
Ž .JOURNAL OF ALGORITHMS 20, 581]601 1996
ARTICLE NO. 0028

Selection in Monotone Matrices and Computing k th
Nearest Neighbors

Pankaj K. Agarwal*

Department of Computer Science, Duke Unï ersity, P.O. Box 90129, Durham,
North Carolina 27708-0129.

and

Sandeep Sen

Department of Computer Science, Indian Institute of Technology, New Delhi, India

Received March 8, 1994

Ž .An m = n matrix AA s a , 1 F i F m and 1 F j F n, is called a totallyi, j
monotone matrix if for all i , i , j , j , satisfying 1 F i - i F m, 1 F j - j F n.1 2 1 2 1 2 1 2

a - a « a - a .i , j i , j i , j i , j1 1 1 2 2 1 2 2

'ŽŽ . .We present an O m q n n log n time algorithm to select the k th smallest item
from an m = n totally monotone matrix for any k F mn. This is the first sub-
quadratic algorithm for selecting an item from a totally monotone matrix. Our
method also yields an algorithm of the same time complexity for a generalized

� 4row-selection problem in monotone matrices. Given a set S s p , . . . , p of n1 n
� 4points in convex position and a vector k s k , . . . , k , we also present an1 n

Ž 4r3 c .O n log n algorithm to compute the k th nearest neighbor of p for everyi i
i F n; here c is an appropriate constant. This algorithm is considerably faster than
the one based on a row-selection algorithm for monotone matrices. If the points of
S are arbitrary, then the k th nearest neighbor of p , for all i F n, can bei i

Ž 7r5 c .computed in time O n log n , which also improves upon the previously best-
known result. Q 1996 Academic Press, Inc.

*Supported by an NYI award and National Science Foundation Grant CCR-93-01259.

581

0196-6774r96 $18.00
Copyright Q 1996 by Academic Press, Inc.

All rights of reproduction in any form reserved.

AGARWAL AND SEN582

1. INTRODUCTION

Ž .An m = n matrix AA s a , 1 F i F m and 1 F j F n, is called a totallyi, j
monotone matrix if for all i , i , j , j , satisfying 1 F i - i F m, 1 F j -1 2 1 2 1 2 1
j F n.2

a - a « a - a . 1Ž .i , j i j i , j i , j1 1 1 2 2 1 2 2

See Fig. 1 for an example.
Totally monotone matrices were originally introduced by Aggarwal et al.

w x Ž .4 . They presented an O m q n -time algorithm for computing the left-
most maximal element in each row of an m = n totally monotone matrix,
and applied it to a number of problems in computational geometry and
VLSI routing, including all-farthest neighbors of convex polygons. Since
the publication of their paper, several new applications of monotone

Žmatrices have been discovered, e.g., dynamic programming, largest area or
. wperimeter triangle in a set of points, economic lot problems, etc.; see 5, 6,

x7, 8, 9, 22, 25, 29, 30, 31, 32, 38, 39 for some of these applications.
Most of the papers cited above, however, consider only the problem of

computing the maximal or minimal elements of each row. Surprisingly,
very little is known about more general selection problems for monotone
matrices. There are two natural selection problems for monotone matrices.

Ž .i Array selection: Given an m = n totally monotone matrix AA, and
a positive integer k F mn, find the kth smallest element, x , of AA, i.e.,k

< <a a - x , a g AA - k and a a F x , a g AA G k .� 4 � 4i , j i , j k i , j i , j i , j k i , j

Ž .ii Row selection: Given an m = n totally monotone matrix AA and a
positive integer k F n, find the kth smallest element of each row of AA.

FIG. 1. An example of a totally monotone matrix.

SELECTION IN MONOTONE MATRICES 583

One can, of course, use the well-known linear-time selection algorithms
w x Ž .12, 37 to solve both of these problems in O mn time, so the challenge is

Ž .to develop an o mn -time algorithm by exploiting the properties of mono-
tone matrices.1 Selecting the k th smallest element from a set possessing

w xcertain properties has been studied by several researchers 23, 24, 28 .
w x Ž Ž ..Frederickson and Johnson 24 presented an O m log 2nrm -time algo-

rithm to select the k th smallest item from an m = n matrix each of whose
w xrows and columns is sorted in nondecreasing order. Kravets and Park 30

showed that for an m = n totally monotone matrix whose transpose is also
totally monotone, the k th smallest element can be computed in time
Ž Ž .. Ž .O m q n q k log mnrk . Their algorithm is optimal for k s O 1 , but its

Ž .running time is V mn when k is large. Moreover, their algorithm does
not work if AAT is not totally monotone.

Ž Ž ..Kravets and Park also presented an O k m q n -time algorithm for the
row selection problem. Again, their problem is quite inefficient for large

w xvalues of k. Recently, Mansour et al. 31 developed another algorithm
Ž .'whose running time is O n m log n q m . Both of these algorithms rely

on the fact that the value of k is the same for all rows of AA, so they do not
extend to the following generalized row-selection problem: Given an m = n

² :totally monotone matrix AA and a vector k s k , . . . , k of length m,1 m
where 0 - k F n, compute the k th smallest element of the ith row of AA,i i 'w x Ž .'for all 1 F i F m. Alon and Azar 10 proved that O n m log n log m
comparisons are sufficient to solve the generalized row selection problem,
but their approach falls short of giving an efficient algorithm.

'ŽŽ . .In this paper we present an O m q n n log n -time algorithm for the
array-selection problem. This is the first subquadratic algorithm for the
array-selection problem. Unlike the Kravets]Park algorithm, it does not
require AAT to be totally monotone. A natural variant of our algorithm

'ŽŽ . .solves the generalized row-selection problem in time O m q n n log n .
In the second part of this paper, we consider the all k th nearest-neighbor

problem for a convex set: Given a set S of n points in the plane in convex
position and a parameter k F n, find the kth nearest neighbor of every

w xpoint in S. As shown in 30, 31 , this problem can be reduced to the
row-selection problem. However, there are known algorithms that solve
the all k th nearest-neighbor problem for an arbitrary set of points in the
plane directly. Using k th order Voronoi diagrams, the k th nearest neigh-

1 Ž .In order to obtain an o mn algorithm, we have to assume that AA is not represented
explicitly. We assume, that any particular entry a g AA can be computed in constant time.i, j

� 4For instance, given a set p , . . . , p of points, a may be the distance between p and p .1 n i, j i j
Ž .We do not compute all pairwise distances explicitly, but any of them can be computed in O 1

Ž .time. If the time required to compute a , for a given pair i, j, is t m, n , then we have toi, j
Ž .multiply the running time of the algorithm by a factor of t m, n .

