
Ž .JOURNAL OF ALGORITHMS 23, 386]400 1997
ARTICLE NO. AL960824

More Efficient Parallel Totally
Monotone Matrix Searching*

Phillip G. Bradford† and Rudolf Fleischer†

Max-Planck-Institut fur Informatik, Im Stadtwald, D-666123 Saarbrucken, Germany¨ ¨

and

Michiel Smid‡

Fakultat fur Informatik, Otto-̈ on-Guericke-Unï ersitat Magdeburg, D-39106¨ ¨ ¨
Magdeburg, Germany

Received January 3, 1996

We give a parallel algorithm for computing all row minima in a totally monotone
n = n matrix which is simpler and more work efficient than previous polylog-time

Ž . Ž .algorithms. It runs in O lg n lg lg n time doing O n lg n work on a CRCW'
2Ž Ž . . Ž .PRAM, in O lg n lg lg n time doing O n lg n work on a CREW PRAM, and in'

Ž . Ž .O lg n lg n lg lg n time doing O n lg n lg lg n work on an EREW PRAM. Since' '
finding the row minima of a totally monotone matrix has been shown to be
fundamental in the efficient solution of a host of geometric and combinatorial
problems, our algorithm leads directly to improved parallel solutions of many
algorithms in terms of their work efficiency. Q 1997 Academic Press

1. INTRODUCTION

Let M be an m = n matrix whose entries belong to some totally
� 4ordered set. The row minima problem is to find for each row i g 1, . . . , m

Ž .the index min i of the column that contains the minimal element of row i.

* The authors were supported by the ESPRIT Basic Research Actions Program, under
Ž .Contract 7141 Project ALCOM II . The first author was also partially supported by NSF

Grant CCR-9203942 while he was at Indiana University.
† � 4E-mail: bradford, rudolf @mpi-sb.mpg.de.
‡ E-mail: michiel@isg.cs.uni-magdeburg.de.

386

0196-6774r97 $25.00
Copyright Q 1997 by Academic Press
All rights of reproduction in any form reserved.

EFFICIENT PARALLEL MATRIX SEARCHING 387

The row maxima problem is defined symmetrically. Throughout this paper,
we assume that all entries of M are distinct; otherwise, we could replace

Ž .entry M by the triple M , i, j and use the lexicographical order oni, j i, j
these triples. We also assume that each entry M can be accessed ini, j
constant time.

Ž .Clearly, the row minima problem has time complexity Q mn . It turns
out, however, that many problems can be reduced to the row minimal
problem for matrices of a special form.

Ž . Ž .DEFINITION 1. An m = n matrix M is monotone if min i F min j for
all 1 F i - j F m.

w xAggarwal et al. 1 proved that solving the row minima problem on a
Ž .monotone m = n matrix has time complexity Q m lg n . They also ob-

served that in many applications an even more restricted type of matrices
occurs.

DEFINITION 2. An m = n matrix M is totally monotone if every 2 = 2
minor is monotone. That is, for all 1 F i - k F m and 1 F j - l F n, if
M) M then M) M .i, j i, l k , j k , l

Many geometric and combinatorial problems, such as computing ex-
w x w xtremal inscribed or circumscribed k-gons 1 , wire routing 1 , or the matrix

w xchain ordering problem 6 , can be reduced to the row minima problem on
totally monotone matrices. Therefore, the parallel algorithm for the latter
problem, which we develop in this paper, leads directly to improved
parallel solutions for many problems. We remark that in all these exam-
ples it is not necessary to compute the whole matrix in advance, which

Ž .would need Q mn time. Rather, as is true for many applications of this
problem, we assume that in constant time we can compute any matrix
element.

w xConsider the following example from 1 : Given a convex n-gon P in the
place with vertices p , . . . , p , find for each vertex p its further neigh-0 ny1 i
bor in P. This problem can be solved by finding the row minima of the

Ž . Ž w x .following totally monotone n = 2n y 1 matrix M see 1 for details :

Ž .If i - j F i q n y 1 then M s dist p , p .i, j i ŽŽ jy1.mod n.q1

If j F i then M s j y i.i, j

If j G i q n then M s y1.i, j

w xIt was shown in 1 that for m F n the row minima problem on a totally
Ž .monotone m = n matrix can be solved in asympotically optimal O n time,

and so can be the all-furthest-neighbors problem for a convex n-gon.
Having settled the sequential complexity of the problem asymptotically,

researchers began designing parallel algorithms for the row minima prob-
lem on totally monotone matrices. Let us assume from now on that m s n.

