
E L S E V I E R Operations Research Letters 19 (1996) 59-64

An O(pn 2) algorithm for the p-median and related problems on tree
graphs

Arie T a m i r

Department of Statistics and Operations Research, School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Ramat-Aviv 69978, Israel

Received 1 February 1995; revised 1 February 1996

Abstract

We improve the complexity bound of the p-median problem on trees by showing that the total running time of the "leaves
to root" dynamic programming algorithm is O(pn2).

Keywords." Facility location; p-median problems; p-coverage problems; Tree graphs

1. Introduction

One of the classical problems in location theory is
the p-median problem defined as follows: Given is a
connected undirected graph G = (V, E) with node set
V = {Vl vn} and edge set E. Each edge is associ-
ated with a nonnegative weight (length). The length of
a path in G is the sum of the weights of its edges. For
each pair of nodes vi, vj we let d(vi, vj), the distance
between vi and v j, be the length of a shortest length
path connecting v; and vj. The problem is to select a
subset S of p nodes (service centers) that will mini-
mize the sum of the distances of all nodes (customers)
to their respective nearest member (center) in S,

mind(vi, vj) .
viEV viES

Kariv and Hakimi [8] proved that the problem is NP-
hard, and Lin and Vitter [10] presented several ap-
proximation schemes.

For tree graphs Kariv and Hakimi [8] described an
O(p2n2) algorithm, which is the lowest order method

known. A different O(pn 3) algorithm was given in
Hsu [6]. In this paper we will show that the time
needed to solve the p-median problem on a tree by the
"leaves to root" dynamic programming algorithm is
only O(pn 2). For comparison purposes we note that
Hassin and Tamir [5] achieved a complexity bound of
O(pn) for path graphs.

We consider a more general model which unifies
the above p-median problem and related problems that
have been discussed in the literature. With each node
vi we associate a nonnegative weight ci, and a real
nondecreasing function f i . In the general problem we
wish to select a subset S of at most p nodes minimizing
the following objective,

cj + ~ min~(d(vi , vj)) .
viES viEV viES

In the context of location theory modeling, the
weight cj can be interpreted as the cost of setting
up a service center at node Vy. The function fi can
be viewed as a transportation cost function, depend-
ing on the distance between the customers at vi

0167-6377/96/$15.00 Copyright (~) 1996 Elsevier Science B.V. All rights reserved
PII S 0 1 6 7 - 6 3 7 7 (9 6) 0 0 0 2 1 - 1

60 A. Tamir / Operations Research Letters 19 (1996) 5 9 ~ 4

and their nearest center. With this interpretation, the
objective is to minimize the sum of the setup costs
of the centers and the transportation costs of the
customers.

When p = n, and J] is linear for each V i E V ,

the model reduces to the classical Uncapacitated Fa-
cility Location problem, which is solved in O(n 2)
time by Cornuejols et al. [1]. Another special case
is the p-coverage problem discussed by Megiddo
et al. [12]. In the p-coverage problem each trans-
portation cost function is a stepwise function taking
on two values only. The complexity bound of the
algorithm in Megiddo et al. [12] is O(p2n2).

2. The algorithm

Suppose now that the given graph is a tree
T = (V,E), which is rooted at some distinguished
node, say, vl. For each pair of nodes vi, v j, we say
that vi is a descendant of vj if vj is on the unique path
connecting vi to the root vl. I f vi is a descendant of
vj and vi is connected to vj with an edge, then vi is
a child of vj and vj is the (unique)father of vi. I f a
node has no children it is called a leaf of the tree.

To simplify the notation we assume without loss of
generality that f j (0) = 0 for each node vj E V. It is
also convenient to transform the rooted tree into an
equivalent binary tree, where each node which is not
a leaf has exactly two children. The transformation is
executed as follows:

1. First consider each non-leaf node vj of the orig-
inal tree which has exactly one child, say vjO). Intro-
duce a new node, uj(l), and connect it to vj with a new
edge. Assign a weight (length) of zero to this edge.
(uj(x) will be the second child of vj in the new tree. It
will also be a leaf of the new tree.)