AGARWAL AND SEN584

bor of every point in an arbitrary planar point set can be computed in time
Ž 3r2 . w xO k n log n . The running time has been improved by Vaidya 40 to
Ž . w x Ž .O nk log n , and recently by Callahan and Kosaraju 13 to O n log n q nk

Ž w x.see also 18 . A drawback of these algorithms is that their running time
Ž 2 . Ž .depends on k, and is V n for k s V n . Agarwal and Matousek pre-ˇ

Ž 3r2q« .sented at O n time algorithm for the all kth nearest neighbor
w xproblem, for any «) 0 2 .

Ž 4r3 c .Here, we present an O n log n -time algorithm, for some constant
c) 0, for the all k th nearest-neighbor problem for the special case when
the points of S are in convex position. In fact, we present an algorithm for
a more general problem. We show that an arbitrary set S of n points and a
convex polygon P, with nOŽ1. vertices,2 in the plane can be preprocessed in

Ž 2 . Ž 2 .time O n log n into a data structure of size O n so that for a query
Ž .point p lying on ­ P the boundary of P , the k th nearest neighbor of p

Ž .can be computed in time O log n . This data structure can also count the
Žnumber of points of S lying in a disk whose center lies on P. If the center

of a query disk lies anywhere in the plane, then the best known data
Ž . Ž 3. w x .structure with O log n query time requires O n space 14 .

Combining this data structure with the range-searching data structure
w x Ž .described in 3 , we can preprocess S into a data structure of size O s , for

Ž 2 .any s n F s F n , so that a kth nearest neighbor query as described
c'ŽŽ . .above, can be answered in time O nr s log n time, where c G 1 is

some constant. By setting s s n4r3 and querying the data structure with
each point of S, the all k th nearest neighbor problem for a convex set can

Ž 4r3 c .be solved in time O n log n . For an arbitrary set of points in the plane,
Ž 7r5 c .the running time is O n log n .

2. SELECTION IN MONOTONE MATRICES

In this section we present algorithms for the array-selection and the
Ž .generalized row selection problems. Let AA s a , 1 F i F m, 1 F j F n,i, j

be an m = n totally monotone matrix, and let k F mn be a positive
integer. The algorithm works in two steps. In the first step, it partitions AA

'� 4 Ž .into a family LL s L , . . . , L of t s O m n lists so that each list L g LL1 t i
satisfies the following two properties.

Ž .i All elements of L belong to the same row, say r .i i

Ž .ii The elements of each L are in a nondecreasing order.i

2 Here we are assuming that the vertices of P are given as an array, sorted in a clockwise
Ž .direction, so that for any integer i, the ith vertex of P can be accessed in O 1 time.

SELECTION IN MONOTONE MATRICES 585

The lists of LL will be stored implicitly, as described below. After having
computed the family of lists LL , we select the k th smallest element among

'Ž < < . Ž .the elements of lists of LL in time O LL log n s O m n log n , using a
w xsimplified version of the Frederickson]Johnson algorithm 24 . We now

describe each of the two steps in detail.

2.1. Computing the Family of Lists

We first describe the algorithm for computing the family LL . In addition
� 4to LL , we also compute a collection P s p , . . . , p of arrays, referred to1 s

as index-arrays, which will be used to represent LL implicitly. Let a ber , ki

the lth item of L . For each L , we store the value of r and a pointer toi i i
an array p g P. The array p has the same size as L , and that the lthj j i

Ž .item of p is k if the lth item of L is a ; we will denote p as w L .j i r , k j ii

Properties of Monotone Matrices. We will use the following properties of
w xmonotone matrices, which are quite easy to prove; see, e.g., 30, 31 for

proofs.

LEMMA 2.1. If AA is a totally monotone matrix, then any submatrix of AA is
also a totally monotone matrix.

LEMMA 2.2. For any three integers i, j, k, satisfying 1 F i F m, 1 F j - k
F n,

Ž . X
X Xi a G a « a G a for all i F i, andi, j i, k i , j i , k

Ž . X
X Xii a F a « a F a for all i G i.i, j i, k i , j i , k

w xWe also use a well-known result of Erdos and Szekeres 21 , which has˝
w xbeen applied to a number of other geometric problems; see 33, 11 . Let

² :U s u , u , . . . , u be a sequence of real numbers. A subsequence1 2 m
X ² :U s u , u , . . . , u of U is called monotone if either u F u F ??? Fi i i i i1 2 k 1 2

u or u G u G ??? G u .i i i ik 1 2 k

Ž .LEMMA 2.3 Erdos]Szekeres . Gï en a sequence U of n real numbers,˝
X 'u vthere always exists a monotone subsequence U of length at least n .

w x Ž .Dijkstra 19 gave a simple O n log n -time algorithm for computing a
w xlongest monotone subsequence of U. Recently, Bar Yehuda and Fogel 11

Ž 3r2 .presented an O n -time algorithm for partitioning U into a collection
'of at most 2 n monotone subsequences.

SUBLIST ALGORITHM. We now present a divide-and-conquer algorithm
for computing LL . At each recursive step of the algorithm we have a u = ¨

Ž .submatrix M of AA see Fig. 2 ; initially M s AA. M consists of a contiguous
Ž .block of u rows of AA, say a q 1, . . . , a q u, and a subsequence C M of

Ž . Ž .columns of AA, i.e., M s a , a q 1 F i F a q u, j g C M . M is repre-i, j

AGARWAL AND SEN586

² : ² :FIG. 2. Decomposing M into two M , M ; s s 32, 37, 44, 45 , p s 1, 4, 6, 7 .1 2 1

Ž .sented by specifying the values of a and u, and the subsequence C M . By
X � 4Lemma 2.1, M is totally monotone matrix. Let LL s L , . . . , L andj1

X � 4P s p , . . . , p be the families of lists and index-arrays, respectively, that1 j

we have computed so far.
Ž . ² :If M consists of a single column, i.e., C M s z , then we set

X X � 4 X X
P s P j p and LL s LL j L , . . . , L .� 4zq1 jq1 jqu

² : ² :where p s z and, for 1 F i F u, L s a , r s a q i, andzq1 jq1 Žaqi., z jq1
Ž .w L s p .jqi zq1

Ž .Next, assume that ¨) 1 M consists of more than one column . Set
u vw s ur2 , and let

² < :U s a j g C MŽ .Žaqw . , j

be the wth row of M. Using Dijkstra’s algorithm, we compute the longest
monotone subsequence

² :s s a , a , . . . , aŽaqw . , j Žaqw . , j Žaqw . , j1 2 k

of U. There are two cases to consider depending on whether s is
nonincreasing or nondecreasing.