BRADFORD, FLEISCHER, AND SMID388

w x Ž .Aggarwal and Park 2 showed how to solve the problem in O lg n time
Ž . Ž 2 .and O n lg n work on a CRCW PRAM. They also gave an O lg nrlg lg n

Ž Ž « ... Ž . Ž Ž ..resp. O n time and O n lg nrlg lg n resp. O n work algorithm for
Ž . w xthe CREW PRAM for any «) 0 . As Raman and Vishkin 8 pointed out,

the two latter algorithms work on an EREW PRAM as well. Atallah and
w x Ž .Kosaraju 4 gave an EREW PRAM algorithm that runs in O lg n time and

Ž .does O n lg n work.
w xRaman and Vishkin 8 designed optimal randomized algorithms which

Ž . Ž Ž ..run with high probability in O lg n resp. O lg lg n time on an EREW
Ž . Ž .resp. CRCW PRAM doing O n work.

Until now, no deterministic algorithm was known that solves the row
minima problem for a totally monotone n = n matrix in polylogarithmic

Ž .time and o n lg nrlg lg n work. In this paper, we give such an algorithm
which, on an EREW PRAM, improves the work of all previous algorithms
w x Ž .'2, 4 by a factor of almost Q lg n . Moreover, it is faster than Aggarwal

w xand Park’s algorithm in 2 when their algorithm’s work is minimized. More
precisely, we prove the following theorem.

Ž .THEOREM 3 Main Theorem . We can sol̈ e the row minima problem on
n = n totally monotone matrices

v Ž . Ž .'on a CRCW PRAM in O lg n lg lg n time and O n lg n work,
2

v Ž Ž . . Ž .'on a CREW PRAM in O lg n lg lg n time and O n lg n work,
v Ž .'on an EREW PRAM in O lg n lg n lg lg n time and

Ž Ž .'O n lg n lg lg n work.

On the CREW and EREW PRAM, there is in fact a tradeoff between time
Ž . Ž .and work, the other extreme being O lg n lg lg n time and O n lg n work

Ž .see Table 1 .

TABLE 1
Comparing the Most Efficient Deterministic Polylog Time Parallel

Solutions to the Row Minima Problem on n = n Totally Monotone Matrices

PRAM model Work Time Source

Ž . Ž .CRCW O n lg n O lg n lg lg n Our results'
2Ž . Ž Ž . .CREW O n lg n O lg n lg lg n Our results'

2Ž . Ž . w xEREW O n lg nrlg lg n O lg nrlg lg n 2, 8
Ž . Ž .O n lg n lg lg n O lg n lg n lg lg n Our results' '

Ž . Ž . w xO n lg n O lg n 4

w x w xNote. The results in the third line were given in 2 for the CREW PRAM, but 8
observed that they also hold for the EREW PRAM.

EFFICIENT PARALLEL MATRIX SEARCHING 389

The rest of this paper is organized as follows. In Section 2, we recall
some results about totally monotone matrices and about sorting subrou-
tines which we need. In Section 3, we first outline our algorithm, then give
the main routines in more detail in Subsections 3.2 and 3.3, and finally put
the pieces together in Subsection 3.4. We close with some remarks in
Section 4.

2. PRELIMINARIES

We start by recalling some results from the literature. The next proposi-
w xtion and lemma are implicitly from 1 . Let M be a totally monotone

m = n matrix. The next proposition follows directly from Definition 2.

PROPOSITION 4. For any two columns a - b, there exists a unique row
� 4k g 0, . . . , m called the change-over of a and b, such that M - M fori, a i, b

all i F k and M) M for all j) k.j, a j, b

� 4We say that column b g 1, . . . , n is useless if it does not contain any
row minima. Obviously, if m - n then M contains at least n y m useless
columns.

