depends on a number of factors
such as access patterns and con�gurations. Placing a
web proxy at the ‘wrong’ place is not only costly, but
also does little to improve the performance.
Li et al. [7] study the problem of minimizing the

overall latency of accessing the target web server.
They consider the special case of a linear net topol-
ogy. Such a net topology is a path with nodes V =
{v0; v1; : : : ; vn} and edges [vj−1; vj] for 16j6n. For
16j6n, the weight wj of vj represents the tra�c
traversing this node. For 16j6n, the length of edge
[vj−1; vj] is measured by a non-negative real value dj
which can be interpreted as either latency, or link cost,

0167-6377/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6377(00)00041 -9

94 G.J. Woeginger /Operations Research Letters 27 (2000) 93–96

or hop count, etc. The distance d(vi; vj) between two
nodes vi and vj is the total length of all edges on the
path between vi and vj. There is a target web server at
node v0 whose data should be accessed by every node
vj. If there is a proxy located between v0 and vj, then vj
only needs to access the data cached at the proxy; this
reduces the tra�c on the net between v0 and the proxy
and thus also reduces the overall accessing latency.
Let P= {vp1 ; vp2 ; : : : ; vpm} with 16p1¡p2¡ · · ·

¡pm6n be a set of m proxies located on this linear
net. Then every node vj with j¡p1 accesses the data
directly at the target web server at v0 (and thus does
not use any of the proxies); we set P(vj) = v0. For
16k6m− 1, the nodes vj with pk6j¡pk+1 access
the data of proxy vpk , and we set P(vj)= vpk . Finally,
the nodes vj with j¿pm access proxy vpm , and we set
P(vj)=vpk . Then the latency caused by node vj equals
wjd(vj;P(vj)), and the overall accessing latency with
proxy set P is

n∑

j=1

wjd(vj;P(vj)): (1)

The goal is to �nd in O(n2m) time a set P of m prox-
ies that minimizes the objective value in (1). In the
language of facility location, this problem is the asym-
metric k-median problem on a directed path. We refer
the reader to Li et al. [7,8] for more information on
this problem and for a discussion of some of its more
complex variants. The paper [7] �nds in O(n2m) time
the best possible proxy set; this is done by modelling
the problem as a dynamic program.

Contribution of this note. We reformulate the dy-
namic program of Li et al. [7], and we observe that
one of the underlying cost functions carries a it Monge
structure. Such Monge structures show up in a wide
variety of applications like transportation problems,

ow problems, search problems, Travelling salesman
variants, economic lot sizing problems, geometric
problems, etc. Usually, this additional structure leads
to polynomial-time solution algorithms or at least
helps to speed up algorithms. For more information
on Monge structures, we refer the reader to the survey
article by Burkard et al. [3]. In this note, we exploit
this Monge structure in the proxy placement prob-
lem. By applying some well-known results from the
literature, we implement the dynamic programming

algorithm within O(nm) time. This is an improvement
of O(n) over the time complexity of Li et al. [7].

This note is organized as follows. In Section 2 we
summarize some results from the literature on search-
ing and optimizing under Monge structures. In Section
3 we apply the results of Section 2 to the proxy place-
ment problem and thereby derive a solution algorithm
with O(nm) running time.

2. Dynamic programming under Monge structures

In this section, we recapitulate some results of Ag-
garwal et al. [1] on a problem that comes up as a
subproblem in certain dynamic programming formula-
tions: Let a(i; j) be a real-valued function for integers
06j6i6n that ful�lls the following two conditions.

(C1) For 06i6j6n, the value a(i; j) can be com-
puted in constant time.

(C2) For 06i6r6j6s6n, the inequality a(i; j) +
a(r; s)6a(i; s) + a(r; j) holds.

Condition (C1) essentially states that we can access
the function a(i; j) via a very fast oracle. Condition
(C2) essentially states that the n × n matrix A with
entries a(i; j) above the main diagonal is an upper
triangular Monge matrix (the entries below the main
diagonal of A are irrelevant for this Monge property);
cf. [3] for more information on this concept.

Proposition 2.1 (Aggarwal et. al [1]). If conditions
(C1) and (C2) are ful�lled, then all values E[j],
j = 1 : : : n, that are speci�ed by

E[j] = min{a(i; j) : 16i¡ j} (2)

can be computed in O(n) overall time.

Proposition 2.2. Let m and n be two integers with
m6n.Let a(i; j) be a real-valued function for integers
06j6i6n that satis�es (C1) and (C2). Let F[j; 1]
with 16j6n be given real numbers. Then all values
F[j; k] with 16j6n and 26k6m that are speci�ed
by

F[j; k] = min{F[i; k − 1] + a(i; j) : 16i¡ j} (3)

can be computed in O(nm) overall time.

