
Discrete Applied Mathematics 145 (2005) 455–464
www.elsevier.com/locate/dam

The algebraic Monge property and path problems

Wolfgang Beina ;1, Peter Bruckerb, Lawrence L. Larmorea;1, James K. Parkc;2
aSchool of Computer Science, University of Nevada, 4505 Maryland Parkway, Las Vegas, NV 89154, USA

bFachbereich Mathematik/Informatik, Universit*at Osnabr*uck, D-49069 Osnabr*uck, Germany
cSandia National Laboratories, Albuquerque, NM 87185, USA

Received 31 December 2002; received in revised form 17 April 2004; accepted 4 June 2004

Abstract

We give algorithmic results for combinatorial problems with cost arrays possessing certain algebraic Monge properties.
We extend Monge-array results for two shortest path problems to a general algebraic setting, with values in an ordered
commutative semigroup, if the semigroup operator is strictly compatible with the order relation.

We show how our algorithms can be modi3ed to solve bottleneck shortest path problems, even though strict compatibility
does not hold in that case. For example, we give a linear time algorithm for the unrestricted shortest path bottleneck
problem on n nodes, also O(kn) and O(n3=2 log5=2 n) time algorithms for the k-shortest path bottleneck problem.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Monge property; Algebraic Monge matrices; Bottleneck shortest path problems; Combinatorial optimization

1. Introduction

When restricted to cost arrays possessing the sum Monge property, many combinatorial optimization problems with
sum objective functions become signi3cantly easier to solve. For path problems, consider the complete directed acyclic
graph G = (V; E), i.e., G has vertices V = {1; : : : ; n} and edges E = {(i; j) | 16i¡j6n}. The unrestricted shortest-path
problem is the problem of 3nding the shortest path from vertex 1 to vertex n whereas the k-edge shortest-path problem
is the problem of 3nding such a path that has exactly k edges. The shortest path problem for a complete directed acyclic
graph is also called the least weight subsequence problem, where the vertices of the path are thought of as a subsequence
of the sequence of all vertices in topological order. In [12], an O(n log n)-time algorithm is given for this problem if the
weights satisfy the sum Monge property (the term concave least weight subsequence problem is used in that paper), while
3rst Wilber [17] and later Larmore and Schieber [15] showed that the same problem can be solved in O(n) time, and
that the k-shortest path problem can be solved in O(kn) time. A substantial improvement in the case of the k-shortest
path problem was found by Aggarwal et al. [3] who present an O(n

√
k log n) algorithm using parametric search. In this

paper we will give a number of eAcient algorithms for the more general case of algebraic objectives.
Many combinatorial optimization problems with sum objectives have eAcient algorithms for algebraic objective

functions. We refer to the work of Burkard and Zimmermann [9] for a survey of classical results. Scheduling problems
with algebraic objective functions are considered in [6]. SeiDart [16] gives results on algebraic transportation problems.
In an algebraic combinatorial optimization problem, we are given a collection S of subsets of a 3nite nonempty set E,
as well as a cost function � : E → H , where (H; ∗;4) is an ordered commutative semigroup, and where the semigroup
operation ∗ is compatible with the order relation 4, i.e., for all a; b; c∈H , a≺ b implies c ∗ a4 c ∗ b. (Throughout this

1 Research supported by NSF grants CCR-9821009 and CCR-0312093.
2 Research supported by the US Department of Energy under Contract DE-AC04-76DP00789.
E-mail address: bein@cs.unlv.edu (W. Bein).

0166-218X/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2004.06.001

mailto:bein@cs.unlv.edu


456 W. Bein et al. / Discrete Applied Mathematics 145 (2005) 455–464

paper, we require a slightly stronger property, namely that the semigroup operator ∗ be strictly compatible with the order
relation 4, i.e., for all a; b; c∈H , a≺ b if and only if c ∗ a ≺ c ∗ b.) The cost of subset S = {e1; e2; : : : ; ek} ⊂ E is
�(e1) ∗ �(e2) ∗ · · · ∗ �(ek), and we are interested in 3nding a solution S ∈ S with minimum value. When the operation
is addition, the objective is to minimize the sum, for example. Objectives other than sum often accommodate practical
optimization problems more easily. Of particular interest are bottleneck objectives, where the operation ∗ is the “max”
operation, i.e., x ∗ y = max{x; y}. We mention that Gabow and Tarjan [11] give results concerning bottleneck shortest
path problems.

We say that an m× n array A= {ai; j} possesses the algebraic Monge property if for all 16i¡k6m and 16j¡‘6n,
ai; j ∗ ak;‘4 ai;‘ ∗ ak; j . If operation “∗” is the “+” operation we just say that array A has the Monge property, if the
operation “∗” is replaced by the “max” operation we say that array A has the bottleneck Monge property. Klinz et al.
[13] have developed an algorithm to recognize bottleneck Monge matrices in linear time. Burkard and Sandholzer [8]
identify several families of cost arrays in which the bottleneck traveling-salesman problem can be solved in polynomial
time; their results include bottleneck Monge arrays as an important special case. Finally we mention that Burkhard et al.
[7] give an excellent survey article on Monge properties. We note that their article refers to a number of results which
appear in an earlier unpublished manuscript of ours [5].