Case A. Suppose s is a monotonic nonincreasing subsequence, then
for all x, a q 1 F x F a q w, the subsequence

² :a , . . . , ax , j x , j1 k

SELECTION IN MONOTONE MATRICES 587

Ž .is also monotonic nonincreasing cf. Lemma 2.2 . We set

X X � 4 X X
P s P j p and LL s LL j L , . . . , L , 1� 4 Ž .zq1 jq1 jqw

where

² :p s j , j , . . . , j 2Ž .zq1 k ky1 1

² :L s a , a , . . . , a , 3Ž .jqi Žaqi. , j Žaqi. , j Žaqi. , jk ky1 1

Ž .r s a q i and w L s p for 1 F i F w. As mentioned in thejqi jqi zq1
introduction, we store L implicitly by storing the value of r and ajqi jqi
pointer to p .zq1

We represent the remaining entries of M, the ones that do not belong
to any list L , into two matrices M , M , and recursively decompose themi 1 2

Ž .into sorted lists. M s a is composed of the bottom u y w rows of M1 i, j
Ž .and all the columns of AA, i.e., a q w q 1 F i F a q u, and C M s1

Ž . Ž .C M . M s a is composed of the top w rows of M and those columns2 i, j
Ž . Ž .of M that are not in s , i.e., a q 1 F i F a q w, and C M s C M y2

² :j , . . . , j .1 k

Case B. If s is a monotonically nondecreasing subsequence, then for
² :all x, a q w F x F a q u, the subsequence a , . . . , a is also mono-x, j x, j1 k

tonic non-decreasing, so we set

X X � 4 X X
P s P j p and LL s LL j L , . . . , L . 4� 4 Ž .zq1 jq1 jquywq1

where

² :p s j , j , . . . , j , 5Ž .zq1 1 2 k

² :L s a , a , . . . , a , 6Ž .jqiq1 Žaqwqi. , j Žaqwqi. , j Žaqwqi. , j1 2 k

Ž . Ž .r s a q w q i, and w L s p for 0 F i F u y w. M s ajqiq1 jqiq1 zq1 1 i, j
is composed of the top w y 1 rows of M and all the columns of AA, i.e.,

Ž . Ž .a q 1 F i F a q w y 1 and C M s C M . M is composed of the bot-1 2
tom u y w q 1 rows of M and those columns of M that are not in s , i.e.,

Ž . Ž . ² :a q w F i F a q u and C M s C M y j , . . . , j ; see Fig. 2.2 1 k

Next, let us analyze the size of LL and the total time spent by the
Ž .algorithm. Let c u, ¨ be the maximum number of lists generated by the

'u valgorithm. By Lemma 2.3, the longest subsequence has length at least ¨ ,
so we get the following recurrence

u if ¨ s 1.¡
u u u~c u , ¨ FŽ . 'c , ¨ q c , ¨ y ¨ q if ¨) 1.¢ ž / ž /2 2 2

AGARWAL AND SEN588

We claim that the solution of this recurrence is

'c u , ¨ F 2u ¨ . 7Ž . Ž .
Ž .Indeed, 7 is obviously true for ¨ s 1. For ¨) 1, by induction hypothe-

sis, we have
u u u'c u , ¨ F c , ¨ q c , ¨ y ¨ qŽ . ž / ž /2 2 2

u u u' ''F 2 ¨ q 2 ¨ y ¨ q
2 2 2

1' ''F u ¨ q ¨ y ¨ qž /2

'F 2u ¨ ,

' ''because ¨ y ¨ q 1r2 - ¨ .
Ž .Let T u, ¨ be the maximum running time of the algorithm. Since we
Ž .spend O ¨ , log ¨ time in computing the monotonic subsequence s and

Ž .O u q ¨ time in generating the lists plus the two submatrices M and1
M , we have2

u u 'T u , ¨ F T , ¨ q T , ¨ y ¨ q O u q ¨ log ¨ .Ž . Ž .ž / ž /2 2

Following the same calculations as above, it can be shown that
3r2'T u , ¨ s O u ¨ q ¨ log u log ¨ .Ž . Ž .

'< <This implies that LL F 2m n , and that the total time spent in computing
3r2'Ž .LL is O m n q n log n log m .

3r2'Ž .The running time can be improved to O m n q n log log n using
w xthe algorithm of Bar Yehuda and Fogel 11 . Instead of computing the

'longest monotone subsequence of U, we partition U into at most 2 ¨
'monotone sequences, U , . . . , U , each of length at most ¨ . Suppose U isj1 r

X X Ž . Ž .a monotonic nonincreasing sequence. We update P , LL as in 1] 3 . Let
? @M be the submatrix of M consisting of bottom ur2 rows of M and thosej

columns of M that are in U . Similarly, if U is a monotonic nondecreasingj j
X X Ž . Ž .subsequence, we update LL , P as in 4] 6 , and set M to be thej

submatrix of M consisting of top w y 1 rows of M and those columns of
M that are in U . We recursively decompose M into sorted lists. Repeatingj j
this procedure for all U , 1 F j F r, we obtain the family LL . The recur-j

Ž .rence for the maximum running time T u, ¨ now becomes
r

3r2'T u , ¨ F T ur2 , ¨ q O u ¨ q ¨ ,Ž . ? @Ž . Ž .Ý i
is1

SELECTION IN MONOTONE MATRICES 589

r'where max ¨ F ¨ and Ý ¨ s ¨ . The solution of the above recur-iF r i is1 i
rence is easily seen to be

3r2'T u , ¨ s O u ¨ q ¨ log log ¨ .Ž . Ž .

Hence, we can conclude:

LEMMA 2.4. Any m = n totally monotone matrix can be decomposed in
3r2' 'Ž . � 4 Ž .time O m n q n log log n into a set LL s L , . . . , L of O m n non-1 t

Ž .decreasing lists. LL is stored implicitly so that for any pair i, j , the jth element
Ž .of L can be accessed in O 1 time.i

2.2. Selecting the kth Element

� 4Let LL s L , . . . , L be a set of t lists, each sorted in nondecreasing1 t
< <order, and let us assume that, for any i F t and j F L , the jth item of Li i

Ž .can be obtained in O 1 time. We present an algorithm, which is a
w xsimplified version of the algorithm by Frederickson and Johnson 24 , for

selecting the kth smallest item in D L .1F iF t i
u Ž < < .v u vLet p s log max L F log n . Without loss of generality as-2 Lg LL 2

p < < psume that each list L g LL has exactly 2 elements; if L - 2 , then wei i
p < <assume that 2 y L `’s are padded at the end of L . The algorithmi i

works in p phases. In the beginning of the ith phase, we have a set L of at
py i Ž .most 2 t lists, each of size m s 2 including the padded `’s , and ai

parameter s F k. Each list in L is a contiguous sublist of some list in LL ,
and the sth element of DL is the same as the k th element of D LL .
Initially, L s LL and s s k. The goal is to find the sth element in the set
DL.

