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Abstract 

We improve the complexity bound of the p-median problem on trees by showing that the total running time of the "leaves 
to root" dynamic programming algorithm is O(pn2). 
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1. Introduction 

One of the classical problems in location theory is 
the p-median problem defined as follows: Given is a 
connected undirected graph G = (V, E) with node set 
V = {Vl . . . . .  vn} and edge set E. Each edge is associ- 
ated with a nonnegative weight (length). The length of 
a path in G is the sum of  the weights of its edges. For 
each pair of  nodes vi, vj we let d(vi, vj), the distance 
between vi and v j, be the length of a shortest length 
path connecting v; and vj. The problem is to select a 
subset S of p nodes (service centers) that will mini- 
mize the sum of the distances of all nodes (customers) 
to their respective nearest member (center) in S, 

mind(vi, vj) . 
viEV viES 

Kariv and Hakimi [8] proved that the problem is NP- 
hard, and Lin and Vitter [10] presented several ap- 
proximation schemes. 

For tree graphs Kariv and Hakimi [8] described an 
O(p2n2) algorithm, which is the lowest order method 

known. A different O(pn 3) algorithm was given in 
Hsu [6]. In this paper we will show that the time 
needed to solve the p-median problem on a tree by the 
"leaves to root" dynamic programming algorithm is 
only O(pn 2). For comparison purposes we note that 
Hassin and Tamir [5] achieved a complexity bound of 
O(pn) for path graphs. 

We consider a more general model which unifies 
the above p-median problem and related problems that 
have been discussed in the literature. With each node 
vi we associate a nonnegative weight ci, and a real 
nondecreasing function f i .  In the general problem we 
wish to select a subset S of at most p nodes minimizing 
the following objective, 

cj + ~ min~(d(vi ,  vj)) .  
viES viEV viES 

In the context of location theory modeling, the 
weight cj can be interpreted as the cost of setting 
up a service center at node Vy. The function fi  can 
be viewed as a transportation cost function, depend- 
ing on the distance between the customers at vi 
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and their nearest center. With this interpretation, the 
objective is to minimize the sum of the setup costs 
of  the centers and the transportation costs of  the 
customers. 

When p = n, and J] is linear for each V i E V ,  

the model reduces to the classical Uncapacitated Fa- 
cility Location problem, which is solved in O(n 2) 
time by Cornuejols et al. [1]. Another special case 
is the p-coverage problem discussed by Megiddo 
et al. [12]. In the p-coverage problem each trans- 
portation cost function is a stepwise function taking 
on two values only. The complexity bound of the 
algorithm in Megiddo et al. [12] is O(p2n2). 

2. The algorithm 

Suppose now that the given graph is a tree 
T = (V,E), which is rooted at some distinguished 
node, say, vl. For each pair of  nodes vi, v j, we say 
that vi is a descendant of vj if vj is on the unique path 
connecting vi to the root vl. I f  vi is a descendant of  
vj and vi is connected to vj with an edge, then vi is 
a child of vj and vj is the (unique)father of vi. I f  a 
node has no children it is called a leaf  of the tree. 

To simplify the notation we assume without loss of 
generality that f j ( 0 ) =  0 for each node vj E V. It is 
also convenient to transform the rooted tree into an 
equivalent binary tree, where each node which is not 
a leaf has exactly two children. The transformation is 
executed as follows: 

1. First consider each non-leaf node vj of the orig- 
inal tree which has exactly one child, say vjO ). Intro- 
duce a new node, uj(l), and connect it to vj with a new 
edge. Assign a weight (length) of zero to this edge. 
(uj(x) will be the second child of  vj in the new tree. It 
will also be a leaf of  the new tree.) 