Many of the result presented here rely on the fact that the Monge property implies total monotonicity. A 2 × 2 array
A={ai; j} is monotone if a1;16a1;2 implies a2;16a2;2. A partial array (i.e., some of the entries can be unde3ned) is said to
be totally monotone if every 2×2 subarray where all entries are de3ned is monotone. Similarly, a partial array is transpose
totally monotone if its transpose (de3ned by reversing the role of rows and columns) is totally monotone. If an array is
totally monotone (or transpose totally monotone), all row (or column) minima can be found by the so-called “SMAWK”
algorithm of Aggarwal et al. [2], using at most linearly many queries to the array and linearly many comparisons. The
online monotone matrix searching algorithm of Larmore and Schieber [15], essentially an online version of SMAWK,
solves a similar problem with an online restriction: Given a totally monotone partial matrix A = {ai; j}16j¡i6n, all row
minima of A can be found using O(n) queries to A and O(n) comparisons, subject to the online condition that no query
to the kth column of A can be made until the minimum of the kth row is found. Similarly, given a transpose totally
monotone partial matrix B = {bi; j}16i¡j6n, all column minima of B can be found using O(n) queries to B and O(n)
comparisons, subject to the online condition that no query to the kth row of B can be made until the minimum of the
kth column is found.

Our paper is organized as follows: In Section 2 we derive the general algorithm for algebraic shortest path problems
with the Monge property. The results follows fairly directly from the fact that if a matrix A possesses the algebraic
Monge property, then A is totally monotone. Section 3 develops the algorithm for the bottleneck case. It might seem that
the bottleneck results follow routinely, but, in fact as we shall see, the bottleneck case is more intricate because strict
compatibility does not hold. We derive an O(n) time algorithm for the unrestricted shortest path bottleneck problem, as
well as an O(kn) time algorithm the k-shortest path bottleneck problem. Section 4 contains an alternate O(n3=2 log5=2 n)
algorithm that in some sense generalizes Aggarwal et al. [3] algorithm. In Section 5 we apply our results to a variant of
Hirschberg and Larmore’s optimal-paragraph-formation problem [12] and in Section 6 we obtain a fast algorithm for a
special case of the bottleneck traveling-salesman problem.

2. Algorithms for algebraic shortest-path problems

We will now show that both the unrestricted and the k-edge variants of the algebraic shortest-path problem for an
ordered commutative semigroup (H; ∗;4), where costs satisfy the algebraic Monge property, are signi3cantly easier to
solve, if the operation ∗ is strictly compatible with the order relation. The strict compatibility condition of the ordered
semigroup guarantees that an array possessing the algebraic Monge property is also totally monotone, the crucial property
exploited by the algorithms given here, as well as others, including the classic SMAWK algorithm mentioned earlier.

We note that the results of this section and the next section can be obtained in a straightforward way by applying
techniques known in the literature on shortest path problems in graphs with Monge weights and using the fact that those
matrices are totally monotone. We include most of the short proofs in the interest of making the paper self-contained.
The following lemma, which we state without proof, makes the claim in the previous paragraph about monotonicity
precise.

Lemma 1. Let (H; ∗;4) denote an ordered commutative semigroup whose operation is strictly compatible with its order
relation, and let A= {ai; j} denote an array whose entries are drawn from that semigroup. If A possesses the algebraic
Monge property, then A is totally monotone and also transpose totally monotone.



W. Bein et al. / Discrete Applied Mathematics 145 (2005) 455–464 457

Note that if the semigroup operation ∗ is compatible with its order relation 4 but not strictly compatible with it, then an
array whose entries are drawn from the commutative semigroup may possess the algebraic Monge property without being
totally monotone. For example, consider again the ordered commutative subgroup (R;max;6) associated with bottleneck
combinatorial optimization problems. The array(

1 0

1 1

)

satis3es the inequality max{ai; j ; ak;‘}6max{ai;‘; ak; j} for all i ¡ k and j¡‘, but it is not totally monotone.
Before we can obtain the desired shortest-path algorithms, we need one more lemma.

Lemma 2. Let (H; ∗;4) denote an ordered commutative semigroup whose operation is compatible with its order relation,
and let C={ci; j} denote an array whose entries are drawn from (H; ∗;4). Furthermore, let B={bi} denote any vector,
and let A= {ai; j} denote the array given by ai; j = bi ∗ ci; j . If C possesses the algebraic Monge property, then so does A.

Proof. If C is algebraic Monge, then for all i ¡ k and j¡‘, ci; j ∗ ck;‘4 ci;‘ ∗ ck; j . Since the order relation is compatible,
and the composition ∗ is commutative, we have

ci; j ∗ ck;‘ ∗ bi ∗ bk 4 ci;‘ ∗ ck; j ∗ bi ∗ bk
bi ∗ ci; j ∗ bk ∗ ck;‘4 bi ∗ ci;‘ ∗ bk ∗ ck; j
ai; j ∗ ak;‘4 ai;‘ ∗ ak; j :

Theorem 1. Let (H; ∗;4) denote an ordered commutative semigroup whose operation is strictly compatible with its
order relation, and let G denote a complete directed acyclic graph on vertices 1; : : : ; n whose edge costs C = {ci; j} are
drawn from H. If C possesses the algebraic Monge property, then the algebraic k-edge shortest-path problem for G
can be solved in O((ta + tc)kn) time, where ta is the worst-case time required for performing a composition ∗ and tc is
the worst-case time required for comparing two elements of H.

Proof. Let 1 ,→ j denote a path from vertex 1 to vertex j. De3ne a‘i; j to be the length of the shortest ‘-edge 1 ,→ j path
that contains the edge (i; j), and d‘i to be the length of the shortest ‘-edge 1 ,→ i path. Then

a‘i; j =

{
d‘−1
i ∗ ci; j if i¡j;

∞ otherwise

and

d‘j =

{
min16i¡ja

‘
i; j if ‘¿1;

ci; j if ‘ = 1:

By Lemma 2, for 26‘6k, the array A‘ = {a‘i; j} is algebraic Monge.
Our algorithm contains k phases. In phase ‘, we use d‘−1

1 through d‘−1
n to compute d‘1 through d‘n. Note that d‘1

through d‘n are simply the minima of column 1 through column n of array A‘. In phase ‘, any entry a‘i; j of array A‘ can
be computed in ta time, since d‘−1

i is already known. Thus, using the SMAWK algorithm [2], the column minima of A‘

can be found in O((ta + tc)n) time. Since our algorithm has k phases, the total running time is O((ta + tc)kn).