2. Consider each node vj of the original tree which
has at least three children, say Vj(1) l)j(t) , t>>.3.
Add t - 2 new nodes, uj(2) uj(t-1). For each s =
2 t - 1, replace the edge (vj, vj(s)) by an edge
(uj(s),vj<s)) • Also, replace the edge (vj, vj(t)) by an
edge (uj(t-l), vj(t)). The weight (length) of a new edge
will be the weight of the edge it has replaced. Finally,
add the following set of new zero weight (length)
edge s:

(/)j , U j (2)) , (U j(2) , U j(3)) (Uj(t_2) , Uj(t--I)).

The weight (setup cost) associated with each new
node will be sufficiently large, e.g., 1 + ~,v:~v(cj +
f j (~)) , and its transportation cost function will be
identically zero.

After processing each node vj of the original tree,
the new tree will have at most 2n - 3 nodes and it is
binary. Moreover, solving the problem on the original
tree is equivalent to solving it on the new binary tree.

In light of the above transformation we now assume
without loss of generality that the original tree is a
binary tree, where each non-leaf node vj has exactly
two children, vj(l) and vj(2). The former is called the
left child, and the latter is the right child. For each
node v j, Vj will denote the set of its descendants, and
Tj will be the subtree induced by Vj. (vj is also viewed
as the root of Tj.)

We are now ready to present the "leaves to root"
dynamic programming algorithm.

In a preprocessing step, for each node vj we com-
pute and sort the distances from vj to all nodes in V.
Let this sequence be denoted by Lj = {r) r~},
where rj ~r : +1 , i = 1 n -- 1, and r) = 0. For con-
venience, in order to handle a degenerate case, where
the elements in Lj are not distinct, we assume that
there is a one to one correspondence between the el-
ements in Lj and the nodes in V, such that:

(i) I f vk corresponds to rj then rj = d(vj, vk).
(ii) If vk and vm are two distinct nodes in Vj, and

Vm is a descendant of vk, then the element of Lj rep-
resenting vk will precede the one representing v,,. In
particular, vj corresponds to r).

(iii) If vj is not a leaf, and vk and Vm are both in
Vj(1) (V j (2)) , where the element representing vk in LjO)
(L j(2)) precedes the one representing Vm, then the el-
ement of Lj representing vk will precede the one rep-
resenting vm.

(iv) Ifvk is in Vj, Vm is in V - Vj, and d(vj, vk) =
d(vj, Vm), then the element of Lj representing vk will
precede the one representing vm.

For i = 1 n, the node corresponding to rj is
denoted by vj.

We note that the total effort of the preprocessing
step is O(n 2). It can be achieved by using the centroid
decomposition approach as in Kim et al. [9]. Alterna-
tively, we can compute the lists {L j} as follows.

For each node v j, let I f . (L f) be the sorted sequence
of distances from vj to all nodes in Vj (V - Vj).

A. T a m i r l Operat ions Research Le t t e r s 19 (1996) 59-64 61

Starting at the leaves of T, and proceeding recur-
sively to the root, we first compute the sequences
{LD.

If vj is a leaf, L + = {0}.

If vj is not a leaf, consider the sequences Lj~l)

and L~2 ~, associated respectively with vy(1) and vj(2),
the two children of vy. Add the distance d(vj(~),vj)
(d(v/(2), vj)) to each element in L~l) (L~(2)) to obtain

the sequence L~(+)/L ++ ~ Then merge ++ " ++ ~- j(2)/" LAD w~th L j(2) ,
and augment the element zero to the merged sequence
to obtain Lf .

To generate the sequences {Lj- }, we start at the root
vl, and proceed recursively to the leaves.

For the root vl, L~- is empty.
Consider a node vj which is not the root. Suppose

that vj is a child of vk. Without loss of generality,
suppose that vj = vk0). Consider the sequences L~-
and L~(2 Add the distance d(vk(1), vk) (d(Vk(l),/)k(2))) ()"
to each element in L~- + (Lk(2)) to obtain the sequence

-- q-,
L k * (Lk(2)). Then, merge the sequences Lk* and Lk(2+*),
and augment the element d(Vk(l),Vk) to the merged
sequence to obtain L ; .

It is clear that the total effort to generate the se-
quences {L + } and {Lf } is O(n2). Finally, to obtain
the sequence Lj for a node v j, merge the respective
sequences L + and Lf .