LEMMA 5. If there exists columns a and c with a - b - c and rows
� 4i, j g 1, . . . , m with j F i q 1 such that M - M and M) M , theni, a i, b j, b j, c

column b is useless. Moreo¨er, b is useless if either M) M or M -1, b 1, c m , a
M .m , b

Proof. Proposition 4 implies that column b cannot obtain a row mini-
Ž .mum above row i or below row j. See Fig. 1 for the case when j - i .

w xAggarwal et al. 1 used this in their optimal sequential algorithm for
totally monotone n = n matrices which works as follows: Throw away all
even rows, walk along the diagonal of the remaining matrix and eliminate
nr2 useless columns, solve the row minima problem recursively on the
now nr2 = nr2 matrix, then reinsert the even rows and find their minima

Ž .in time O n .
The next theorem shows that the last step of this algorithm can be done

efficiently in parallel. However, identifying many useless columns seems to
be a difficult task to do in parallel.

Ž w x w x.THEOREM 6 Aggarwal and Park 2 , see also 8 . Let M be a totally
monotone n = n matrix, and assume we are gï en the two minima for e¨ery
rth row of M. Then there is an EREW PRAM algorithm that computes the

Ž .remaining row minima in O r q lg n time using nrr processors.

BRADFORD, FLEISCHER, AND SMID390

FIG. 1. The shaded column is useless because A - A9 and B9) B. The darkest portion of
the shaded column contains elements known to be useless in two different ways.

Unfortunately, applying Theorem 6 recursively does not seem to give an
efficient parallel algorithm. Therefore, we show how to identify useless
columns efficiently in parallel.

Now, we give our basic approach for solving the row minima problem on
totally monotone n = n matrices.

Ž w x.THEOREM 7 Atallah and Kosaraju 4 . Let c G 1 be some constant.
Gï en an n = cn totally monotone matrix M, we can find its row minima in
Ž .O lg n time using n processors on an EREW PRAM.

w xAtallah and Kosaraju 4 showed this for c s 1. So if we split M into c
submatrices of size n = n, we can find the row minima of each submatrix

Ž .in time O lg n using n processors, and then find the row minima of M in
Ž .time O 1 by choosing between c candidates in each row.

Ž . Ž .Let M resp. N be an m = n resp. m = n9 matrix, where n9 F n. We
say that N has the same row minima as M, if all columns of M that contain

EFFICIENT PARALLEL MATRIX SEARCHING 391

row minima are also columns in N and all of N ’s columns are from M.
Furthermore, N ’s column ordering is directly inherited from the column
ordering of M. That is, consider the useless columns in M that by
definition do not contain any row minima, then we can delete any number
of these useless columns giving N which ‘‘has the same’’ row minima
as M.

In the next theorem, we will say that an algorithm computes an m = n9
matrix N that has the same row minima as a given m = n matrix M. This

Ž .means that the matrix N is represented implicitly in O m q n9 space,
that we can access every entry of N in constant time, and that for each
1 F i F m, if we are given the index of the column in N that contains the
minimal element of the ith row, then we can in constant time compute
the index of the column in M that contains the minimal element of the
ith row.

THEOREM 8. Let c be a positï e integer constant. Let AA be a PRAM
algorithm that, gï en a totally monotone nrlg n = n matrix M9, computes a
totally monotone nrlg n = cnrlg n matrix M0 that has the same row minima

Ž . Ž Ž .. Ž .as M9. Let f n resp. g n denote the amount of time resp. work this
algorithm takes. Then the row minima problem on totally monotone n = n

Ž Ž .. Ž Ž ..matrices can be sol̈ ed in O lg n q f n time and O n q g n work.

Proof. Let M be a totally monotone n = n matrix. Let M9 be the
totally monotone nrlg n = n matrix obtained by taking every lg nth row of

Ž . Ž .M. By our assumption, we can in f n time and with g n work compute a
totally monotone nrlg n = cnrlg n matrix M0 that has the same row
minima as M9. By Theorem 7, we can solve the row minima problem for

Ž . Ž . Ž .M0 and, hence, for M9 in O lg n time with O n work. Given the row
minima for M9, Theorem 6 implies that we can find all row minima of M

Ž . Ž .in O lg n time and O n work. Note that the results of Theorems 6 and 7
hold for the EREW PRAM. As a result, we can solve the row minima
problem for M on the same PRAM model as that on which algorithm AA

works.