In the ith set we first divide each list l g L into two lists l , l : l1 2 1
consists of the first m r2 elements of L, and l consists of the next m r2i 2 i
elements of L. Let L denote the set of lists after the divide step. Next, we
discard some of the lists in L that are guaranteed not to contain the sth
element of DL.

Recall that we are not storing the lists of L explicitly, so the divide step
is somewhat involved. For each list l g L, we store the following informa-
tion

Ž .i The list L g LL that contains l, andj

Ž .ii the index of the first item of l in L .j

When we split l into l , l , this information for both l , l can be1 2 1 2
Ž .computed in O 1 time. The prune-step works in two stages. Let a s

u v Ž .srm q t, and let l i denote the ith element of l. We select the a thi
˜� Ž . < 4smallest element, x , from the set A s l 1 l g L ; A can be obtaineda

AGARWAL AND SEN590

Ž < <. Ž < <. < <in O L time and x can be computed in another O L time. If a - L ,a

< <we discard all L y a lists of L whose minimum item is not smaller than
? @x . Next, let b s srm y t. If b) 0, we select the b th element, x ,a i b

� Ž . < 4from the set B s l m l g L , and discard all the lists whose maximumi
element is not larger than x . The second stage prunes at least b lists. Setb

s s s y b m .i
After the pth step each list in L has at most one item. We then use the

Ž .linear-time selection algorithm to find the sth item in another O t time.
Notice that after each phase, at most 2 t lists are retained in L, because

< < < <at least L y a q b F L y 2 t lists are deleted by the prune step. The
'Ž . Ž .running time of the algorithm is thus O tp s O m n log n . The correct-

ness of the algorithm follows from the fact that in the ith step, the sth
element of DL, x , cannot lie in one of the discarded lists; see the originals

w xpaper 24 for a proof.
Plugging this algorithm to Lemma 2.4, we can conclude:

THEOREM 2.5. Let AA be an m = n totally monotone matrix, and let
k F mn be some positï e integer. The kth smallest item of AA can be computed

3r2'Ž .in time O m n log n q n log log n .

2.3. Generalized Row Selection

By modifying the above algorithm in an obvious manner, we can solve
² :the generalized row selection problem: Let k s k , k , . . . , k be a1 2 m

vector of length m, where each k F n is a positive integer. The goal is toi
select the k th smallest item from the ith row of AA. We decompose AA intoi
a set LL of nondecreasing lists as above. LL is again represented implicitly
using the set P of index-arrays. Let

<LL s L r s i� 4i j j

be the subset of lists belonging to the ith row of AA. We run the above
selection algorithm for each LL separately and select the k th item of LL .i i i

Ž < < .The running time for each LL is O LL log n , thereby implying that thei i
3r2'Ž .overall running time is again O m n log n q n log log n . Hence, we

have

THEOREM 2.6. Let AA be an m = n totally monotone matrix and let k be
a ¨ector of length m as defined abo¨e. The k th smallest item of the ith row ofi

3r2'Ž .AA, for all 1 F i F n, can be computed in time O m n log n q n log log n .

We conclude this section by mentioning an application of Theorems 2.5
and 2.6. Let P be a simple n-gon. The geodesic distance between two
points p, q g P is the length of the shortest path connecting p, q that lies

SELECTION IN MONOTONE MATRICES 591

w xinside P. As shown in 27 , the geodesic-distance matrix for the vertices of
P can be represented as a totally monotone matrix. Moreover, using the

w xdata structure of Guibas and Hershberger 26 , each entry of the matrix
Ž .can be computed in O log n time. Hence, the kth smallest geodesic

Ž 3r2 2 .distance between the vertices of P can be computed in time O n log n
time, and the k th closest neighbor of every vertex of P can also be

Ž 3r2 2 .computed in time O n log n .

THEOREM 2.7. Let P be a simple n-gon. For a gï en positï e integer k F
nŽ ., the kth smallest geodesic distance between the ¨ertices of P can be2

Ž 3r2 2 . ² :computed in time O n log n . For a gï en ¨ector k s k , . . . , k , where1 n
Žeach k F n, the k th nearest neighbor of the ith ¨ertex of P o¨er alli i

. Ž 3r2 2 .1 F i F n can be computed in time O n log n .

Remark 2.8. It might be possible to improve the running time in the
above theorem by a logarithmic factor, using the ideas similar to those in
w x27 , but we feel that this improvement is not worth the effort.

3. COMPUTING ALL k th NEAREST NEIGHBORS

Let S be a set of n points in the plane in convex position and let
² :k s k , k , . . . , k be a vector of length n, where each k F n is a1 2 n i

positive integer. The goal is to compute the k th nearest neighbor of p fori i
i F n. Before describing the algorithm in detail, we explain our overall
approach.

We first present a data structure for the circular range-searching prob-
lem: Let S be a set of n points and P a convex polygon, with nOŽ1.

vertices, in the plane. Preprocess S and P into a data structure so that for
< <a query disk D whose center lies on ­ P, D l S can be computed

efficiently. Using this algorithm as a subroutine and applying the paramet-
ric-search technique, we obtain an efficient algorithm for answering k th

Žnearest-neighbor queries for points on ­ P i.e., for a query point p g ­ P
and a positive integer k F n, we wish to determine the k th nearest

.neighbor of p .

3.1. Circular Range Searching

In this subsection we show that if the center of the query disk always lies
on the boundary of a convex polygon P, then a circular range query can be

Ž . Ž 2 .answered in O log n time using only O n space. We then combine it
w xwith the data structure of Agarwal and Matousek 3 to obtain aˇ

spacerquery-time trade-off.