2. Consider each node vj of the original tree which 
has at least three children, say Vj(1) . . . . .  l)j(t) , t>>.3. 
Add t - 2 new nodes, uj(2) . . . . .  uj(t-1). For each s = 
2 . . . . .  t - 1, replace the edge (vj, vj(s)) by an edge 
(uj(s),vj<s)) • Also, replace the edge (vj, vj(t)) by an 
edge (uj(t-l), vj(t)). The weight (length) of a new edge 
will be the weight of  the edge it has replaced. Finally, 
add the following set of new zero weight (length) 
edge s: 

(/)j ,  U j (2 ) ) ,  (U j(2) , U j(3)  ) . . . . .  (Uj(t_2) , Uj(t--I)). 

The weight (setup cost) associated with each new 
node will be sufficiently large, e.g., 1 + ~,v:~v(cj + 
f j ( ~ ) ) ,  and its transportation cost function will be 
identically zero. 

After processing each node vj of the original tree, 
the new tree will have at most 2n - 3 nodes and it is 
binary. Moreover, solving the problem on the original 
tree is equivalent to solving it on the new binary tree. 

In light of  the above transformation we now assume 
without loss of  generality that the original tree is a 
binary tree, where each non-leaf node vj has exactly 
two children, vj(l) and vj(2). The former is called the 
left child, and the latter is the right child. For each 
node v j, Vj will denote the set of  its descendants, and 
Tj will be the subtree induced by Vj. (vj is also viewed 
as the root of Tj.) 

We are now ready to present the "leaves to root" 
dynamic programming algorithm. 

In a preprocessing step, for each node vj we com- 
pute and sort the distances from vj to all nodes in V. 
Let this sequence be denoted by Lj = {r) . . . . .  r~}, 
where rj ~r :  +1 , i = 1 . . . . .  n -- 1, and r) = 0. For con- 
venience, in order to handle a degenerate case, where 
the elements in Lj are not distinct, we assume that 
there is a one to one correspondence between the el- 
ements in Lj and the nodes in V, such that: 

(i) I f  vk corresponds to rj then rj = d(vj, vk). 
(ii) If  vk and vm are two distinct nodes in Vj, and 

Vm is a descendant of  vk, then the element of  Lj rep- 
resenting vk will precede the one representing v,,. In 
particular, vj corresponds to r). 

(iii) If  vj is not a leaf, and vk and Vm are both in 
Vj( 1 ) ( V j ( 2 ) ) ,  where the element representing vk in LjO) 
(L j(2)) precedes the one representing Vm, then the el- 
ement of  Lj representing vk will precede the one rep- 
resenting vm. 

(iv) Ifvk is in Vj, Vm is in V -  Vj, and d(vj, vk) = 
d(vj, Vm), then the element of  Lj representing vk will 
precede the one representing vm. 

For i = 1 . . . . .  n, the node corresponding to rj is 
denoted by vj. 

We note that the total effort of  the preprocessing 
step is O(n 2). It can be achieved by using the centroid 
decomposition approach as in Kim et al. [9]. Alterna- 
tively, we can compute the lists {L j} as follows. 

For each node v j, let I f .  ( L f )  be the sorted sequence 
of distances from vj to all nodes in Vj (V - Vj). 
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Starting at the leaves of T, and proceeding recur- 
sively to the root, we first compute the sequences 
{LD. 

If vj is a leaf, L + = {0}. 

If vj is not a leaf, consider the sequences Lj~l ) 

and L~2 ~, associated respectively with vy(1) and vj(2), 
the two children of vy. Add the distance d(vj(~),vj) 
(d(v/(2), vj)) to each element in L~l ) (L~(2)) to obtain 

the sequence L~(+)/L ++ ~ Then merge ++ " ++ ~- j(2)/" LAD w~th L j(2) , 
and augment the element zero to the merged sequence 
to obtain Lf .  

To generate the sequences {Lj- }, we start at the root 
vl, and proceed recursively to the leaves. 