Later in the proof of the main theorem we will apply this result with
Ž .c s 8. So, for example, in the case of the CRCW PRAM we have f n s

Ž . Ž . Ž . Ž .'O lg n lg lg n and g n s O n lg n See Theorem 17 .
Theorem 8 implies that it suffices to design parallel algorithms that,

given a totally monotone nrlg n = n matrix M9, compute a totally mono-
tone nrlg n = cnrlg n matrix M0, for some integer constant c, that has
the same row minima. In the rest of this paper, we will show how to design
such algorithms.

BRADFORD, FLEISCHER, AND SMID392

Note that the matrix M0 always exists: M9 has nrlg n rows and, hence,
there are this many row minima. Hence, the main problem is to reduce the
number of columns from n to cnrlg n.

Many of the efficient parallel algorithms for row minima searching use
the strategy we adopt of finding the minima separately in blocks of
columns. Then merging these minima gives the row minima of the original
given matrix.

w xWe note that Raman and Vishkin 8 used a similar strategy of ours in
their randomized algorithm. In particular, given a totally monotone matrix
they select appropriate rows via Theorem 6 and then use randomization to
select columns. This gives a suitably smaller submatrix to which they

Ž .eventually apply one of the less efficient algorithms giving expected
Ž .polylog time and O n work parallel algorithms.

The general strategy of taking blocks of columns and solving the row
minima problem on them and then recombining these results is taken in

w x w xAtallah and Kosaraju’s 4 algorithm as well. Aggarwal and Park 2 gave
Ž .an algorithm using this strategy costing O n lg n work. They also gave the

w xfirst rendition of Theorem 6 for the CREW PRAM in 2 and Raman and
w xVishkin 8 pointed out that it holds for the EREW PRAM.

We close this section by mentioning some standard results for comput-
ing prefix sums and parallel integer sorting.

THEOREM 9. Gï en n 0r1-̈ ariables x , . . . , x , we can compute all prefix1 n
k Ž .sums Ý x , for k s 1, . . . , n, on an EREW PRAM in O lg n time andis1 i

Ž .O n work.

w xProof. See for example 7 .

� 4THEOREM 10. Gï en n integer ¨ariables x , . . . , x g 1, . . . , n , we can1 n
stable sort them

v ŽŽ . . Ž .on a CRCW PRAM in O lg n rlg lg n time and O n lg lg n work;
v Ž . Ž .'on a CREW PRAM in O lg n lg lg n time and O n lg n work;

v Ž .'on an EREW PRAM in O lg n lg nrlg lg n time and
Ž .'O n lg n lg lg n work.

On the CREW and EREW PRAM, there is in fact a tradeoff between time
Ž . Ž .and work, the other extreme being O lg n time and O n lg n work.

w xProof. The CRCW algorithm is due to Bhatt et al. 5 . The CREW and
w xEREW algorithms are due to Albers and Hagerup 3 .

EFFICIENT PARALLEL MATRIX SEARCHING 393

3. OUR ALGORITHM

3.1. The General Idea

In this section we outline our algorithm for identifying many useless
Žcolumns in an r = n totally monotone matrix M, where r < n later we

. 'will choose r s nrlg n . Let k s lg r .
ŽThe algorithm runs in l phases. We will see later that we can choose

. Žl s 3 lg lg n. When a new phase starts with an r = m matrix where
1.m G 8 r , then during this phase we will identify and delete at least m4

3useless columns, thus leaving a matrix of size at most r = m for the next4

phase.
At the beginning of a phase, we partition the r = m matrix into blocks

Ž .of k contiguous columns the last block may be smaller , and assign one
processor to each block. Then each processor runs the procedure
Color_Block independently on its block of columns. The phase ends with a
run of Color_All on the entire r = m matrix. Color_Block tries to elimi-
nate columns locally, whereas Color_All eliminates columns based on

Žglobal information so that these columns may be far apart Color_Block
computes candidate columns which are potentially useless and turns them

.over to Color_All .
Color_Block uses three colors to color all columns: A red column is

known to be useless, a yellow column still has a chance of being found
useless in the procedure Color_All, and a green column will definitely
survive this phase, but at the end of a phase there are at most two green
columns in each block.