AGARWAL AND SEN592

Ž .Data Structure with O log n Query Time. Let S be a set of n points in
the plane. For a pair of points p , p g S, let ll denote the perpendiculari j i j
bisector of p and p , and leti j

<LL s ll 1 F i - j F n .� 4i j

Ž .For a point q in the plane, let s q denote the sequence of points of S
Ž .sorted in a nondecreasing order of their distances from q, i.e., if d q, pi1

Ž . Ž .F d q, p F ??? F d q, p , theni i2 n

² :s q s p , p , . . . , p .Ž . i i i1 2 n

Ž .We will refer to s q as the distance-ordering of S with respect to q. It can
be easily verified that, for any two points q, qX lying in the same face of
Ž . Ž . Ž X. Ž .AA LL , s q s s q . Abusing the notation slightly, let s f denote the

Ž .distance-ordering with respect to any point in the face f of AA LL .
X Ž .LEMMA 3.1. If f and f are two adjacent faces in AA LL separated by the

Ž . Ž X.time ll , then p , p are adjacent in s f and s f . Moreo¨er, ifk lk l

² :s f s p , . . . , p , p , p , p , . . . , p .Ž . i i k l i i1 m mq3 n

then
X ² :s f s p , . . . , p , p , p , p , . . . , p .Ž . i i l k i i1 m mq3 n

Ž .If we know the face f of AA LL that contains the center of a disk D and
Ž . < <the distance ordering s f , then S l D can be computed by a binary

Ž . Ž .search on s f }find the first element in s f whose distance from the
center of D is more than the radius of D. However, we cannot afford to

Ž . Ž 4.store the entire arrangement AA LL , because there are V n faces in
Ž .AA LL . This is where we use the fact that the center of D lies on ­ P.
Partition ­ P into maximal connected intervals that do not intersect any

Ž .line of LL , so that each interval lies within a face of AA LL . Let II s
² :I , . . . , I be a sequence of the resulting intervals sorted along ­ P in1 m

Ž 2 .clockwise direction; m s O n , for any line intersects ­ P in at most two
Ž .points. Since each interval I lies within a single face of AA LL , thej

distance ordering of S with respect to all points of I remains the same,j
Ž . Ž .and let s I denote this ordering. See Fig. 3. We store each s I in aj j

Žbinary search tree T , whose ith leftmost node ¨ stores the index i whichj
. Ž . Žwe refer to as the rank of ¨ in T , and the ith element of s I . Insteadj j

of storing i, we can also store the number of nodes in the subtree rooted
. < <at i. For a query disk D, whose center lies on ­ P, S l D can be

computed in a straight-forward manner by traversing a path of T . Sincej
Ž . Ž . Ž .s I and s I differ only in two adjacent positions, and s I canj jq1 jq1

Ž .be obtained from s I by swapping two adjacent elements, we can use aj

SELECTION IN MONOTONE MATRICES 593

� 4 � 4FIG. 3. S s p , p , p , p , p , P, and II s I , . . . , I .1 2 3 4 5 1 14

w xpersistent data structure to store all T ’s 36 . We cannot use the updatej
w xprocedures described in 36 directly, because we are storing the rank of ¨

Ž .or the number of nodes in the subtree rooted at ¨ at each node ¨ of T ;j
w xsee 36 a more detailed discussion. To circumvent this problem we use a

variant of their data structure, tailored to our application. Since the
insertions and deletions are not arbitrary in our case, the update proce-

w xdures are somewhat simpler than the ones described in 36 .
Recall that each node in the persistent data structure, described by

w x ŽSarnak and Tarjan 36 , has an extra pointer other than the standard
.‘‘left’’ and ‘‘right’’ pointers . Whenever we want to modify the information

stored at any node ¨ , we make a new copy ¨ X and ¨ and store the updated
information there. If ¨ is the root of the tree, we are done. Otherwise, let
w be the parent of ¨ . If the extra pointer of w is free, it now points to ¨ X.
If the extra pointer of w is not free, w, too, is copied. Thus, copying

AGARWAL AND SEN594

propagates through successive ancestors until the root is copied or a node
w xwith the free extra pointer is reached: see 36 for details.

We now describe how to modify the update procedures to suit our
application. Let DD denote the overall data structure; DD is a dag that
implicitly stores all T ’s in the sense that T is a subgraph of DD, and thatj j

Ž .given a node ¨ g T , we can find the children of ¨ in T in O 1 time. Wej J
also maintain an array A of length m whose jth entry stores a pointer to a
root of DD that corresponds to the root of T . Each node ¨ g DD stores thej
following information.

Ž . Ž .i A point of S, denoted as ¨al ¨ ;
Ž . Ž .ii an integer, called rank ¨ , which is defined below;
Ž .iii three pointers}left, right, and extra. Initially, when ¨ is created,
Ž .extra ¨ pointer is free. As the algorithm progresses, the extra pointer is

assigned to one of its children;
Ž . Ž .iv An integer, denoted as ¨er ¨ , which is 0 if the extra pointer of

Ž .¨ is free; ¨er ¨ s j if the extra pointer was assigned while processing I ;j
Ž . Ž . Ž .v a bit, denoted as j ¨ ; j ¨ s 0 if the extra pointer is assigned

Ž .to the left child of ¨ , and j ¨ s 1 if the extra pointer is assigned as the
right child of ¨ .

DD is constructed incrementally by processing the intervals of II one by
one. Let DD denote the data structures storing T , . . . , T . DD s T is aj 1 j 1 1

Ž .minimum-height binary tree storing s I . The ith leftmost node ¨ of DD1 i 1
Ž . Ž . Ž .stores the ith element of s I , rank ¨ s i, and ¨er ¨ s 0. Roughly1 i

speaking, DD can be obtained from DD as follows: let ll be the linejq1 j k l
separating I and I , and let u, ¨ be the nodes corresponding to T thatj jq1 j
store p , p , respectively. We make new copies uX, ¨ X of u and ¨ , and storek l

X X Ž .p at ¨ and p at u i.e., swap p and p , and propagate the copying ofk l k l
nodes to the ancestors of u and ¨ , as sketched above. See Fig. 4.