For the root vl, L~- is empty. 
Consider a node vj which is not the root. Suppose 

that vj is a child of vk. Without loss of generality, 
suppose that vj = vk0). Consider the sequences L~- 
and L~( 2 Add the distance d(vk(1), vk) (d(Vk(l),/)k(2))) ()" 
to each element in L~- + (Lk(2)) to obtain the sequence 

-- q-, 
L k * (Lk(2)). Then, merge the sequences Lk* and Lk(2+*), 
and augment the element d(Vk(l),Vk) to the merged 
sequence to obtain L ; .  

It is clear that the total effort to generate the se- 
quences {L + } and {Lf } is O(n2). Finally, to obtain 
the sequence Lj for a node v j, merge the respective 
sequences L + and Lf .  

For each node v j, an integer q = 1 . . . .  , p, and rj E 
Lj let G(vj, q, r j )  be the optimal value of the subprob- 
lem defined on the subtree Tj, given that a total of  at 
least 1 and at most q nodes (service centers) can be 
selected in Tj, and that at least one of  them has to be in 
{vl,v~ ..... vj} N Vj. (In the above subproblem we im- 
plicitly assume no interaction between the nodes in Tj, 
and the rest of the nodes in T.) The function G(vj, q, r) 
is computed only for q ~< [Vy[. Also, for each node vj 
we define 

G(vj, O,,') = ~ A ( ~ ) .  
vi~ vj 

Similarly, for each node vj and an integer q = 
0, l , . . . , p ,  we define F(vj, q,r) to be the optimal 
value of the subproblem defined on the subtree Tj, 
under the following two constraints: 

(i) A total of at most q nodes can be selected in Tj. 
(ii) There are already some selected nodes (service 

centers) in T - Tj, and the closest amongst them to vj 
is at a distance of exactly r from vj. (The setup cost 

of this closest node is not incorporated into the value 
ofF(vj ,  q,r).) 

(F(vj, q, r) is computed only for q,< I v j I, and r = 
rj, where rj corresponds to a node vj in V - Vj.) 

To motivate the above definitions, we note that if all 
the elements in Lj are distinct, then G(vj, q, rj) is the 
optimal value of the subproblem defined on Tj, given 
that at least 1 and at most q nodes are selected in Tj, 
and the closest amongst them to vj is at a distance of at 
most rj from vj. The conditions on L j, required above, 
ensure that the same interpretation of  G(vj, q, rj) can 
be made for the "distinct" elements of Lg, i.e., the 
elements rj, satisfying rj < rj +1. 

The algorithm defines the functions G and F at all 
leaves of T, and then recursively, proceeding from 
the leaves to the root, computes these functions at all 
nodes of T. The optimal value of the problem will be 
given by min{G(vl,p,r'~), G(vl,0,r'~)}, where vl is 
the root of the tree. 

Let vj be a leaf of T. Then, 

G(vj, l ,r j)  = cj, i : 1 , . . . , n .  

For each i = 1 . . . . .  n, such that vj E V - Vj, 

F(vj, O, rj) = f j(a(vj, vj)), 

and 

F(vj, 1,rj) = min{F(vj, O, rj), G(vy, 1, r j )} .  

Let vj be a non-leaf node in V, and let vjO ) and/)j(2) 
be its left and right children respectively. The element 
r} corresponds to v) = v j, which in turn corresponds 

to a pair of elements, s a y  rill) arid FJ(2) in Ly(l) and 
Lj(2) respectively. Therefore, 

G(vj, q,r)) = cj + min {F(vjO ), qbr)o) 
q l +q2 =q -- 1 
q, <~lV:.)l 

+F(vj(2), q2, r](2)) }. 

Generally, for i = 2 , . . . ,n ,  consider r]. If rj corre- 
sponds to a node vj E V - Vj, then 

G(vj, q, rj) = G(vj, q, r j - l  ) . 

If  vj E VjO ), then vj corresponds to some element, 
say r~l ) in Lg(1), and to some element, say rj(2) in Lj(2). 
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Therefore, 

G(vj, q, rj) = min{ G(vj, q, r j- ' ) ,  

f j( rj ) + min 
l~<q~ < I v:.)l 

qz <~]V:(21l 
q l +q2 =q 

k x {G(vjo), ql, rj(O) 

+F(vj(z),qz, rj(2))} }. 