Theorem 2. Let (H; ∗;4) denote an ordered commutative semigroup whose internal composition ∗ is strictly compatible
with its order relation 6, and let G denote a complete directed acyclic graph on vertices 1; : : : ; n whose edge costs are
drawn from H. If G’s edge costs possess the algebraic Monge property, then the algebraic unrestricted shortest-path
problem for G can be solved in O((ta + tc)n) time, where ta is the worst-case time required for computing di ∗ ci; j and
tc is the worst-case time required for comparing two entries of A.

Proof. This proof is very similar to the proof of Theorem 1. De3ne ai; j to be the length of the shortest 1 ,→ j path that
contains the edge (i; j), and di to be the length of the shortest 1 ,→ i path. Then

ai; j =

{
di ∗ ci; j if i¡j;

∞ otherwise



458 W. Bein et al. / Discrete Applied Mathematics 145 (2005) 455–464

and

dj =

{
min16i¡j ai; j if j¿1;

e if j = 1;

where the min operation is performed over the order relation 4 and e is the identity element for the operation ∗. By
Lemma 2, the array A= {ai; j} is algebraic Monge.

Note that d1 through dn are the minima of column 1 through column n of array A. An entry ai; j can be computed in ta
time if di is already known. Thus, the array {ai; j} 3ts the hypotheses of the online monotone matrix searching algorithm
of Larmore and Schieber [15]. Since A is transpose totally monotone in our application, this algorithm computes the
column minima of A in O(n) steps, which requires O((ta + tc)n) time.

3. Algorithms for bottleneck shortest-path problems

In this section, we show how the two algebraic shortest-path algorithms considered before can be modi3ed to handle
the bottleneck shortest-path problems. Consider the ordered commutative subgroup (R;max;6) naturally associated with
bottleneck combinatorial optimization problems, where R is the real numbers. In this case the operation is compatible with
the order relation 6 but not strictly compatible with it. For example, 5¡ 7 but max{8; 5}�max{8; 7}. We will overcome
this limitation by “extending” the semigroup to (T;⊕;4), where T is the set of all 3nite multisets of real numbers, ⊕ is
union, and 6 is lexical comparison, starting with the largest element. We shall call this the semigroup of ordered lists
because we think of each multiset as a list sorted in non-decreasing order, and union as merge. (T;⊕;4) is an ordered
commutative semigroup and ⊕ is strictly compatible with 4.

To obtain our results we assume that the cost array possesses what we call the strict bottleneck Monge property,
which requires that for all i¡k and j¡‘, either max{ci; j ; ck;‘}¡max{ci;‘; ck; j} or both max{ci; j ; ck;‘} = max{ci;‘; ck; j}
and min{ci; j ; ck;‘}6min{ci;‘; ck; j}.

De3ne the full cost of the bottleneck shortest-path to be the ordered tuple containing the costs of all the edges on
this path sorted into non-increasing order. De3ne the bottleneck cost of the bottleneck shortest-path to be the 3rst (i.e.,
largest) entry in the full cost of the bottleneck shortest-path. For example, if the bottleneck shortest 1 ,→ j path consists
of edges (1; i1), (i1; i2), (i2; i3), (i3; j) with the costs c1; i1 = 6, ci1 ;i2 = 3, ci2 ;i3 = 9, ci3 ;j = 5, then the full cost of this path
is (9; 6; 5; 3) and its bottleneck cost is 9. We model the bottleneck shortest-path problems using the ordered commutative
semigroup (T;⊕;4). To be able to use our results for the algebraic Monge property, we need the following lemma.

Lemma 3. Let C = {ci; j} be the array of edge costs. Let CT = {cTi; j} denote an array where each entry cTi; j is a tuple
consisting of a single element ci; j . If C possesses the strict bottleneck Monge property, then CT possesses the algebraic
Monge property under (T;⊕;4).

Proof. Suppose i¡k and j¡‘. We need to prove that (cTi; j)⊕ (cTk;‘)4 (cTi;‘)⊕ (cTk; j). Let L1 =max{ci; j ; ck;‘},
L2 =min{ci; j ; ck;‘}, R1 = max{ci;‘; ck; j} and R2 = min{ci;‘; ck; j}. Using this notation, (cTi; j) ⊕ (cTk;‘) = (L1; L2) and
(cTi;‘) ⊕ (cTk; j) = (R1; R2). Thus, we need to prove that (L1; L2)4 (R1; R2).

By the strict bottleneck Monge property, we have one of two cases: In the 3rst case, when max{ci; j ; ck;‘}¡
max{ci;‘; ck; j}, we have L1¡R1, which implies that (L1; L2) ≺ (R1; R2). Case 2 is that both max{ci; j ; ck;‘}=max{ci;‘; ck; j}
and min{ci; j ; ck;‘}6min{ci;‘; ck; j} Then we have L1 = R1 and L26R2, which implies that (L1; L2)4 (R1; R2).

As stated in Section 1, the composition ⊕ is strictly compatible with the order relation 4. Thus, given Lemma 3, if we
use array CT as our cost array, all the lemmas and theorems of Section 2 apply to the bottleneck shortest-path problems
modeled by (T;⊕;4). Note that once the algorithms in Section 2 return their answers for the cost of the shortest-path,
the bottleneck-cost of the shortest-path can be determined by taking the largest element in the cost tuple. We now state
our results.

Theorem 3. The bottleneck k-edge shortest-path problem for an n-vertex directed acyclic graph whose edge costs possess
the strict bottleneck Monge property can be solved in O(kn) time.