For each node v j, an integer q = 1 , p, and rj E
Lj let G(vj, q, r j) be the optimal value of the subprob-
lem defined on the subtree Tj, given that a total of at
least 1 and at most q nodes (service centers) can be
selected in Tj, and that at least one of them has to be in
{vl,v~ vj} N Vj. (In the above subproblem we im-
plicitly assume no interaction between the nodes in Tj,
and the rest of the nodes in T.) The function G(vj, q, r)
is computed only for q ~< [Vy[. Also, for each node vj
we define

G(vj, O,,') = ~ A (~) .
vi~ vj

Similarly, for each node vj and an integer q =
0, l , . . . , p , we define F(vj, q,r) to be the optimal
value of the subproblem defined on the subtree Tj,
under the following two constraints:

(i) A total of at most q nodes can be selected in Tj.
(ii) There are already some selected nodes (service

centers) in T - Tj, and the closest amongst them to vj
is at a distance of exactly r from vj. (The setup cost

of this closest node is not incorporated into the value
ofF(vj , q,r).)

(F(vj, q, r) is computed only for q,< I v j I, and r =
rj, where rj corresponds to a node vj in V - Vj.)

To motivate the above definitions, we note that if all
the elements in Lj are distinct, then G(vj, q, rj) is the
optimal value of the subproblem defined on Tj, given
that at least 1 and at most q nodes are selected in Tj,
and the closest amongst them to vj is at a distance of at
most rj from vj. The conditions on L j, required above,
ensure that the same interpretation of G(vj, q, rj) can
be made for the "distinct" elements of Lg, i.e., the
elements rj, satisfying rj < rj +1.

The algorithm defines the functions G and F at all
leaves of T, and then recursively, proceeding from
the leaves to the root, computes these functions at all
nodes of T. The optimal value of the problem will be
given by min{G(vl,p,r'~), G(vl,0,r'~)}, where vl is
the root of the tree.

Let vj be a leaf of T. Then,

G(vj, l ,r j) = cj, i : 1 , . . . , n .

For each i = 1 n, such that vj E V - Vj,

F(vj, O, rj) = f j(a(vj, vj)),

and

F(vj, 1,rj) = min{F(vj, O, rj), G(vy, 1, r j)} .

Let vj be a non-leaf node in V, and let vjO) and/)j(2)
be its left and right children respectively. The element
r} corresponds to v) = v j, which in turn corresponds

to a pair of elements, s a y rill) arid FJ(2) in Ly(l) and
Lj(2) respectively. Therefore,

G(vj, q,r)) = cj + min {F(vjO), qbr)o)
q l +q2 =q -- 1
q, <~lV:.)l

+F(vj(2), q2, r](2)) }.

Generally, for i = 2 , . . . ,n , consider r]. If rj corre-
sponds to a node vj E V - Vj, then

G(vj, q, rj) = G(vj, q, r j - l) .

If vj E VjO), then vj corresponds to some element,
say r~l) in Lg(1), and to some element, say rj(2) in Lj(2).

62 A. Tamirl Operations Research Letters 19 (1996) 5 9 ~ 4

Therefore,

G(vj, q, rj) = min{ G(vj, q, r j- ') ,

f j(rj) + min
l~<q~ < I v:.)l

qz <~]V:(21l
q l +q2 =q

k x {G(vjo), ql, rj(O)

+F(vj(z),qz, rj(2))} }.

I f vj E Vj(2), then vj corresponds to some element,

say r j} 1) in L j(1), and to some element, say rj'(2) in L j(2).
Therefore,

G(vj, q, rj) = min{ G(vj, q, rj -1),

f j(rj) + min

ql ~< [v~<,)l
ql +q2=q

× { G(vj(2),q2,rj(2))

+F(vj(,), q,, rft I))}}.

Having defined the function G at v j, we can compute
the function F at vj for all relevant arguments. Let vj
be a node in V - Vj. Then v) corresponds to some

elements, say r~l) and r)'(2) in Lj(1) and Lj(2), respec-
tively. Therefore,

F(vj, q, rj) = min{ G(vj, q, rj),

f j(rj) + rain
ql <~lV/(,>l
q2 ~< Jvj<2~l
ql +qz=q

× { F (v j (I) , k qj,r)o))
+F(vj(2),q2,rj(2))} }.

subtree of a tree. (See the next section for a definition
of the latter problem.)

The analysis is based on a partition of the node set
into two subsets, according to the following definition.