The yellow columns are always created pairwise, so we call such a pair a
Ž . � 4yellow pair. There is also an integer row a, b g 1, . . . , r attached to each

Ž .yellow pair a, b , such that there exist columns c and d, a - c F d - b,
with M) M and M - M ; we call thisr owŽa, b., a r owŽa, b., c r owŽa, b., d r owŽa, b., b

property the yellow-property of a yellow pair. Further, all row-values within
a block will be different.

Color_All will then work on the yellow pairs and find nearly as many
useless columns as there are yellow pairs. It colors these useless columns
red, the other columns green. The green columns can then be compacted
into a smaller matrix which serves as input for the next phase. Without loss
of generality, we assume that the columns are represented by an array of
pointers P, with one pointer to each column. These columns can be
compacted in several ways. For example, take an additional array C of
length n with one array component for each column. For each red column
make the corresponding array element contain 0 and for each green
column make the corresponding array element contain 1. Now, apply a
parallel prefix sum to C giving C9. The ith column is to be deleted if

BRADFORD, FLEISCHER, AND SMID394

w x w x w xC9 i y 1 s C9 i , and define C9 0 s 0. So for each column i such that
w x w x w x w w xxC9 i y 1 / C9 i , move the pointer in P i to P C9 i . It is straightfor-

ward that this causes no write-conflicts. We will analyze the time and work
of such compaction shortly.

3.2. The Procedure Color_Block

ŽThe input to the procedure Color_Block is an r = k matrix recall that
.'k s lg r . Since there is only one processor assigned to each block, it is a

purely sequential algorithm.
At the beginning, all columns are colored green. Next Color_Block runs

in iterations. In each iteration, we either throw away some columns or
some rows. We remark that after each run of Color_Block all rows
reappear. Further after each phase all columns that were not red reappear.
We stop running iterations of Color_Block when only two rows are left.

COROLLARY 11. Consider the top and bottom rows of a block. There is no
Ž .local maximum e¨en after remo¨ing other red columns other than the first

and last elements of these rows.

The proof follows directly from Lemma 5.
We maintain the following iteration in¨ariant:

All columns are green, and the matrix elements in the top row are
increasing from left to right, whereas the elements in the bottom row
are decreasing.

So if we have a matrix of two rows, we know from Corollary 11 that all
columns except the first and the last ones are useless and can therefore be
colored red.

We can easily guarantee the iteration invariant before the first iteration.
We just scan through the first row, coloring all columns containing a local

Ž .maximum red these columns are useless by Lemma 5 ; this may include
some backtracking, but each column is visited at most twice. Similarly, all
columns right of a local minimum in the last row are useless and can be
colored red.

Now, as well as after each iteration, we must deal with the columns we
Žhave just colored yellow or red. Since we need to delete these columns at

.least conceptually , the easiest way seems to have two arrays left and right
of size k which contain for each green column its closest green neighbor to

Ž .the left and to the right, respectively. Then each coloring i.e., deletion
takes constant time. To make the algorithms simpler, we simulate two

EFFICIENT PARALLEL MATRIX SEARCHING 395

more columns 0 and k q 1 that are always green, and whose entries are all
`. These two columns should obviously not be included in the iteration
invariant.

One Iteration. Each iteration consists of two steps. Assume, the current
matrix consists of rows ¨ , ¨ q 1, . . . , w y 1, w of our original r = k matrix.

First, we start a binary search for the changeover between the first two
columns from row ¨ down to row w, but we stop after k comparisons. This
gives us two rows i - j with M - M and M) M . It w y ¨ s r 9,i, 1 i, 2 j, 1 j, 2
then j y i s r 9r2 k.