Proof. This theorem appears to be a simple corollary of Theorem 1, but the operations in the semigroup of ordered lists
take O(n) time each. We resolve this problem by ignoring all but the largest two elements of each ordered list ai; j . When
the minimum of a column dj is found, only the largest element of this list is retained for the next step of the algorithm.



W. Bein et al. / Discrete Applied Mathematics 145 (2005) 455–464 459

As a result, each query and each comparison takes only constant time. The resulting path obtained may diDer from the
one obtained by using the full lists, but that path nevertheless has minimum bottleneck cost.

Similarly we obtain the result for the unrestricted case.

Theorem 4. The bottleneck unrestricted shortest-path problem for an n-vertex directed acyclic graph whose edge costs
possess the strict bottleneck Monge property can be solved in O(n) time.

Proof. This theorem would appear to be a simple corollary of Theorem 2, using the online monotone matrix searching
algorithm [15], but once again we are concerned with the time to execute the operations of the semigroup. This diAculty
is resolved just as in the proof of Theorem 3. Retain only the largest item in the sorted list for di, and only the largest
two items in the sorted list for ai; j . Each operation will take O(1) time, and a perhaps diDerent path will be found, but
it will still be of minimum bottleneck cost.

4. An alternate algorithm for the bottleneck k-edge shortest-path

In this section we present a second algorithm for the bottleneck k-edge shortest-path problem that in some sense gen-
eralizes Aggarwal et al. [4] algorithm. Our algorithm is based on a O(n)-time query subroutine for determining whether
the graph contains a k-edge 1 ,→n path using only edges whose costs are less than or equal to some threshold T . To
create the query subroutine, we need two technical lemmas. We say that a path satis?es the threshold if every edge on
the path is less than or equal to T .
De3ne two graphs G′

T =(V; E) and G′′
T =(V; E) with the same vertex and edge sets as G but with diDerent cost functions

{c′
i; j} and {c′′

i; j}, where

c′
i; j =

{
1 if ci; j6T;

+∞ otherwise

and

c′′
i; j =

{−1 if ci; j6T;

+∞ otherwise:

Lemma 4. If the cost array C = {ci; j} is bottleneck Monge, then the arrays C′ = {c′
i; j} and C′′ = {c′′

i; j} are Monge.

Proof. We prove the lemma for the array C′ = {c′
i; j}. The proof for C′′ is identical. We prove by contradiction. Since

all the entries in C′ are either 1 or +∞, there are only two possible ways that C′ could fail to be Monge. In the 3rst
case, for some i; j; k; ‘, both c′

i; ‘ and c′
j; k are 1 and either c′

i; j or c
′
k;‘ is +∞. In the second case, for some i; j; k; ‘, one of

c′
i; ‘ or c′

j; k is +∞ and both c′
i; j and c′

k;‘ are +∞.
Case 1 implies that in C, ci;‘; cj; k6T and either ci; j or ck;‘ is greater than T . This means that max{ci; j ; ck;‘}¿

max{ci;‘; cj; k}, which violates the bottleneck Monge property of C. Case 2 implies that in C, either ci;‘ or cj;k is greater
than T and both ci; j ; ck;‘¿T . This means that either max{ci; j ; ck;‘}¿max{ci;‘; cj; k}, which violates the bottleneck Monge
property of C; or that both max{ci; j ; ck;‘} = max{ci;‘; cj; k} and min{ci; j ; ck;‘}¿min{ci;‘; cj; k}, which also violates the
bottleneck Monge property of C.

Lemma 5. Suppose the unrestricted shortest 1 ,→ n path P in G′
T contains k

′ edges and has length that is less than +∞.
Also, suppose the unrestricted shortest 1 ,→ n path Q in G′′

T contains k ′′ edges and has length that is less than +∞.
Then there exists a k-edge 1 ,→ n path in G that satis?es the threshold if k ′6k6k ′′.

Proof. Note that because of the edge costs in G′
T and G′′

T , k
′6k ′′. Also, if either k = k ′ or k = k ′′, we are done. Thus,

assume that k ′¡k¡k ′′. Our approach is to take the two paths P and Q and use them to create two new 1 ,→ n paths P′

and Q′ that contain k ′ + 1 and k ′′ − 1 edge, respectively, and satisfy the threshold. By repeating this procedure, we can
create a 1 ,→ n path of any length k for k ′¡k¡k ′′ that satis3es the threshold, thus proving the lemma.

Let i
P
,→j be the subpath of P from vertex i to vertex j and let |i P

,→ j| be the number of edges on that subpath. To
create P′ and Q′, notice that by the pigeon-hole principle, there is an edge (i; t) in P and an edge (s; j) in Q such that



460 W. Bein et al. / Discrete Applied Mathematics 145 (2005) 455–464

i¡s¡j6t and |1 P
,→ t|=|1 P

,→ s|. Let Q′ consist of 1
P
,→ i, followed by the edge (i; j), followed by j

Q
,→ n; and P′ consist of

1
Q
,→ s, followed by the edge (s; t), followed by t

P
,→ n. Clearly, P′ and Q′ are both 1,→n paths. Since |1 P

,→ i|= |1 P
,→ s|−1,

we conclude that |1 P′
,→ n| = k ′ + 1 and |1 Q′

,→ n| = k ′′ − 1. The only thing that remains to be shown is that both P′ and
Q′ satisfy the threshold. If j = t, then the set of edges that appear in P′ and Q′ are exactly the same as the set of edges
that appear in P and Q, and therefore P′ and Q′ satisfy the threshold. Thus, we assume that j¡t. The set of edges
that appear in P′ and Q′ are the same as the set of edges that appear in P and Q, except that the edges (i; t) and (s; j)
are replaced by edges (i; j) and (s; t). By the bottleneck Monge property, we know that max{ci; j ; cs; t}¡max{ci; t ; cs; j}
or both max{ci; j ; cs; t} = max{ci; t ; cs; j} and min{ci; j ; cs; t}6min{ci; t ; cs; j}. Since the edges (i; t) and (s; j) are on paths P
and Q, we know that they both cost 6T . By the bottleneck Monge property, ci; j ; cs; t6T , and thus P′ and Q′ satisfy the
threshold.