We now describe in detail how to construct DD from DD . The nodesjq1 j
Ž .u, ¨ can be located in O log n time by searching T with p and p ,j k l

respectively; see below for details of the search procedure. Since p and pk l
Ž .are adjacent in s I , either u is a descendant of ¨ , or vice-versa. Withoutj

loss of generality, assume that u is a descendant of ¨ . We create a new
Ž . Ž . Ž . Ž . Ž .node x with ¨al x s p , rank x s rank u , ¨er x s 0. If ¨er u s 0l

Ž . Ž . Ž . Ž .i.e., the extra pointer of u is free , then left x s left u and right x s
Ž . Ž . Ž Ž . . Ž . Ž .right u . Otherwise, if j u s 0 resp. j u s 1 , then left x s extra u ,
Ž . Ž . Ž Ž . Ž . Ž . Ž ..right x s right u resp. left x s left u , right x s extra u . Let z be

the highest ancestor of u such that, for all nodes w on the path from z to
Ž .the parent of u, ¨er w) 0. For each such node w, we create a new node

X Ž X. Ž X. Ž .w . If w s ¨ , then we set ¨al w s p , otherwise we set ¨al w s ¨al w .k

SELECTION IN MONOTONE MATRICES 595

Ž . ² : Ž .FIG. 4. DD , DD , DD , DD for S and P shown in Figure 3; s I s 1, 2, 4, 5, 3 , s I s1 2 3 5 1 2
² : Ž . ² : Ž . ² : Ž . ² :1, 2, 4, 3, 5 , s I s 1, 2, 3, 4, 5 , s I s 2, 1, 3, 4, 5 , s I s 2, 3, 1, 4, 5 .3 4 5

Ž X. Ž . Ž X.We also set rank w s rank w and ¨er w s 0. The left and right
pointers of wX are assigned in the same way as of x. If z is not the root of

Ž .DD, then let y be the parent of z. If z is the left resp. right child of y,
Ž . Ž . Ž . Ž Ž . .then we set extra y s z, ¨er y s j q 1, and j y s 0 resp. j y s 1 .

Next, if ¨ is an ancestor of z, we repeat the same procedure for ¨ . This
completes the description of the update procedure. Finally, we store a

w xpointer to the root of T at A j q 1 .jq1

Let D be a query disk with center c g ­ P and radius r. We compute
< < Ž .D l S as follows. We first find in O log n time the interval I g II thatj

w xcontains c: A j gives the pointer to the root z of T . We search in DD withj
Ž .the triple c, r, j , starting from z. Suppose we are at node ¨ . Let p be thek

Ž . Ž . Ž . Žpoint stored at ¨ . If d c, p s r, we return rank ¨ . If d c, p) r resp.k k
Ž . . Ž .d c, p - r , we descend to the left resp. right child of ¨ in T . If ¨ doesk j

Ž . Ž . Ž Ž .not have the right resp. left child, then we return rank ¨ resp. rank ¨
. Ž .y 1 . The left and right children of ¨ in T can be computed in O 1 time,j

Ž . Ž . Ž Ž . .as follows. If 0 - ¨er ¨ F j and j ¨ s 0 resp. j ¨ s 1 , then the extra
Ž .pointer of ¨ points to the left resp. right child of ¨ in T , and its rightj

Ž . Ž .resp. left pointer points to the right resp. left child of ¨ in T .j
Otherwise, the left and right pointers points to the children of ¨ in T . Thej

Ž .total query time is thus O log n time. Notice that the same procedure can
also compute the kth nearest neighbor of a point p g P.

AGARWAL AND SEN596

THEOREM 3.2. Let S be a set of n points in the plane, and let P be a
Ž 2 .con¨ex polygon. S and P can be preprocessed in time O n log n into a data

Ž 2 .structure of size O n , so that the number of points lying in a query disk
Ž .whose center lies on ­ P can be counted in O log n time. The same data

structure can also compute the kth nearest neighbor of a query point p g P in
Ž .time O log n .

SpacerQuery-Time Trade-Off. We can obtain a spacerquery-time
tradeoff by combining Theorem 3.2 with a data structure proposed by

w xAgarwal and Matousek 3 for the range-searching problem. For circularˇ
range searching, their data structure consists of a partition tree T on S,
each of whose node ¨ is associated with a subset S : S and a ‘‘pseudo-¨
trapezoid’’ t such that S : t ; t has at most four sides}the left and¨ ¨ ¨ ¨
right sides are vertical segments and the top and bottom sides are portions

Ž w x .of quadratic curves see 3 for details . The degree of each node is r for
< <some constant r. If w , . . . , w are the children of ¨ , then max S Fw1 r 1F iF r i

< < r Ž .2 S rr and D S s S , so the height of T is O log n . If ¨ is a leaf,¨ is1 w ¨i
< < Ž .then S s O 1 . We say that a circle C crosses a node ¨ if the interior of¨

t intersects C and t ­ C. T has the property that every circle crosses at¨ ¨
3r2'Ž .most O r log r children of any node of T. At each leaf ¨ we store S¨

< <itself, and at each internal node ¨ g T we store S and t .¨ ¨
Let s be some fixed parameter for n F s F n2. Suppose we want to

construct a data structure of size s. Delete all those nodes of T whose
u v Xparents are associated with less than rsrn points. Let T denote the

X u vresulting tree. Each leaf of T contains at most rsrn points. For each leaf
w of T X, we preprocess S using Theorem 3.2 and replace the leaf w withw
the resulting structure. Let C denote the overall data structure. We will
refer to T X as the ‘‘top-structure’’ and to the structures stored at the leaves
of T X as the ‘‘bottom-structures.’’ Let L be the set of leaves of T X. Then

< < u v < <for any ¨ g L, S F rsrn and Ý S F n. The total size of the data¨ ¨ g L ¨
structure is at most

s2
2 2< <O n q S s O n q O ? O n rs s O s .Ž . Ž . Ž .Ž .Ý ¨ 2ž /n¨gL

Ž .The preprocessing time is easily seen to be O s log n .
Let D be a query disk with center c and radius r. We visit C in a

top-down fashion, starting from the root. We maintain a global variable
count, which is initially set to 0. At each step, we visit a node ¨ . If ¨ is leaf

X < <of T , we compute D l S using the algorithm of Theorem 3.2, and add¨
this quantity to count. Otherwise, we do the following. If t l D s B, we¨

< <ignore ¨ . If t : D, we add S to count and do not visit any children of ¨ .¨ ¨
Ž .Finally, we recursively visit all the children of ¨ . Let Q m be the

maximum query time of the procedure in querying a subtree storing a set

SELECTION IN MONOTONE MATRICES 597

3r2'Ž .of m points. Since ­ D crosses at most O r log r children of ¨ , we
obtain the following recurrence.

¡O log n if n F srn ,Ž . ¨
3r2Ž .O r log r'~Q n FŽ .