I f  vj E Vj(2), then vj corresponds to some element, 

say r j} 1 ) in L j( 1 ), and to some element, say rj'(2) in L j(2). 
Therefore, 

G(vj, q, rj) = min{ G(vj, q, rj -1 ), 

f j(rj) + min 

ql ~< [ v~<,)l 
ql +q2=q 

× { G(vj(2),q2,rj(2)) 

+F(vj(, ), q,, rft I ))}}. 

Having defined the function G at v j, we can compute 
the function F at vj for all relevant arguments. Let vj 
be a node in V - Vj. Then v) corresponds to some 

elements, say r~l ) and r)'(2 ) in Lj(1) and Lj(2), respec- 
tively. Therefore, 

F(vj, q, rj) = min{ G(vj, q, rj), 

f j(rj) + rain 
ql <~lV/(,>l 
q2 ~< Jvj<2~l 
ql +qz=q 

× { F ( v j ( I ) ,  k qj,r)o)) 
+F(vj(2),q2,rj(2))} }. 

subtree of  a tree. (See the next section for a definition 
of the latter problem.) 

The analysis is based on a partition of the node set 
into two subsets, according to the following definition. 

A node vj is called rich if it is not a leaf, and 
both of its children v j(l) and v j(2) satisfy I VjO)I >~ p/2, 
J Vj[~)I >~ p/2. I f  a node is not rich it is called poor. 

Lemma 1. The number of  rich nodes is bounded 
above by 2n/p. 

Proof. Let V' be the set of rich nodes in V, and let T r 
be the minimal subtree of T containing W. For k --- 
0, 1,2, let V[ be the subset of  V I consisting of all rich 
nodes that have exactly k children in Tq In particular, 
V~ is the set of leaves of  T ~. From the definition of a 
rich node we have 

n > (p  + 1)IV,51 + (p/2 + 1)lV(I 

> p[V~[ +(p /2) lV( [ .  (1) 

Let T" be the tree obtained from T I by deleting each 
poor node v in T' which has exactly one child in T', 
and connecting its father and its child in T'  by an 
edge. V~ is the set of  leaves of  T", and V[ is the set 
of  non-leaf nodes of  T" which have exactly one child 
in T". Let W be the set of nodes of T" which have 
exactly two children in T I', and let E"  be the edge 
set of  T". Using the facts that for any graph, the total 
degree of the nodes equals twice the number of  edges, 
and for any tree, the number of edges is one less than 
the number of nodes, we obtain [ V~I + 2[//"(I + 31WI - 
l = 21E"I = 2(IVdl + IV[[ + ] W I -  1), Thus, IWI = 
I v~l - 1. Therefore, the total number of nodes in T" 
is 2[V~[ + IV/[ - 1, which implies that 

3. Complexity of the algorithm 

It follows directly from the recursive equations that 
the total effort to compute the functions G and F at 
a given node v j, for all relevant values of q and r, is 
O(n min{(] Vj(1)[, p)} min{([ Vj(2)I, p)}). 

Therefore, the total effort of  the algorithm is clearly 
O(pZn2). We apply a more careful analysis and im- 
prove the bound to O(pn2). We note that our analy- 
sis was obtained independently of  an almost identical 
analysis used by Halld6rsson et al. [4], to find a best 

Iw'l ~21v~l + [v(I- 1. (2) 

The result follows from (1)-(2) .  [] 

We have already noted above that the effort to com- 
pute the functions G and F at a given node vj is 
O(np2). Therefore, by Lemma 1, the total effort to 
compute these functions at all rich nodes is O(pn2). 
We will now prove that the total effort to compute 
these functions at all poor nodes is also O(pn2). 