We are now ready to design the query subroutine for determining whether the given graph contains a k-edge 1 ,→ n
path that uses only edges whose costs are less than or equal to some threshold T . Given Lemma 5, such a path exists if
k ′6k6k ′′, where k ′ is the length of the unrestricted shortest 1 ,→ n path in G′

T and k ′′ is the length of the unrestricted
shortest 1 ,→ n path in G′′

T . Using the algorithm of Larmore and Schieber [15], we can determine the length of the
unrestricted shortest 1 ,→ n path in a graph with Monge property in O(n) time. Since the cost arrays of both G′

T and G′′
T

satisfy the Monge property (Lemma 4), our query subroutine runs in O(n) time.

Theorem 5. The bottleneck k-edge shortest-path problem for an n-vertex graph whose edge costs possess the strict
bottleneck Monge property can be solved in O(n3=2 log2 n) time (or in O(n log2 n) time if the problem’s cost array is
also bitonic). 3

Proof. We use the result of Agarwal and Sen [1], who show how to 3nd the dth smallest entry in an m × n totally
monotone array in O((m+ n)

√
n log n) time. For our n× n totally monotone array, this translates into O(n3=2 log n) time.

There are n2 entries in the n × n cost array CT of the bottleneck shortest-path problem. We perform a binary search on
these n2 entries by calling a procedure which we call BINARY-SEARCH. For i¡j BINARY-SEARCH(CT , i, j) is recursively
de3ned as follows. First, use the algorithm of Agarwal and Sen [1] to 3nd the � j + i=2�th smallest entry in CT , which
we call $. We use our query algorithm to test if the graph contains a k-edge 1 ,→ n path that uses only edges whose
costs are less than or equal to $. If the query returns “yes,” then call BINARY-SEARCH(CT , i, �j + i=2�); otherwise call
BINARY-SEARCH(CT , �j + i=2�, j). The binary search returns the smallest entry $∗ in CT for which there exists a k-edge
1 ,→ n path that uses only edges whose costs are less than or equal to $∗. Thus, $∗ is the bottleneck-cost of the bottleneck
k-edge shortest-path.

To 3nd the actual path, we consider Lemma 5. We compute the unrestricted shortest 1 ,→ n paths P and Q, |P| = k ′,
|Q|= k ′′, in the graphs G′

$∗ and G′′
$∗ . Scanning vertices in increasing order starting at 1, we then look for an edge (i; t) in

P and an edge (s; j) in Q that satisfy i¡s¡j6t and |1 P
,→ t|= |1 P

,→ s|. Let Q′ consist of 1
P
,→ i, followed by the edge (i; j),

followed by j
Q
,→ n; and P′ consist of 1

Q
,→ s, followed by the edge (s; t), followed by t

P
,→ n. From Lemma 5, we know that

P′ and Q′ are both 1 ,→ n paths that satisfy $∗ and that |P′|= k ′ +1 and |Q′|= k ′′ − 1. If k= k ′ +1 or k= k ′′ − 1, we are
done. Otherwise, we repeat this procedure, except that we start our search for the new edges where we want to switch the
paths not from vertex 1, but from vertices i and s. Thus, the total running time to 3nd the path given $∗ is O(n+k)=O(n).
The total running time to 3nd the bottleneck k-edge shortest-path is O(log n2(n3=2 log n+ n)) = O(n3=2 log2 n).
In the case of a bitonic cost array, the selection problem is simpler. The selection algorithm of Frederickson and

Johnson [10] computes the n largest elements overall in O(n) sorted lists in O(n) time. When the array is bitonic, we
can easily decompose it into 2n sorted lists in O(n log n) time. Applying the selection algorithm, we can compute the dth
smallest entry in an n× n bitonic array in O(n log n) time. Thus, for cost arrays that satisfy the string bottleneck Monge
property and are bitonic, the k-edge shortest-path can be found in O(n log2 n) time.

Using a similar query technique, we can also obtain the following result for the unbalanced assignment problem.

Theorem 6. The bottleneck assignment problem for an m × n bipartite graph, where m6n and the edge costs possess
the strict bottleneck Monge property, can be solved in O((m

√
n logm+ n) log2 n) time (or in O(m log2 n+ n log n) time

if the problem’s cost array is also bitonic).

3 An n-entry vector B= {bi} is called bitonic if there exists an i satisfying 16i6n such that b1¿ · · ·¿ bi−1¿ bi6bi+16 · · ·6bn.
We call a 2-dimensional array bitonic if its rows or its columns are bitonic.