Then we make rows i and j monotone by calling ScanRow for both of
Ž . Ž .them see Fig. 3 . ScanRow s first deletes useless columns until the

elements of s form a monotone decreasing chain followed by a monotone
increasing chain. If the decreasing chain is not longer than the increasing
chain, then we could pair all columns of the decreasing chain with columns
of the increasing chain to create yellow pairs, except that then all of them
would have the same row-value. Therefore, we call ScanUp which estab-
lishes a staircase of)’s as depicted in Fig. 2, and in the process eventually
finds some more useless columns. Since all rows above s must also be

Ž .increasing where row s is increasing Proposition 4 , we can now create
yellow pairs with different row-values. Deleting them gives us a monotone
increasing row s.

Similarly, we compute a downward staircase if the increasing chain is
shorter; then row s becomes decreasing. We note that ScanUp and

ŽFIG. 2. Scanup starts at column p and goes diagonally upwards among the green
. Ž . Ž .columns until it finds a ‘‘- ’’ here in row s y 4 , then it deletes the right column p y 4

Ž .and backtracks to the row below i.e., row s y 3 . Here, we assume for simplicity that
Ž .left x s x y 1 for all x.

BRADFORD, FLEISCHER, AND SMID396

Ž .Procedure ScanRow s
]] Columns 0 and k q 1 are green, and M s M s `.s, 0 s, kq1

Ž .j s right 0 ;]] first green column
while j - k q 1

Ž . Ž .do if M - M and M) Ms, l e f tŽ j. s, j s, j s, r i g h tŽ j.
Ž .then j9 s left j ;

color column j red and delete it;]] Lemma 5
j s j9,]] backtrack

Ž .else j s right j ;
]]Now the green columns form a pattern
]] M) ???) M - M - ??? - Ms, 1 s, p s, pq1 s, q

q
Ž .if p F then ScanUp s, p ;

2
Ž .for j s 1, . . . , p y 1 do create yellow pairs p y j, p q j

with row-value s y j q 1;
Ž .else ScanDown s, p ;

Ž .for j s 1, . . . , q y p do create yellow pairs p y j, p q j
with row-value s q j y 1;

Ž .Procedure ScanUp s, p
]] Search a diagonal of)’s going up from p.
]] We know that M) Ms, l e f tŽ p. s, p

Ž .p s left p ; s s s y 1
while p) 0]] Invariant: M) Msq1, p sq1, r i g h tŽ p.
do if M) Ms, l e f tŽ p. s, p

then s s s y 1;
Ž .p s left p ;
Ž .else q s right p ;

color p red and delete it;]] Lemma 5
s s s q 1;]] backtrack
p s q;

Ž .Procedure ScanDown s, p
]] Search a diagonal of -’s going down from p.
]] We know that M - M .s, p s, r i g h tŽ p.

Ž .p s right p ; s s s q 1
while p - k q 1]] Invariant: M - Msy1, l e f t sy1, p
do if M - Ms, p s, r i g h tŽ p.

then s s s q 1;
Ž .p s right p ;

Ž .else q s left p ;
color p red and delete it;]] Lemma 5
s s s y 1;]] backtrack
p s q;

FIG. 3. Procedures ScanRow, ScanUp, and ScanDown.

EFFICIENT PARALLEL MATRIX SEARCHING 397

ScanDown are essentially the same as the procedure REDUCE used in the
w xsequential algorithm by Aggarwal et al. 1 to find useless columns.

� 4Among rows ¨ , i, j, w , let ¨ 9 be the largest of the increasing rows, and
w9 the smallest of the decreasing rows. By Proposition 4, ¨ 9 - w9. Now we
delete all rows above ¨ 9 and below w9, i.e., the next iteration works on
rows ¨ 9, . . . , w9. Clearly, the iteration invariant holds now.

LEMMA 12. With the notation abo¨e we ha¨e:

Ž .a If no yellow pairs are created then ¨ 9 s i and w9 s j.
Ž .b All yellow pairs ha¨e the yellow-property.
Ž .c The row-̈ alues of all yellow pairs are different.

Ž .Proof. a If now yellow pairs are created, then procedures ScanUp
and ScanDown have not been called, i.e., row i is increasing and row j is
decreasing.

Ž .b By construction.
Ž .c Since the iteration invariant holds, ScanUp and ScanDown can

never leave the submatrix on which the iteration started. Further, the rows
which are used is row-value for yellow pairs do not belong to the submatrix
of the next iteration.