Q nrr q O r if n) srn.Ž . Ž .Ý ¨¢
is1

The solution of the above recurrence is known to be

n1q«

Q n s O ,Ž .¨ ž /'s

c'w x ŽŽ . .see, e.g., 16 . The query time can be improved to O nr s log n for
some constant c) 0 by choosing r s nd, for some sufficiently small d) 0.
We leave out the details from here. Hence, we can conclude

THEOREM 3.3. Let S be a set of n points in the plane, let P be a con¨ex
polygon, and let s be a parameter, with n F s F n2. S can be preprocessed in

Ž . Ž .time O s log n into a data structure of size O s , so that the number of points
c'ŽŽ . .lying a query disk whose center lies on ­ P can be counted in O nr s log n

time, for some constant c) 0.

As mentioned in the introduction, if the center of a query disk lies
< < Ž .anywhere in the plane, then D l S can be computed in time O log n

Ž 3. w xusing O n space 14 . Plugging this data structure, instead of Theorem
3.2, into T X, we obtain:

THEOREM 3.4. Let S be a set of n points in the plane, and let s be a
3 Ž .parameter, with n F s F n . S can be preprocessed in time O s log n into a

Ž .data structure of size O s , so that the number of points lying a query disk can
ŽŽ 3r4 1r4. c .be counted in O n rs log n time, for some constant c) 0.

Remark 3.5. Observe that the above query procedures can be modified,
without affecting the query time, so that one can also detect whether a
point of S lies on the boundary of the query disk.

3.2. Applying Parametric Searching

wWe now apply the parametric-searching technique, due to Megiddo 34,
x35 , to the above data structure for answering queries of the following

form: Given a point q on the boundary of the convex polygon P and a
Ž .parameter k F n, determine its k th nearest neighbor, w q , in S. Thek

w xbasic idea is the same as described in 2 , but we have to modify their
technique a little.

AGARWAL AND SEN598

Ž Ž ..Let r s d q, w q , and let D be the disk of radius r centered at q.k k k k
We will query the data structure with D . We, of course, do not know thek
value of r , so we will simulate the query answering procedure, describedk
above, without knowing the exact value of r .k

We search through C level-by-level. Let V be the set of nodes that wei
visit in the ith step. If a node ¨ g V belongs to the bottom structure, wei

Ž Ž ..need to determine the relation between r and d q, ¨al ¨ in order tok
determine whether the left or the right child of ¨ has to be visited in the

Ž Ž ..next step; let d s d q, ¨al ¨ . If ¨ is a node of the top structure, then we¨
want to determine whether D crosses t , D contains t , or D is disjointk ¨ k ¨ k
from t . Let¨

dys min d q , p and dqs max d q , pŽ . Ž .¨ ¨
pgt pgt¨ ¨

Ž . y qsee Fig. 5 ; D crosses t if and only if d - r - d , and D contains tk ¨ ¨ k ¨ k ¨
q y q Ž .if and only if d F r . The numbers d , d can be computed in O 1 time.¨ k ¨ ¨

Let

y q <R s d , d ¨ g V and ¨ is a node of the top structure� 4i ¨ ¨ i

<j d ¨ g V and ¨ is a node of a bottom structure .� 4¨ i

We sort R and, by a binary search on the sorted list, we compute r , thei i
largest element of R that is less than or equal to r . Each step of thei k

< Ž . < < Ž . <binary search computes D q, r l S for some r g R . If D q, r l S F k,i
< Ž . <then r - r . If D q, r l S s k and ­ D contains a point of S, thenk

r s r . Otherwise r) r . By Theorem 3.3, each step of the binary searchk k
c'ŽŽ . .requires O nr s log n time. If r s r , we already know the value ofi k

r , so we stop right away. Next, assume that r - r . For a node ¨ g V ofk i k i
Ž . Ž .the bottom structure, if d F r resp. d) r , i.e., d - r resp. d) r ,¨ i ¨ i ¨ k ¨ k

Ž .then we visit the right resp. left child of ¨ in the next step. For a node

FIG. 5. q, dy, dq.¨ ¨

SELECTION IN MONOTONE MATRICES 599

y Ž y .¨ g V of the top structure, if d) r i.e., d) r , then t and D arei ¨ i ¨ k ¨ k
q Ž q .disjoint, so we ignore ¨. If d F r i.e., d - r , then t : D , and¨ i ¨ k ¨ k

< <therefore we add S to count. If none of these two conditions is satisfied,¨
then D crosses ¨ and we visit all the children of ¨ in the next step. Byk
repeating this step for all nodes in V , we have at our disposal all the nodesi
that we have to visit in the next step. It can be shown that during the
simulation of the algorithm, the outcome of one of the oracle calls
Ž < Ž . <.computation of D q, r l S will be r s r , so the algorithm will returnk
the value of r before completing the simulation.k

c'Ž . ŽŽ . .Since C has O log n levels, and we spend O nr s log n time at
each level, we can conclude that

THEOREM 3.6. Let S be a set of n points in the plane, let P be a con¨ex
polygon as defined abo¨e, and let s be a parameter, with n F s F n2. S can be

Ž . Ž .preprocesses in time O s log n into a data structure of size O s , so that the
ŽŽ . c .kth nearest neighbor for any point q g ­ P can be counted in O nrs log n

time.

Going back to the problem of computing the k th nearest neighbor ofi
p , we set s s n4r3, preprocess S as in Theorem 3.6, and query it with thei
pair p , k for each 1 F i F n.i i

THEOREM 3.7. Let S be a set of points in the plane in con¨ex position,
² :and let k s k , . . . , k be a ¨ector of length n as defined earlier. Then the1 n

k th nearest neighbor of p , for all i F n, can be computed in timei i
Ž 4r3 c .O n log n .

As for an arbitrary set of points in the plane, in view of Theorem 3.4, we
can conclude

THEOREM 3.8. Let S be a set of points in the plane, and let k s
² :k , . . . , k be a ¨ector of length n as defined earlier. Then the k th nearest1 n i

Ž 7r5 c .neighbor of p , for all i F n, can be computed in time O n log n .i

4. CONCLUSION

In this paper, we presented efficient algorithms for the array- and
row-selection problems. The running time of these algorithms can be
improved if we have a faster procedure for decomposing a sequence into
monotone sequences. As mentioned in Section 2, our algorithms work for
generalized monotone matrices as well. As far as we know, this is the first
subquadratic algorithm for the array-selection problem when k is large.

AGARWAL AND SEN600

We also presented and efficient algorithm for the all kth nearest neighbor
problem for a set of points in convex position.

We conclude by mentioning some open problems.

1. Can the time complexity of the array-selection problem be im-
Ž 4r3 OŽ1. . w xproved to O n log n ? Agarwal et al. 1 have given such an algorithm

for selecting the k th smallest distance in a set of points in the plane?