G.J. Woeginger /Operations Research Letters 27 (2000) 93–96 95

Proof. The computation goes through m− 1 phases.
In the kth phase (k = 2 : : : m) we compute all values
F[j; k] from the values F[j; k − 1] in O(n) overall
time. Clearly, this will prove the theorem. Indeed,
let k¿2 and assume that we already have computed
all values F[j; k − 1] with 16j6n. For integers
06j6i6n de�ne the real-valued auxiliary function

bk(i; j) :=F[i; k − 1] + a(i; j):
With this, the recursion in (3) becomes a special case
of the recursion in (2). Moreover, since the values
F[i; k − 1] are already known and since a(i; j) satisi-
�es condition (C1), also the auxiliary function bk(i; j)
can be evaluated in constant time. Finally, it is eas-
ily veri�ed that if a(i; j) ful�lls the Monge condition
(C2), then also bk(i; j) does ful�ll (C2). Summariz-
ing, bk(i; j) ful�lls conditions (C1) and (C2), and ac-
cording to Proposition 2.1 we can compute all values
F[j; k] with 16j6n in O(n) time.

More general (and much more sophisticated) results
on how to exploit Monge structures to speed up dy-
namic programming can be found in the work of
Wilber [9], Eppstein [4], and Larmore and Schieber
[6].

3. A fast algorithm for the optimal placement of
proxies

In this section, we show that the proxy placement
problem can be solved in O(nm) time by applying
Proposition 2.2 to it. To simplify the presentation, we
introduce the numbers d0 = 0 and w0 = 0. For inte-
gers 06i6j6n we de�ne a function value ã(i; j) that
measures the cost incurred on the segment between
two adjacent proxies at vi and vj in a partial solution:

ã(i; j) =
j−1∑

‘=i+1

w‘d(v‘; vi) =
j−1∑

‘=i+1

‘∑

q=i+1

w‘dq: (4)

(Recall that dq = d(vq−1; vq) is the length of the edge
[vq−1; vq].) As usual, we assume that an empty sum
takes value 0. Next, we will derive several properties
of this function ã(i; j). To this end, we de�ne the fol-
lowing auxiliary values for 06j6n.

D[j] =
j∑

q=0

dq; W [j] =
n∑

‘=j

w‘;

X [j] =
j∑

q=0

n∑

‘=q

w‘dq; Y [j] =
n∑

‘=j

‘∑

q=0

w‘dq;

Lemma 3.1. All the auxiliary values D[j], W [j],
X [j], and Y [j] with 06j6n can be computed in
O(n) overall time.

Proof. Observe thatD[0]=0 andD[j]=D[j−1]+dj
holds for j¿ 0. Similarly, W [n] = wn and W [j] =
W [j+1]+wj holds for j¡n. Hence, all values D[j]
and W [j] can be computed in O(n) time by going
from j=0 up to j=n, respectively, by going from j=n
down to j=0. Next, observe that X [0]=0, that X [j]=
X [j−1]+djW [j] for j¿ 0, that Y [n]=wnD[n], and
that Y [j]=Y [j+1]+wjD[j] for j¡n. Hence, once
we have determined the values D[j] and W [j], also
all the values X [j] and Y [j] can be computed in O(n)
time.

Lemma 3.2. For all integers 06i6j6n function
ã(i; j) speci�ed in (4) satis�es

ã(i; j) = Y [0]− Y [j]− X [i] + D[i] ·W [j] (5)

Proof. By plugging in the de�nitions of D[j], W [j],
X [j], and Y [j] we get that the value of Y [0]−Y [j]−
X [i] + D[i] ·W [j] equals
n∑

‘=0

‘∑

q=0

w‘dq −
n∑

‘=j

‘∑

q=0

w‘dq −
i∑

q=0

n∑

‘=q

w‘dq

+
i∑

q=0

n∑

‘=j

w‘dq

=
j−1∑

‘=0

‘∑

q=0

w‘dq −
i∑

q=0

j−1∑

‘=q

w‘dq

=
j−1∑

q=0

j−1∑

‘=q

w‘dq −
i∑

q=0

j−1∑

‘=q

w‘dq

=
j−1∑

q=i+1

j−1∑

‘=q

w‘dq:

To complete the argument, we observe that
∑j−1

q=i+1∑j−1
‘=q w‘dq equals ã(i; j) as de�ned in (4).

96 G.J. Woeginger /Operations Research Letters 27 (2000) 93–96

Lemma 3.3. After a preprocessing phase that takes
O(n) time, we can compute for any i and j with
06i6j6n the value ã(i; j) in constant time. Hence,
after this preprocessing phase function ã(i; j) ful�lls
condition (C1).Moreover, function ã(i; j) ful�lls con-
dition (C2).