Ž .LEMMA 13. After at most 3r2 k iterations, the block consists of only two
rows, i.e., the procedure Color_Block stops. The total time used for the

Ž .iterations is O lg r .

Proof. In each iteration, we either find a yellow pair, or the k probes of
k Žthe binary search decrease the number of rows by a factor of 2 Lemma

Ž .. Ž .12 a . Since there can be no more than kr2 yellow pairs, after 3r2 k
Ž k .kiterations the number of rows would have shrunk to rr 2 s 1.
Ž .For the time bound, observe that ScanRow needs O k q s time fori

iteration i, where s is the number of red columns found by Color_Blocki
in iteration i.

Since red columns are deleted once they are found, this sums to
Ž 2 . Ž .O k q k s O lg r time for all iterations.

3.3. The Procedure Color_All

The procedure Color_All takes all yellow columns and shows that at
least a quarter of the yellow columns are useless. It works by sorting the
yellow columns by their row-values and comparing them appropriately.

We may assume that Color_Block created exactly kr2 yellow pairs in
Žeach block, storing all of them in an array of size mr2 we can add dummy

.yellow pairs which are later ignored . If we now sort the yellow pairs by

BRADFORD, FLEISCHER, AND SMID398

their row-values, they will be grouped in contiguous blocks with the same
row-value. The next lemma shows that now if two neighbors in the array
happen to have the same row-value, then we can color one of the four

Ž .columns involved red. This can easily be done with O urlg n processors
Ž .in O lg n time.

Ž . Ž .LEMMA 14. Let a, b and s, t be two yellow pairs with b - s. If
Ž . Ž .row a, b s row s, t , then either column b or column s is useless.

Ž . Ž .Proof. Let i s row a, b s row s, t . The yellow-property and Lemma
5 imply that column s is useless if M - M , otherwise column b isi, b i, s
useless.

LEMMA 15. Procedure Color_All runs

v ŽŽ . . Ž .on a CRCW PRAM in O lg m rlg lg m time and O m lg lg m
work,

v Ž . Ž .'on a CREW PRAM in O lg m lg lg m time and O m lg m work,
v Ž .'on an EREW PRAM in O lg m lg mrlg lg m time and

Ž .'O m lg m lg lg m work.

Proof. Follows directly from Theorem 10.

Ž 64 .LEMMA 16. If m G 8 r and k G 8 i.e., n G 2 , then at least mr4
columns will be colored red during Color_All.

Proof. Assume that we have a total of l red and l yellow columns1 2
after running Color_Block on all blocks. Since there can be at most two

Ž .green columns in each of the mrk blocks, we have l q l G m y 2mrk .1 2
Ž .This includes the dummy yellow pairs that are also turned red.

If there are t yellow pairs with row-value i then we will color t y 1i i
Žcolumns red note that the sorting algorithm is stable, so the yellow pairs

.are ordered with increasing column numbers . Hence we will get a total of
Ž .l q Ý t y 1 s l q 2r2 y r G mr2 y mrk y r G mr4 red columns.1 i i 1

3.4. Analysis of the Algorithm

Let r s nrlg n.

THEOREM 17. After 3 lg lg n phases of our algorithm, an r = n matrix M
is reduced to an at most r = 8 r matrix with the same row minima as M. This
takes

v Ž . Ž .'O lg n lg lg n time and O n lg, n work on a CRCW PRAM,
2

v Ž Ž . . Ž .'O lg n lg lg n time and O n lg n work on a CREW PRAM,
v Ž . Ž .' 'O lg n lg n lg lg n time and O n lg n lg lg n work on an EREW

PRAM.

EFFICIENT PARALLEL MATRIX SEARCHING 399

Ž . l ŽProof. After l phases the matrix has at most 3r4 n columns Lemma
.16 . So after at most 3 lg lg n phases there are at most 8nrlg n s 8 r

columns.
Ž . Ž .In phase i, Color_Block needs O lg r s O lg n time and

ni i3 3 '0 lg r s O n lg nŽ . Ž .ž /4 4ž /k

Ž .work Lemma 13 , so the total time for Color_Block over all phases is
Ž . Ž .'O lg n lg lg n , and the total work is O n lg n . The complexity bound

now follows from Lemma 15.