2. Can the k th smallest distance in a set of planar points in convex
position be computed in near-linear time? The best known algorithm to

Ž w x.date is the same as for an arbitrary set of points cf. 1 .

3. Can the all k th nearest neighbor problem for an arbitrary set of
Ž 4r3 c .points in the plane be solved in time O n log n ?

REFERENCES

1. P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri, Selecting distances in the plane,
Ž .Algorithmica 9 1993 , 495]514.

2. P. K. Agarwal and J. Matousek, Ray shooting and parametric search, SIAM J. Comput. 22ˇ
Ž .1993 , 794]806.

3. P. K. Agarwal and J. Matousek, Range searching with semi-algebraic sets, Discreteˇ
Ž .Comput. Geom. 11 1994 , 393]418.

4. A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications of a
Ž .matrix-searching algorithm, Algorithmica 2 1987 , 195]208.

5. A. Aggarwal and J. Park, Parallel searching in multidimensional monotone arrays, J.
Algorithms, to appear.

6. A. Aggarwal and J. Park, Sequential searching in multidimensional monotone arrays, J.
Algorithms, to appear.

7. A. Aggarwal and J. Park, Improved algorithms for economic lot size problems, Oper. Res.
Ž .41 1993 , 549]571.

8. A. Aggarwal, D. Kravets, J. Park, and S. Sen, Parallel searching in generalized Monge
arrays with applications, in ‘‘Proc. 2nd ACM Symp. Parallel Algorithms and Architec-
tures, 1990,’’ pp. 259]268.

9. A. Aggarwal and S. Suri, Computing the longest diagonal of a simple polygon, Inform.
Ž .Process. Lett. 35 1990 , 13]18.

10. N. Alon and Y. Azar, Comparison-sorting and selecting in totally monotone matrices, in
‘‘Proceedings 3rd Annual ACM]SIAM Symposium on Discrete Algorithms, 1992,’’ pp.
403]408.

11. R. Bar Yehuda and S. Fogel, Good splitters with applications to ray shooting, Algorith-
Ž .mica 11 1994 , 133]145.

12. M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan, Time bounds for selection, J.
Ž .Comput. Systems Sci. 7 1973 , 448]461.

13. P. Callahan and S. Kosaraju, Faster algorithms for some geometric graph problems in
higher dimensions, in ‘‘Proceedings, 4th Annual ACM]SIAM Symposium on Discrete
Algorithms, 1993,’’ pp. 291]300.

14. B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom. 10
Ž .1993 , 145]158.

SELECTION IN MONOTONE MATRICES 601

15. B. Chazelle, R. Cole, F. Preparata, and C. Yap, New upper bounds for neighbor
Ž .searching. Inform and Control 68 1986 , 105]124.

16. B. Chazelle, M. Sharir, and E. Welzl, Quasi-optimal upper bounds for simplex range
Ž .searching and new zone theorems, Algorithmica 8 1992 , 407]429.

17. B. Chazelle and E. Welzl, Quasi-optimal range searching in space of finite VC-dimension.
Ž .Discrete Comput. Geom. 4 1989 , 467]490.

18. M. Dickerson, R. Drysdale, and J. Sack, Simple algorithms for enumerating interpoint
Ž .distances and finding k nearest neighbors, Internat. J. Comput. Geom. Appl. 2 1992 ,

221]239.
19. E. Dijkstra, ‘‘A Discipline of Programming,’’ Prentice]Hall, Englewood Cliffs, NJ, 1976.
20. H. Edelsbrunner, ‘‘Algorithms in Combinatorial Geometry,’’ Springer-Verlag, Berlin,

1987.
21. P. Erdos and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2˝

Ž .1935 , 463]470.
22. D. Eppstein, Sequence comparison with mixed convex and concave sets, J. Algorithms 11

Ž .1990 , 85]101.
23. G. Frederickson and D. Johnson, Finding the kth shortest paths and p-centers by

Ž .generating and searching good data structures, J. Algorithms 4 1983 , 61]80.
24. G. Frederickson and D. Johnson, Generalized selection and ranking: sorted matrices,

Ž .SIAM J. Comput. 13 1984 , 14]30.
25. Z. Galil and J. Park, A linear-time algorithm for concave one-dimensional dynamic

Ž .programming, Inform. Process. Lett. 33 1990 , 309]311.
26. L. Guibas and J. Hershberger, Optimal shortest path queries in a simple polygon, J.

Ž .Comput. Systems Sci. 39 1989 , 126]152.
27. J. Hershberger and S. Suri, Matrix searching with the shortest path metric, in ‘‘Proceed-

ings 25th Annual ACM Symposium on Theory of Computing, 1992,’’ pp. 485]494.
28. D. Johnson and T. Mitzoguchi, Selecting the kth element in X q Y and X q X1 2

Ž .q ??? qX , SIAM J. Comput. 7 1978 , 147]153.m
29. M. Klawe and D. Kleitman, An almost linear time algorithm for generalized matrix

Ž .searching, SIAM J. Discrete Math. 3 1990 , 81]97.
30. D. Kravets and J. Park, Selection and sorting in totally monotone arrays, Math. Systems

Ž .Theory 24 1991 , 201]220.
31. Y. Mansour, J. Park, B. Schieber, and S. Sen, Improved selection in totally monotone

Ž .arrays, Internat. J. Comput. Geom. Appl. 3 1993 , 115]132.
32. L. Larmore and B. Schieber, On line dynamic programming with applications to the

Ž .prediction of RNA secondary structures, J. Algorithms 12 1992 , 490]515.
33. J. Matousek and E. Welzl, Good splitters for counting points in triangles, J. Algorithmsˇ

Ž .13 1992 , 307]319.
34. N. Megiddo, Combinatorial optimization with rational objective functions, Math. Oper.

Ž .Res. 4, 1979 , 414]424.
35. N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms,

Ž .J. Assoc. Comput. Mach. 30 1983 , 852]865.
36. N. Sarnak and R. E. Tarjan, Planar point location using persistent search trees, Comm.

Ž .ACM 29 1986 , 609]679.
37. A. Schonhage, M. Paterson, and N. Pipinger, Finding the median, J. Comput. Systems Sci.¨

Ž .13 1976 , 184]199.
38. R. Wilber, The concave least-weight subsequence problem revisited, J. Algorithms 9

Ž .1988 , 418]425.
Ž .39. X. Wu, Optimal quantization by matrix searching, J. Algorithms 12 1991 , 663]673.

Ž .40. P. Vaidya, An O n log n algorithm for the all-nearest-neighbors problem, Discrete
Ž .Comput. Geom. 4 1989 , 101]115.