W. Bein et al. / Discrete Applied Mathematics 145 (2005) 455–464 461

Proof. We say that a matching satis?es the threshold T if all the edges of the matching have weight T or less. First,
we design a query algorithm analogous to the one used in the proof of Theorem 5. This query algorithm, given a
bipartite graph G and a threshold T , determines if there is a perfect matching of G that satis3es the threshold. The query
algorithm is greedy, and it works by 3nding the minimum value j1 such that w1; j1 6 T , then the minimum value j2 such
that w2; j26T and j2¿j1, then the minimum value j3 such that w3; j36T and j3¿j2, and so forth. This algorithm takes
O(n) time. If this algorithm produces a perfect matching, then clearly this matching satis3es the threshold. Furthermore,
it is not diAcult to see that if there exists a perfect matching that satis3es the threshold, then our algorithm 3nds
one. To see this, consider any perfect matching M that satis3es the threshold. Consider the 3rst vertex i such that
(i; ji) �∈M . We show how to get another perfect matching M ′ in which the 3rst vertex i′ such that (i′; ji′) �∈ M ′ is
greater than i. Suppose that i is matched to ‘ in M . Our computation of ji guarantees that ‘¿ji. If ji is unmatched
in M , then we can simply remove (i; ‘) and add (i; ji) to get another perfect matching M ′ that satis3es the threshold
and contains (i; ji). Hence, assume that ji is matched in M to s, s¿i. By the strict bottleneck Monge property, we have
that max{ci; ji ; cs;‘}¡max{ci;‘; cs; ji} or both max{ci; ji ; cs;‘} = max{ci;‘; cs; ji} and min{ci; ji ; cs;‘}6min{ci;‘; cs; ji}. Thus, if
M satis3es the threshold, then M ′ =M − {(i; ‘); (s; ji)}+ {(i; ji); (s; ‘)} is another perfect matching and it contains (i; ji).

To complete the proof, we use the query algorithm just as in the proof of Theorem 5. We use the algorithm of Agarwal
and Sen [1] in our binary search, and for each dth smallest value T in the m×n cost array, we query to see if there exists
a perfect matching that satis3es the threshold T . The total running time is O(log(mn)((m+n)

√
n log n+n))=O(n3=2 log2 n).

Similarly, if the cost array is bitonic, then the running time is O(log(mn)(m log n+ n)) = O(m log2 n+ n; log n).

5. A paragraph-formation problem

One practical application of the shortest path problem in a complete directed acyclic graph is optimal paragraph
formation. Suppose that a paragraph consists of n words w1; : : : ; wn, of varying length, and a paragraph of text must
be set using those words, with the rule that no word may be broken between lines. (If a word can be broken into
syllables on separate lines, we call each syllable a “word.”) We are given a penalty matrix C, where cij is de3ned
to be the cost (“penalty”) of a line consisting of the words wi : : : wj−1. In [12], the optimal paragraph is de3ned to
be a paragraph with the smallest possible total penalty. If the penalty matrix satis3es the sum Monge condition, the
optimal paragraph can be found in O(n) time using the online monotone matrix searching algorithm of Larmore and
Schieber [15].

Let L be the optimal line width and |wi| be the length of word wi plus one for the cost of the space after
word wi. Then, following the ideas of Hirschberg and Larmore [12], the penalty function could be de3ned as ci; j =
(|wi+1| + |wi+2| + · · · + |wj| − 1 − L)2. This problem is easily transformed into an instance of the sum unrestricted
shortest-path problem. Consider a directed acyclic graph G = (V; E), where the vertices are numbered 0 through n and
E = {(i; j) | 06i¡j6n}. The cost of edge (i; j) is ci; j de3ned above. A 0 ,→ n path p = 〈(0; i1); (i1; i2); : : : ; (is; n)〉 corre-
sponds to putting words w1 through wi1 into the 3rst line, words wi1+1 through wi2 into the second line, and so forth, with
words wis through wn forming the last line. The shortest 0 ,→ n path in this graph corresponds to the minimum sum of the
line costs of the paragraph. Hirschberg and Larmore prove that the above cost function satis3es the sum Monge property,
and thus it can be solved in O(n) time. (Credit for the linear-time algorithm belongs to Wilber [17] and to Larmore and
Schieber [15].)

If we instead seek to minimize the maximum line penalty, we obtain an instance of the bottleneck unrestricted
shortest-path problem. The following two lemmas prove that the edge costs in this problem possess the strict bottle-
neck Monge property, providing the penalty functions satis3es a condition we call “strictly bitonic,” which we claim
holds for many practical applications.

We call a penalty function fi;j strictly bitonic if for any sequence of penalties fi1 ; j1 ; fi2 ; j2 ; : : : ; fis; js , which satis3es the
following conditions for every 16‘¡s:

(1) either i‘ = i‘+1 and j‘¡j‘+1,
(2) or j‘ = j‘+1 and i‘¿i‘+1

is strictly decreasing then strictly increasing. Note that either the strictly decreasing subsequence or the strictly increasing
subsequence may have length zero.

Lemma 6. Let F = {fi;j}, where fi;j is a penalty function that is strictly bitonic. Then F satis?es the strict bottleneck
Monge property.

Proof. Let i¡k¡j¡‘ and consider the two sequences fk;j ; fk;‘; fi;‘ and fk;j ; fi; j ; fi;‘. Both of these sequences must be
bitonic. For the 3rst sequence, this implies that it is not possible that fk;j¡fk;‘ and fi;‘¡fk;‘, i.e. either fk;j¿fk;‘ or



462 W. Bein et al. / Discrete Applied Mathematics 145 (2005) 455–464

fi;‘¿fk;‘. Similarly, either fk;j¿fi;j or fi;‘¿fi;j . Together, these two statements imply that max{fi;j ; fk;‘}¡
max{fi;‘; fk; j} and thus F satis3es the strict bottleneck Monge property.

Lemma 7. The penalty function ci; j = (|wi+1| + |wi+2| + · · · + |wj| − 1 − L)2 is strictly bitonic.

Proof. Let pi;j = |wi+1| + |wi+2| + · · · + |wj|. Notice that any sequence pi1 ; j1 ; pi2 ; j2 ; : : : ; pis; js , which for every 16‘¡s
satis3es:

(1) either i‘ = i‘+1 and j‘¡j‘+1,
(2) or j‘ = j‘+1 and i‘¿i‘+1

is strictly increasing. Now consider any sequence (pi1 ;j1 − 1 − L)2; (pi2 ;j2 − 1 − L)2; : : : ; (pis;js − 1 − L)2, which for every
16‘¡s satis3es:

(1) either i‘ = i‘+1 and j‘¡j‘+1,
(2) or j‘ = j‘+1 and i‘¿i‘+1.