For each node vj in V, let Hj denote the total effort 
to compute the functions G and F at all poor nodes in 
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VS. Then, if vj is rich 

Hj ~<nj(1) -[" gj(2) , 

and if vj is poor, 

(3) 

Since Hi is the total effort to compute the functions 
G and F at all poor nodes in V, the above lemmas 
imply that the complexity of the above dynamic pro- 
gramming algorithm is O(pn2). 

Hj ~Hj(l)-[- Hj(2) 

+en min{[ Vj0)I, p/2}  min{ I Vj(2)[, p / 2 } ,  (4) 

for some constant c. 

Lemma 2. For each node vj, Hj <~cpnIVSl. 

Proof. We will prove inductively that I-Ij<.cn[Vj[ 
min{[Vj[, p}. If vj is a leaf, then it clearly follows 
from the algorithm that Hj <~ cn, for some constant 
c. Next, consider a node vj which is not a leaf. 
Suppose first that vj is a rich node. Then, IV j[ = 
]Vj(I) ] At-IVj(2)]-1- 1, IVjo)l>Jp/2 and IVj(2)l>/p/2. 
Using the induction hypothesis we obtain from (3) 

Hj ~Hj(I) + Hj¢2) <-.cnp(lvs(t)l + [VS(2)I) 

<<. cnp[ Vjt = cn I Vj[ min{[ VS 1, p}. 

Next, let vj be a poor node. By the induction hy- 
pothesis, 

Hi(k) <<. en[ Vs.(k)[ min{lvs(k)[, p}, k = 1,2. 

Since vj is a poor node, we may assume without loss of 
generality that [Vj(1)[/> [ Vs.(z)[ and [VS(z)[ <p/2 .  Con- 
sider the following cases: 

1. [~[ ~< p. In this case we obtain from (4) 

n j  ..<cn(lVj(l)l 2 + VS(z)I 2) + enlVj(1)llVj(2)l 

<~cn(I VS(I)I + I VS(m)I) 2 <~cnl Zs[ z 
= cn I VjI min{[ VjI, p } .  

2. [VS[ > p. Since p/2 > [VS(z)[, we must have 
p/2...< I VS(~)I- Therefore, 

4. Related problems 

When p>>.n, the model reduces to the classical 
Uncapacitated Facility Location problem. Since the 
bound p is not effective the recursive equations of 
the algorithm can be simplified to achieve an O(n ~) 
running time. 

We have already noted above that our analysis is 
very similar to that used by Halld6rsson et al. [4] to 
find the best subtree of a tree. In the latter model, the 
objective is to find a subtree of a tree of minimum 
(maximum) total edge weight, containing exactly p 
edges. An O(p2n) algorithm to find a best subtree 
was presented in Maffioli [11] and Fischetti et al. [3]. 
Halld6rsson et al. [4] improved the bound to O(pn). A 
similar problem, where the selected subtree is required 
to contain a distinguished node, say v~, is considered 
by Faigle and Kern [2], and solved in O(n 4) time. 
The latter model can actually be solved in O(pn)  time 
by the general "left to right" dynamic programming 
algorithm in Johnson and Niemi [7]. However, the 
O(pn) "leaves to root" algorithm in Halld6rsson et 
al. [4], does more than that. For each node vg in the 
tree, it finds the best subtree of VS containing vj. 

Finally we note that the analysis presented above 
can also be applied to the "leaves to root" dynamic 
programming algorithm presented in Tamir and Lowe 
[ 13] to solve the generalized p-forest problem on trees. 
With the above analysis, it can be shown that the com- 
plexity bound reported there can also be reduced to 
O(pn2). 

Hi <~cn[ Vj(I)[ min{[ Vj0)[, p} 

+cn[ VS(2)I 2 + cn(p/2)[ VS(2)I 

~enpl vjo)[ + cn(p/2)l VS(2)I + cn(p/2)l VS(2)I 

= cnp(lvsO)[ + [Vs.(2)l)<~cnplVsl 

= cn[ Vii min{[ VS[, p } .  

This concludes the proof of the lemma. [] 
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