Proof. The preprocessing phase consists in comput-
ing the values D[j], W [j], X [j], and Y [j] as de-
scribed in Lemma 3.1. By Lemma 3.2 we then can
compute ã(i; j) in constant time. This proves the �rst
part of the lemma, and it remains to prove that ã(i; j)
ful�lls condition (C2). Let 06i6r6j6s6n and use
(5) to get

ã(i; s) + ã(r; j)− ã(i; j)− ã(r; s)
=D[i]W [s] + D[r]W [j]− D[i]W [j]− D[r]W [s]
=(D[r]− D[i])(W [j]−W [s]):

Observe that since the w‘ and dq are non-negative
numbers, D[r]¿D[i] and W [j]¿W [s] holds. Hence,
the product (D[r]−D[i])(W [j]−W [s]) is non-negative
and condition (C2) indeed is ful�lled.

Theorem 3.4. The problem of placing m web proxies
in a linear net topology with n nodes so as to minimize
the overall accessing latency in (1) can be solved in
O(nm) time.

Proof. For 16j6n, we denote Vj = {v1; : : : ; vj}.
For 16j6n and 16k6m, we denote by F[j; k]
the minimum total latency caused by the nodes in
Vj (disregarding the nodes in V − Vj), given that
(i) at most k of the nodes in Vj are proxies, and
that (ii) node vj itself is a proxy. Then for 16j6n,
F[j; 1] =

∑j−1
‘=1 w‘d(v‘; v0) = ã(0; j) holds. For

16k6m, F[1; k] = 0. Moreover for 26j6n and
26k6m we have

F[j; k] = min{F[i; k − 1] + ã(i; j) : 16i¡ j}: (6)

The correctness of (6) is easy to verify: Consider a
proxy con�guration with k proxies on Vj that sat-
is�es (i) and (ii). Let i denote the maximal index
16i6j − 1 in this con�guration for which node vi
has a proxy. Then the latency caused by the nodes
vi+1; : : : ; vj−1 (which all access the data of proxy vi)

equals
∑j−1

‘=i+1 w‘d(v‘; vi) which is exactly ã(i; j). By
the de�nition of F[·; ·], the latency caused by the re-
maining nodes v1; : : : ; vi with k − 1 proxies is at least
F[i; k−1]. Hence, the expression in (6) simply selects
the proxy position vi that minimizes the total latency.
The recursion in (6) is of the form in (3). We

compute the values D[j], W [j], X [j], and Y [j] in
O(n) time as described in Lemma 3.1. Then all ini-
tial values F[j; 1] = ã(0; j) with 16j6n can be de-
termined in O(n) time. By Lemma 3.3, the function
ã(i; j) ful�lls conditions (C1) and (C2). Consequently,
by Proposition 2.2 we can determine all values F[j; k]
with 26j6n and 16k6m in O(mn) overall time.
In order to compute the optimal objective value, we
consider the proxy node vi with highest index in an op-
timal solution. Then in this optimal solution the nodes
v1; : : : ; vi cause a total latency of F[i; m] and the nodes
vi+1; : : : ; vn cause a total latency ã(i; n). With this, the
value min{F[i; m]+ ã(i; n) : m6i6n} constitutes the
optimal objective value.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, R. Wilber,
Geometric applications of a matrix-searching algorithm,
Algorithmica 2 (1987) 195–208.

[2] M.F. Arlitt, C.L. Williamson, Internet web servers: Workload
characterization and performance implications, IEEE Trans.
Networking 5 (1997) 631–645.

[3] R.E. Burkard, B. Klinz, R. Rudolf, Perspectives of Monge
properties in optimization, Discrete Appl. Math. 70 (1996)
95–161.

[4] D. Eppstein, Sequence comparison with mixed convex and
concave costs, J. Algorithms 11 (1990) 85–101.

[5] S. Glassman, A caching relay for the world wide web,
Computer Networks and ISDN Systems 27 (1994) 165–173.

[6] L.L. Larmore, B. Schieber, On-line dynamic programming
with applications to the prediction of RNA secondary
structure, J. Algorithms 12 (1991) 490–515.

[7] B. Li, X. Deng, M. Golin, K. Sohraby, On the optimal
placement of web proxies in the internet: Linear topology,
Proceedings of the 8th IFIP Conference on High Performance
Networking (HPN’98), Vienna, Austria, September 1998.

[8] B. Li, M. Golin, G. Italiano, X. Deng, K. Sohraby, On the
optimal placement of web proxies in the internet, Proceedings
of the IEEE Infocom Conference, March 1999.

[9] R. Wilber, The concave least-weight subsequence problem,
J. Algorithms 9 (1988) 418–425.

[10] N. Yeager, R. McGrath, Web Server Technology. Morgan
Kaufman, Los Attos, CA (1996).