This sequence is a quadratic function and thus is strictly increasing and then strictly increasing.

From these two lemmas, we conclude that any strictly bitonic line cost function f(i; j) satis3es the strict bottleneck
Monge property, and thus, by Theorem 4, a variant of Hirschberg and Larmore’s problem which uses f(i; j) can also be
solved in O(n) time. In particular, the variant with cost function ci; j can be solved in O(n) time.

Suppose that we wish to modify the penalty function by increasing the penalty for any line that ends with a hyphen.
We also would like to impose absolute upper and lower bounds on the length of a line, and would like to not charge a
penalty for the last line of a paragraph being too short. We now consider each of these modi3cations separately.

Absolute bounds on the line length are handled as follows. Suppose that the minimum and the maximum allowed length
for a line are * and +, respectively. Then de3ne the cost function to be

ci; j =

{
(pi;j − 1 − L)2 if *6pi;j6+ and j¡n;

M i+j otherwise;

where M is a very large number (say the sum of all the word lengths). It is not hard to see that the proof that ci; j is
bitonic holds with this new de3nition of the cost function.

To take into account the elimination of a penalty for the last line being too short, we need to de3ne a new penalty
function

c′
i; j =




0 if j = n and pi;j6L;

(pi;j − 1 − L)2 if *6pi;j6+;

M i+j otherwise:

This new cost function c′
i; j is not strictly bitonic and furthermore not even bottleneck Monge. Thus, we stick to ci; j as

our cost function, but we modify the algorithm. Instead of computing the 1 ,→ n bottleneck shortest path in Theorem 4,
we compute the bottleneck cost of the 1 ,→ n − 1 bottleneck shortest path. The algorithm in the proof of this theorem
actually computes all di’s for 16i6n− 1, where di is the bottleneck cost of the bottleneck shortest 1 ,→ i path. To 3nd
the bottleneck shortest 1 ,→ n path, we evaluate the following, which takes O(n) time:

dn = min
16i6n−1



di if pi;n6L;

max{di; (pi;n − 1 − L)2} if L6pi;n6+;

∞ otherwise:

Unfortunately, it is not possible to incorporate the hyphenation penalty into the bottleneck framework. If we are to assign
a 3xed penalty function B for breaking a word in the middle and hyphenating it, the penalty function may no longer be
bottleneck Monge. More speci3cally, we assume that each wi is now a syllable. Suppose we have i¡k¡j¡‘ and jth
syllable is not the last syllable of its word, but the ‘th syllable is. Then for the cost function to be bottleneck Monge,
we would need to have

max{(pi;j − 1 − L)2 + B; (pk;‘ − 1 − L)2}
6max{(pk;j − 1 − L)2 + B; (pi;‘ − 1 − L)2}:

It is easy to come up with a numerical example when this does not hold.



W. Bein et al. / Discrete Applied Mathematics 145 (2005) 455–464 463

We also consider another variation of the penalty function. In some circumstances, a more accurate portrayal of a
typical text formatting application would be that instead of having an ideal line length and penalizing for both running
under and running over this ideal length, the application has L as the available line width. In this case, there is a very
large penalty for running over this available line width and a quadratic penalty for running under this width. The cost
function in this case is

ci; j =

{
(pi;j − 1 − L)2 if pi;j6L;

M i+j otherwise;

where M is a very large number (say the sum of all the word lengths). It is not hard to see that this ci; j is strictly bitonic.

6. A special case of the bottleneck traveling-salesman problem

For our 3nal application, we consider a special case of the bottleneck traveling-salesman problem. Given a complete
directed graph G on vertices {1; : : : ; n} and a cost array C = {ci; j} assigning cost ci; j to the edge (i; j), we seek a tour
of G that visits every vertex of G exactly once and minimizes the maximum of the tour’s edges’ costs. We call such a
tour the bottleneck shortest-tour. In [8], Burkard and Sandholzer identi3ed several families of cost arrays corresponding
to graphs containing at least one bottleneck-optimal tour that is pyramidal. A tour T is called pyramidal if (1) the
vertices on the path T starting from vertex n and ending at vertex 1 have monotonically decreasing labels, and (2) the
vertices on the path T starting from vertex 1 and ending at vertex n have monotonically increasing labels. For example,
a tour T = 〈4; 2; 1; 3; 6; 8; 7; 5; 4〉 is pyramidal, but a tour T = 〈4; 2; 1; 6; 3; 8; 7; 5; 4〉 is not. Thus, since there is a simple
O(n2)-time dynamic-programming algorithm for computing a pyramidal tour whose maximum edge cost is minimum
among all pyramidal tours, the bottleneck traveling-salesman problem for any graph whose cost array is a member of one
of Burkard and Sandholzer’s families can be solved in O(n2) time.
We now show that if the edge cost array of a graph possesses the strict bottleneck Monge property, then it is possible

to 3nd the bottleneck-shortest pyramidal tour in that graph in O(n) time. We make use of a technique by Komlos for
answering interval-minimum queries in constant amortized time [14].

Theorem 7. Given a graph G whose cost array C satis?es the strict bottleneck Monge property, the bottleneck pyramidal
shortest-tour of G can be found in O(n) time.

Proof. We reduce the problem to an instance of the on-line monotone matrix searching problem, and apply the algorithm
of Larmore and Schieber [15], which takes O(n) comparisons. We then show that each comparison can be done in constant
amortized time.