A node vj is called rich if it is not a leaf, and
both of its children v j(l) and v j(2) satisfy I VjO)I >~ p/2,
J Vj[~)I >~ p/2. I f a node is not rich it is called poor.

Lemma 1. The number of rich nodes is bounded
above by 2n/p.

Proof. Let V' be the set of rich nodes in V, and let T r
be the minimal subtree of T containing W. For k ---
0, 1,2, let V[be the subset of V I consisting of all rich
nodes that have exactly k children in Tq In particular,
V~ is the set of leaves of T ~. From the definition of a
rich node we have

n > (p + 1)IV,51 + (p/2 + 1)lV(I

> p[V~[+(p /2) lV([. (1)

Let T" be the tree obtained from T I by deleting each
poor node v in T' which has exactly one child in T',
and connecting its father and its child in T' by an
edge. V~ is the set of leaves of T", and V[is the set
of non-leaf nodes of T" which have exactly one child
in T". Let W be the set of nodes of T" which have
exactly two children in T I', and let E" be the edge
set of T". Using the facts that for any graph, the total
degree of the nodes equals twice the number of edges,
and for any tree, the number of edges is one less than
the number of nodes, we obtain [V~I + 2[//"(I + 31WI -
l = 21E"I = 2(IVdl + IV[[+] W I - 1), Thus, IWI =
I v~l - 1. Therefore, the total number of nodes in T"
is 2[V~[+ IV/[- 1, which implies that

3. Complexity of the algorithm

It follows directly from the recursive equations that
the total effort to compute the functions G and F at
a given node v j, for all relevant values of q and r, is
O(n min{(] Vj(1)[, p)} min{([Vj(2)I, p)}).

Therefore, the total effort of the algorithm is clearly
O(pZn2). We apply a more careful analysis and im-
prove the bound to O(pn2). We note that our analy-
sis was obtained independently of an almost identical
analysis used by Halld6rsson et al. [4], to find a best

Iw'l ~21v~l + [v(I- 1. (2)

The result follows from (1)-(2) . []

We have already noted above that the effort to com-
pute the functions G and F at a given node vj is
O(np2). Therefore, by Lemma 1, the total effort to
compute these functions at all rich nodes is O(pn2).
We will now prove that the total effort to compute
these functions at all poor nodes is also O(pn2).

For each node vj in V, let Hj denote the total effort
to compute the functions G and F at all poor nodes in

A. Tamirl Operations Research Letters 19 (1996) 59-64 63

VS. Then, if vj is rich

Hj ~<nj(1) -[" gj(2) ,

and if vj is poor,

(3)

Since Hi is the total effort to compute the functions
G and F at all poor nodes in V, the above lemmas
imply that the complexity of the above dynamic pro-
gramming algorithm is O(pn2).

Hj ~Hj(l)-[- Hj(2)

+en min{[Vj0)I, p/2} min{ I Vj(2)[, p / 2 } , (4)

for some constant c.

Lemma 2. For each node vj, Hj <~cpnIVSl.

Proof. We will prove inductively that I-Ij<.cn[Vj[
min{[Vj[, p}. If vj is a leaf, then it clearly follows
from the algorithm that Hj <~ cn, for some constant
c. Next, consider a node vj which is not a leaf.
Suppose first that vj is a rich node. Then, IV j[=
]Vj(I)] At-IVj(2)]-1- 1, IVjo)l>Jp/2 and IVj(2)l>/p/2.
Using the induction hypothesis we obtain from (3)

Hj ~Hj(I) + Hj¢2) <-.cnp(lvs(t)l + [VS(2)I)

<<. cnp[Vjt = cn I Vj[min{[VS 1, p}.

Next, let vj be a poor node. By the induction hy-
pothesis,

Hi(k) <<. en[Vs.(k)[min{lvs(k)[, p}, k = 1,2.

Since vj is a poor node, we may assume without loss of
generality that [Vj(1)[/> [Vs.(z)[and [VS(z)[<p/2 . Con-
sider the following cases:

1. [~[~< p. In this case we obtain from (4)

n j ..<cn(lVj(l)l 2 + VS(z)I 2) + enlVj(1)llVj(2)l

<~cn(I VS(I)I + I VS(m)I) 2 <~cnl Zs[z
= cn I VjI min{[VjI, p } .