This together with Theorem 8 implies our Main Theorem which is:

Ž .MAIN THEOREM Theorem 3 . We can sol̈ e the row minima problem on
n = n totally monotone matrices

v Ž . Ž .'on a CRCW PRAM in O lg n lg lg n time and O n lg n work,
2

v Ž Ž . . Ž .'on a CREW PRAM in O lg n lg lg n time and O n lg n work,
v Ž .'on an EREW PRAM in O lg n lg n lg lg n time and

Ž .'O n lg n lg lg n work.

On the CREW and EREW PRAM, there is in fact a tradeoff between time
Ž . Ž .and work, the other extreme being O lg n lg lg n time and O n lg n work.

4. CONCLUSIONS

We have given an efficient deterministic parallel algorithm for comput-
ing the minima of all rows of a totally monotone matrix. For the CREW
and EREW PRAM, the bottleneck is the sorting step.

But we do not really need sorting here, a weaker concept like semi-
w x Žsorting 9 i.e., group all equal elements together, not regarding the order

.between groups would also suffice. Unfortunately, only efficient random-
ized algorithms are known for that problem.

Further, when we start a new phase of our algorithm in Section 2 we
forget everything which we might have learned in previous phases. We
cannot say exactly how much we lose here, but we have the impression that
a thorough analysis could improve our complexity bounds.

Also, if we have a more general m = n matrix, then the cost will be
based on a tradeoff of between the size of a block that Color_Block and
ScanRow work on and the number of processors. Especially, since
ScanRow sequentially runs across the blocks of columns.

BRADFORD, FLEISCHER, AND SMID400

If we have an m = n matrix, then the cost of the sorting step in
Color_All depends on n and not m. Therefore, in this case allowing n to
be asymptotically larger than m will change our complexity bounds just as
increasing the size of inputs to Albers and Hagerup’s parallel sorting
algorithm.

ACKNOWLEDGMENTS

Thanks to Torben Hagerup for discussions about parallel sorting algorithms. Many thanks
to the referees too.

REFERENCES

1. A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications of a
Ž .matrix-searching algorithm, Algorithmica 2 1987 , 195]208.

2. A. Aggarwal and J. Park, Notes on searching multidimensional monotone arrays, in
‘‘Proceedings of the 29th Annual IEEE Symposium on the Foundations of Computer

Ž .Science FOCS’88 , 1988,’’ pp. 497]512. To appear in J. Algorithms.
3. S. Albers and T. Hagerup, Improved parallel integer sorting without concurrent writing, in

‘‘Proceedings of the 3rd Annual ACM]SIAM Symposium on Discrete Algorithms
Ž .SODA’92 , 1992,’’ pp. 463]472.

4. M. J. Atallah and S. R. Kosaraju, An efficient parallel algorithm for the row minima of a
Ž .totally monotone matrix, J. Algorithms 13 1992 , 394]413.

5. P. C. P. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik, and S. Saxena, Improved
Ž .deterministic parallel integer sorting, Inform. and Comput. 94 1991 , 29]47.

6. P. G. Bradford, G. J. E. Rawlins, and G. E. Shannon, Efficient matrix chain ordering in
polylog time with linear processors, in ‘‘Proceedings 8th IEEE International Parallel
Processing Symposium, 1994,’’ pp. 234]241. To appear in SIAM J. Comput.

7. R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, in
‘‘Handbook of Theoretical Computer Science, Vol. A,’’ ‘‘Algorithms and Complexity,’’ p.
875, Elsevier, New York, 1990.

8. R. Raman and U. Vishkin, Optimal randomized parallel algorithms for computing the row
minima of totally monotone matrix, in ‘‘Proceedings 5th Annual ACM]SIAM Symposium

Ž .on Discrete Algorithms SODA’94 , 1994,’’ pp. 613]621.
9. L. G. Valiant, General purpose parallel architectures, in ‘‘Handbook of Theoretical

Computer Science, Vol. A,’’ ‘‘Algorithms and Complexity,’’ p. 965, Elsevier, New York,
1990.