We now describe the reduction. De3ne di to be the bottleneck cost of the shortest bitonic path from i to i + 1 which
uses every vertex in the range 0 to i + 1 exactly once. Such a path can be thought of as the union of an increasing
path from 0 to i and an increasing path from 0 to i + 1, where each vertex in the range 1 to i + 1 is in exactly one
of the two paths. Let ei; j be the full cost of the path from i to j which passes through every intermediate point; that is,
ei; j = ci; i+1 ∗ · · · ∗ cj−1; j , a member of the semigroup of ordered lists S= (T;⊕;4). Note that ei; i is the empty list, which
is the minimum element of that semigroup. For i¡j, let ai; j = di ∗ ci; j+1 ∗ ei+1; j , also a member of S. Then, we observe
that dj is the largest element of the ordered list mini¡j{ai; j}. Thus, the online matrix searching algorithm of Larmore and
Schieber [15] can be used to 3nd all column minima, and hence 3nally max{dn−1; cn−1; n}, the desired bottleneck cost,
since {ai; j} is transpose totally monotone. Unfortunately, a comparison in the semigroup S takes O(n) time in the worst
case. However, the time can be reduced to O(1) for our application, as we see below.

The comparisons required are always whether ai; j6ai′ ; j for some i¡i′¡j. Both sides of the inequality are multisets of
real numbers, and the set ei′+1; j is in the intersection. Deletion of those common elements does not eDect the results of
the comparison. Thus, it is possible to reduce the comparison to the question of whether di ∗ ci; j+1 ∗ ei+1; i′+16di′ ∗ ci′ ; j+1.
In order to answer this question, at most the largest two items of the multiset ei+1; i′+1 need be examined. Similarly,
after determining that the minimum of the jth column is ai; j , the value of dj is the maximum item in the multiset
ai; j = di ∗ ci; j+1 ∗ ei+1; j . Thus, only the largest item in the multiset ei+1; j need be examined. We conclude that a query to
ei; j need only return the two largest items in that multiset.

We can spend O(n) preprocessing time to create a data structure which allows us to 3nd the minimum item of any
subinterval of a list of items in O(1) amortized time, using the techniques of Komlos [14]. The smallest two elements in
a subinterval can be found using three such queries; one to 3nd the smallest item, and the other two to 3nd the minima



464 W. Bein et al. / Discrete Applied Mathematics 145 (2005) 455–464

of the sublists to the left and to the right of that minimum. Thus, the smallest two elements of any ei; j can be found in
O(1) amortized time. The overall running time of our algorithm is thus O(n).

Acknowledgements

We thank Seth Pettie for helpful conversations.

References

[1] P.K. Agarwal, S. Sen, Selection in monotone matrices and computing kth nearest neighbors, In: Proceedings of the Fourth
Scandinavian Workshop on Algorithm Theory, 1994.

[2] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, R. Wilber, Geometric applications of a matrix-searching algorithm, Algorithmica
2(2) (1987) 195–208.

[3] A. Aggarwal, B. Schieber, T. Tokuyama, Finding a minimum weight k-link path in graphs with Monge property and applications,
In: Proceedings of the Ninth Annual ACM Symposium on Computational Geometry, 1993, pp. 189–197.

[4] A. Aggarwal, B. Schieber, T. Tokuyama, Finding a minimum-weight k-link path in graphs with the concave Monge property and
applications, Discrete Comput. Geom. 12 (1994) 263–280.

[5] W.W. Bein, P. Brucker, P.K. Park, Applications of an algebraic Monge property, Unpublished manuscript, Presented at the Third
Twente Workshop on Graphs and Combinatorial Optimization, Enschede, The Netherlands, 1993.

[6] R.E. Burkard, Remarks on some scheduling problems with algebraic objective functions, Oper. Res. Verfahren 32 (1979) 63–77.
[7] R.E. Burkard, B. Klinz, R. Rudolf, Perspectives of Monge properties in optimization, Discrete Appl. Math. 70 (1996) 95–161.
[8] R.E. Burkard, W. Sandholzer, EAciently solvable special cases of bottleneck traveling salesman problems, Discrete Appl. Math.

32(1) (1991) 61–76.
[9] R.E. Burkard, U. Zimmermann, Combinatorial optimization in linearly ordered semimodules: a survey, in: B. Korte (Ed.), Modern

Applied Mathematics: Optimization and Operations Research, North-Holland Publishing Company, Amsterdam, Holland, 1982,
pp. 391–436.

[10] G.N. Frederickson, D.B. Johnson, The complexity of selection and ranking in X + Y and matrices with sorted columns, J. Comput.
Syst. Sci. 24(4) (1982) 197–208.

[11] H.N. Gabow, R.E. Tarjan, Algorithms for two bottleneck optimization problems, J. Algorithms 9(3) (1988) 411–417.
[12] D.S. Hirschberg, L.L. Larmore, The least weight subsequence problem, SIAM J. Comput. 16(4) (1987) 628–638.
[13] B. Klinz, R. Rudolf, G.J. Woeginger, On the recognition of bottleneck Monge matrices, Discrete Appl. Math. 63 (1995) 43–74.
[14] J. Komlos, Linear veri3cation for spanning trees, Combinatorica 5(1) (1985) 57–65.
[15] L.L. Larmore, B. Schieber, On-line dynamic programming with applications to the prediction of RNA secondary structure,

J. Algorithms 12(3) (1991) 490–515.
[16] E. SeiDart, Algebraic transportation and assignment problems with “Monge-property” and “quasi-convexity”, Unpublished, 1993.
[17] R. Wilber, The concave least-weight subsequence problem revisited, J. Algorithms 9(3) (1988) 418–425.


	The algebraic Monge property and path problems
	Introduction
	Algorithms for algebraic shortest-path problems
	Algorithms for bottleneck shortest-path problems
	An alternate algorithm for the bottleneck k-edge shortest-path
	A paragraph-formation problem
	A special case of the bottleneck traveling-salesman problem
	Acknowledgements
	References