2. [VS[> p. Since p/2 > [VS(z)[, we must have
p/2...< I VS(~)I- Therefore,

4. Related problems

When p>>.n, the model reduces to the classical
Uncapacitated Facility Location problem. Since the
bound p is not effective the recursive equations of
the algorithm can be simplified to achieve an O(n ~)
running time.

We have already noted above that our analysis is
very similar to that used by Halld6rsson et al. [4] to
find the best subtree of a tree. In the latter model, the
objective is to find a subtree of a tree of minimum
(maximum) total edge weight, containing exactly p
edges. An O(p2n) algorithm to find a best subtree
was presented in Maffioli [11] and Fischetti et al. [3].
Halld6rsson et al. [4] improved the bound to O(pn). A
similar problem, where the selected subtree is required
to contain a distinguished node, say v~, is considered
by Faigle and Kern [2], and solved in O(n 4) time.
The latter model can actually be solved in O(pn) time
by the general "left to right" dynamic programming
algorithm in Johnson and Niemi [7]. However, the
O(pn) "leaves to root" algorithm in Halld6rsson et
al. [4], does more than that. For each node vg in the
tree, it finds the best subtree of VS containing vj.

Finally we note that the analysis presented above
can also be applied to the "leaves to root" dynamic
programming algorithm presented in Tamir and Lowe
[13] to solve the generalized p-forest problem on trees.
With the above analysis, it can be shown that the com-
plexity bound reported there can also be reduced to
O(pn2).

Hi <~cn[Vj(I)[min{[Vj0)[, p}

+cn[VS(2)I 2 + cn(p/2)[VS(2)I

~enpl vjo)[+ cn(p/2)l VS(2)I + cn(p/2)l VS(2)I

= cnp(lvsO)[+ [Vs.(2)l)<~cnplVsl

= cn[Vii min{[VS[, p } .

This concludes the proof of the lemma. []

References

[1] G. Comuejols, G.L. Nemhauser and L.A. Wolsey, "The
uncapacitated facility location problem", in: P.B. Mirchandani
and R.L. Francis (eds.), Discrete Location Theory, Wiley,
New York, 1990, pp. 119-171.

[2] U. Faigle and W. Kern, "Computational complexity of
some maximum average weight problems with precedence
constraints", Oper. Res. 42, 688-693 (1994).

64 A. Tamir/ Operations Research Letters 19 (1996) 59-64

[3] M. Fischetti, H.W. Hamacher, K. Jomsten and F. Matfioli,
"Weighted k-cardinality trees: complexity and polyhedral
structure", Networks 24, 11-21 (1994).

[4] M.M. Halldrrsson, K. Iwano, N. Katoh and T. Tokuyama,
"Finding subsets maximizing minimum structures", in: Proc.
6th Ann. ACM-SIAM syrup, on Discrete Algorithms, San
Francisco, California, 1995, pp. 150-159.

[5] R. Hassin and A. Tamir, "Improved complexity bounds for
location problems on the real line", Oper. Res. Lett. 10,
395-402 (1991).

[6] W.L. Hsu, "The distance-domination numbers of trees", Oper.
Res. Lett. 1, 96-100 (1982).

[7] D.S. Johnson and K.A. Niemi, "On knapsack, partitions, and
a new dynamic programming technique for trees", Math.
Oper. Res. g, 1-14 (1983).

[8] O. Kariv and S.L. Hakimi, "An algorithmic approach to

network location problems, Part II: p-medians", SIAM
J. Appl. Math. 37, 539-560 (1979).

[9] T.U. Kim, T.J. Lowe, A. Tamir and J.E. Ward, "On
the location of a tree shaped facility", Networks, to
appear.

[10] J.-H. Lin and J.S. Vitter, "Approximations with minimum
packing constraint violation", CS 92-29, Department of
Computer Science, Brown University, 1992.

[11] F. Matiioli, "Finding a best subtree of a tree", Report No.
91.041, Dipartimento Di Elettronica, Politecnico Di Milano,
1991.

[12] N. Megiddo, E. Zemel and S.L. Hakimi, "The maximum
coverage location problem", SlAM J. Algebraic Discrete
Methods 4, 253-261 (1983).

[13] A. Tamir and T.J. Lowe, "The generalized p-forest problem
on a tree network", Networks 22, 217-230 (1992).

